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Abstract. Recently, contrastive learning with data and class augmen-
tations has been shown to produce markedly better results for out-of-
distribution (OOD) detection than previous approaches. However, a
major shortcoming of this approach is that it is extremely slow due to
the significant increase in data size and in the number of classes and the
quadratic pairwise similarity computation. This paper shows that this
heavy machinery is unnecessary. A novel approach, called CMG (Class-
Mixed Generation), is proposed, which generates pseudo-OOD data by
mixing class embeddings as abnormal conditions to CVAE (conditional
variational Auto-Encoder) and then uses the data to fine-tune a classifier
built using the given in-distribution (IND) data. To our surprise, the
obvious approach of using the IND data and the pseudo-OOD data to
directly train an OOD model is a very poor choice. The fine-tuning based
approach turns out to be markedly better. Empirical evaluation shows
that CMG not only produces new state-of-the-art results but also is much
more efficient than contrastive learning, at least 10 times faster.3

Keywords: Out-of-distribution detection · data generation.

1 Introduction

Out-of-distribution (OOD) detection aims to detect novel data that are very differ-
ent from the training distribution or in-distribution (IND). It has a wide range of
applications, e.g., autonomous driving [40] and medical diagnosis [5]. So far, many
approaches have been proposed to solve this problem, from distance-based meth-
ods [2, 3, 12, 20], to generative models [60, 38, 41, 36] and self-supervised learning
methods [4, 11, 17, 19]. Recently, contrastive learning with data augmentation has
produced state-of-the-art (SOTA) OOD detection results [53, 45].

However, data augmentation-based contrastive learning has a major drawback.
It is extremely inefficient and resource-hungry due to a large amount of augmented
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data and quadratic pairwise similarity computation during training. For example,
CSI [53] creates 8 augmented instances for each original image. Furthermore, every
2 samples in the augmented batch is treated as a pair to calculate contrastive
loss. The performance is also poor if the batch size is small, but a large batch
size needs a huge amount of memory and a very long time to train. It is thus
unsuitable for edge devices that do not have the required resources. In Sec. 4.4,
we will see that even for a moderately large dataset, CSI has difficulty to run.

In this paper, we propose a novel and yet simple approach, called CMG
(Class-Mixed Generation), that is both highly effective and efficient, to solve the
problem. CMG consists of two stages. The first stage trains a pseudo-OOD data
generator. The second stage uses the generated pseudo-OOD data and the IND
training data to fine-tune (using an energy function) a classifier already trained
with the IND data. We discuss the first stage first.

OOD detection is basically a classification problem but there is no OOD data
to use in training. This paper proposes to generate pseudo-OOD data by working
in the latent space of a Conditional Variational Auto-Encoder (CVAE). The key
novelty is that the pseudo-OOD data generation is done by manipulating the
CVAE’s conditional information using class-mixed embeddings. CVAE generates
instances from the training distribution on the basis of latent representations
consisting of the conditional information and variables sampled from a prior
distribution of CVAE, normally the Gaussian distribution. If the latent space
features or representations are created with some abnormal conditions, the CVAE
will generate “bad” instances but such instances can serve as pseudo-OOD samples.
Our abnormal conditions are produced by mixing embeddings of class labels in
the IND data, which ensures the generated pseudo-OOD data to be similar but
also different from any existing IND data.

With the pseudo-OOD data generated, the conventional approach is to use
the IND data and the pseudo-OOD data to build a classifier for OOD detection.
However, to our surprise, this approach is a poor choice. We will discuss the reason
in Sec. 3.3 and confirm it with experimental results in Sec. 4.5. We discovered
that if we build a classifier first using the IND data and then fine-tune only the
final classification layer using both the IND and pseudo-OOD data, the results
improve dramatically. This is another novelty of this work. The paper further
proposes to use an energy function to fine-tune the final classification layer, which
produces even better results.

Our contributions can be summarized as follows:

(1) We propose a novel method using CVAE to generate pseudo-OOD samples
by providing abnormal conditions, which are mixed embeddings of different class
labels. To our knowledge, this has not been done before.4

(2) We discovered that the obvious and conventional approach of using the
IND and pseudo-OOD data to train a classifier in one stage performed very

4 By no means do we claim that this CVAE method is the best. Clearly, other generators
may be combined with the proposed class-mixed embedding approach too. It is also
known that CVAE does not generate high resolution images, but our experiments
show that low resolution images already work well.
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poorly. Our two-stage framework with fine-tuning performs dramatically better.
Again, to our knowledge, this has not been reported before.

(3) Equally importantly, since the classifier in CMG is not specified, CMG
can be applied to existing OOD detection models to improve them too.

Extensive experiments show that the proposed CMG approach produces new
SOTA results and is also much more efficient than contrastive learning for OOD
detection, requiring only one-tenth of the execution time.

2 Related Work

Early ideas for solving the OOD detection problem focused on modifying softmax
scores to obtain calibrated confidences for OOD detection [3, 13]. Many other score
functions have also been proposed, e.g., likelihood ratio [46], input complexity [50]
and typicality [37]. A recent work utilizes Gram matrices to characterize activity
patterns and identify OOD samples [48].

Methods that use anomalous data to improve detection [16, 35] are more
closely related to our work. Generative models have been used to anticipate
novel data distributions. In some of these methods, generated data are treated as
OOD samples to optimize the decision boundary and calibrate the confidence [60,
54]. In some other methods, generative models such as auto-encoders [59, 43]
and generative adversarial networks (GAN) are used to reconstruct the training
data [8, 42]. During GAN training, low quality samples acquired by the generator
are used as OOD data [44]. Their reconstruction loss can also help detect OOD
samples. There are also works using given OOD data to train a model [33].
It has been shown recently that using pre-trained representations and few-
shot outliers can improve the results [9]. Self-supervised techniques have been
applied to OOD detection too. They focus on acquiring rich representations
through training with some pre-defined tasks [10, 25]. Self-supervised models
show outstanding performance [25, 4]. CSI [53] is a representative method (see
more below), which uses contrastive learning and data augmentation to produce
SOTA results. However, it is extremely slow and memory demanding. Our
CMG method for generating pseudo-OOD data is much more efficient. Some
researchers also tried to improve contrastive learning based methods [49] and
proposed distance-based methods [34]. However, our experiments show that
CSI outperforms them. Our CMG method is a generative approach. But unlike
existing methods that use perturbations to anticipate OOD data, CMG uses
synthetic conditions and CVAE to obtain effective and diverse pseudo-OOD data.

Auto-Encoder (AE) is a family of unsupervised neural networks [47, 1]. A
basic AE consists of an encoder and a decoder. The encoder encodes the input
data into a low-dimensional hidden representation and the decoder transforms the
representation back to the reconstructed input data [55, 7, 18]. Variational auto-
encoder is a special kind of AE [23]. It encodes the input as a given probability
distribution (usually Gaussian) and the decoder reconstructs data instances
according to variables sampled from that distribution. CVAE is an extension
of VAE [24]. It encodes the label or conditional information into the latent
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representation so that a CVAE can generate new samples from specified class
labels. CVAE makes it easy to control the generating process, i.e., to generate
samples with features of specified classes. We make use of this property of CVAE
to generate high quality pseudo-OOD data.

3 Proposed CMG Method

OOD detection is commonly formulated as a classification problem without OOD
data/class available in training. To effectively train an OOD detection model,
an intuitive idea is to generate pseudo-OOD data and use them together with
the IND data to jointly build a OOD detection model. We take this approach.
We propose a method using Conditional Variational Auto-Encoder (CVAE) to
generate pseudo-OOD data and a new fine-tuning framework based on an energy
function to leverage the generated pseudo-OOD data to produce a highly effective
and efficient OOD detection model.

3.1 Conditional Variational Auto-encoder

Conditional Variational Auto-Encoder (CVAE) is derived from Variational auto-
encoder (VAE). We first introduce VAE which is a conditional directed graphical
model consisting of three main parts, an encoder qϕ(·) with parameters ϕ, a
decoder pθ(·) with parameters θ and a loss function L(x; θ, ϕ), where x represents
an input sample. The loss function is as follows:

L(x; θ, ϕ) = −Ez∼qϕ(z|x)[log pθ(x|z)] +KL(qϕ(z|x)||pθ(z)) (1)

where qϕ(z|x) is a proposal distribution to approximate the prior distribution
pθ(z), pθ(x|z) is the likelihood of the input x with a given latent representation
z, and KL(·) is the function to calculate Kullback-Leibler divergence. qϕ(z|x)
is the encoder and pθ(x|z) is the decoder. In Eq. (1), the expected negative
log-likelihood term encourages the decoder to learn to reconstruct the data with
samples from the latent distribution. The KL-divergence term forces the latent
distribution to conform to a specific prior distribution such as the Gaussian
distribution, which we use. After training, a VAE can generate data using the
decoder pθ(x|z) with a set of latent variables z sampled from the prior distribution
pθ(z). Commonly, the prior distribution is the centered isotropic multivariate
Gaussian pθ(z) = N (z;0, I).

However, VAE does not consider the class label information which is available
in classification datasets and thus has difficulty generating data of a particular
class. Conditional variational Auto-Encoder (CVAE) was introduced to extend
VAE to address this problem. It improves the generative process by adding a
conditional input information into latent variables so that a CVAE can generate
samples with some specific characteristics or from certain classes. We use c to
denote the prior class information. The loss function for CVAE is as follows:

L(x; θ, ϕ) = −Ez∼qϕ(z|x)[log pθ(x|z, c)] +KL(qϕ(z|x, c)||pθ(z|c)) (2)
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One CVAE implementation uses a one-hot vector to represent a class label
yc, and a weight matrix is multiplied to it to turn the one-hot vector to a class
embedding yc. Then a variable z, generated from the prior distribution pθ(z), is
concatenated with yc to construct the whole latent variable. Finally, the generated
instance pθ(x|z, c) of class c is produced. We can formulate the process as:

pθ(x|z, c) = pθ(x|[yc, z]) (3)

3.2 Generating Pseudo-OOD Data

CVAE’s ability to control the generating process using the conditional information
(e.g. class label in our case) inspired us to design a method to generate pseudo-
OOD samples. This is done by the conditional decoder using atypical prior
information c in pθ(x|z, c). As introduced before, OOD data need to be different
from in-distribution (IND) data but also resemble them. The continuity property
of CVAE, which means that two close points in the latent space should not
give two completely different contents once decoded [6], ensures that we can
manipulate CVAE’s latent space features to generate high quality pseudo-OOD
data. Since we have no information of the future OOD data, we have to make
use of the existing training data (i.e., IND data) to construct pseudo-OOD data.
We can provide it with pseudo label information to generate pseudo-OOD data.

Specifically, we propose to construct pseudo class embedding by combining
the embeddings of two existing classes in the IND training data.

pθ(x|z,k, ci, cj) = pθ(x|[k ∗ yci
+ (1− k) ∗ ycj

, z]) (4)

where k is a vector generated from Bernoulli distribution B(0.5) with the same
length as the class label embedding. k is basically for the system to randomly
select the vector components of the two class embeddings with equal probability.
Such a generated sample pθ(x|z,k, ci, cj) will not likely to be an instance of either
class ci or cj but still keep some of their characteristics, which meets the need
of the pseudo-OOD data. Furthermore, the pseudo class embedding has a great
variety, owing to the diverse choices of classes and the vector k. To generate
pseudo-OOD samples, we also need to sample z from the encoder. In CVAE
training, we ensure that z fits the Gaussian N (0, I). To sample z for generating,
we use another flatter Gaussian distribution N (0, σ2 ∗ I), where σ > 1 ∈ Z, to
make the generated samples highly diverse.

3.3 Fine-tuning for OOD Detection

As discussed earlier, using the generated pseudo-OOD data and the original in-
distribution (IND) training data to directly train a classifier for OOD detection
is not a good approach. Here, we propose a fine-tuning method that uses the
generated pseudo-OOD samples and the IND training data to learn an OOD
detection model in two stages.

Stage 1 (IND classifier building and CVAE training): Only the original
IND data is used to train a classification model C. The classification model can
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be decomposed into two functions f(·) and h(·), where f(·) is the final linear
classifier and h(·) is the feature extractor. f(h(x)) is the classification output. A
separate CVAE model is also trained for generating pseudo-OOD data.

Stage 2 (fine-tuning the classifier): We keep the trained feature extractor
h(·) fixed (or frozen) and fine-tune only the classification/linear layer f(·) using
both the IND and the pseudo-OOD data for OOD detection.

The CMG approach is in fact a framework, which is illustrated in Figure 1
with the 2-stage training process. The framework is flexible as the classifier in the
first stage can use any model. Our pseudo-OOD data can help various classifiers
improve the ability of OOD detection. Stage 2 is also flexible and can use different
approaches. Here we introduce two specific approaches, which are both highly
efficient. The second approach CMG-Energy produces new SOTA OOD detection
results. As we will see in Sec. 4.4, fine-tuning an existing OOD detection model
also enables it to improve.

Fig. 1. CMG framework and its training process. The OOD loss can be cross entropy in
CMG-softmax, cross-entropy+energy in CMG-energy, or other possible losses. Although
we put Classifier Training and CVAE Training in First Stage, they are independent.

CMG-Softmax fine-tuning. In this approach to fine-tuning, we simply add
an additional class (which we call the OOD class) in the classification layer to
accept the pseudo-OOD data. If the IND data has N classes, we add parameters
to the classifier to make it output N + 1 logits. These added parameters related
to the (N + 1)th OOD class are randomly initialized. We then train the model
by only fine-tuning the classification layer using the cross entropy loss with
feature extractor trained in Stage 1 fixed. Finally, we use the softmax score of
the (N + 1)th class as the OOD score.

CMG-Energy fine-tuning. This approach adds an energy loss to the cross
entropy loss (Lent + λLenergy) to fine-tune the classification layer using the IND
and the pseudo-OOD data. No OOD class is added. The energy loss is,

Lenergy = Exind∼Dind
(max(0, E(xind)−mind))

2

+ Exood∼Dood
(max(0,mood − E(xood)))

2
(5)
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where Dind denotes the IND training data, Dood denotes generated pseudo-OOD
data, and mind and mood are margin hyper-parameters. The idea of this loss is
to make the OOD data get similar values for all N logits so that they will not
be favored by any N IND data classes. Here N is the number of classes of the
IND data. As the loss function shows, the OOD data are necessary. This loss was
used in [33], which has to employ some real OOD data but such OOD data are
often not available in practice. This loss cannot be used by other OOD methods
since they have no OOD data available [3, 21, 53]. However, this is not an issue
for us as we have pseudo data to replace real OOD training data.

Stage 2 produces an energy score calculated from a classification model for
OOD detection for a test instance x:

E(x; f(h)) = −T · log
N∑
i=1

efi(h(x))/T (6)

where E(x; f(h(·))) denotes the energy of instance x with the classification model
f(h(·)), which maps x to N logits, where N is the number of classes in the IND
data, fi(h(x)) is the i-th logit and T is the temperature parameter.

Reason for the 2-stage training. As discussed earlier, with the generated
pseudo-OOD data, the obvious and intuitive approach to training an OOD
detector is to use the IND data and pseudo-OOD data to build a classifier.
However, as the results in Sec. 4.5 show, this is a very poor choice. The reason is
that the pseudo-OOD data are not the real OOD data used in testing and their
difference can be large because the real OOD data are completely unpredictable
and can be anywhere in the space. This combined one-stage training fits only
the pseudo-OOD data and may still perform poorly for the real OOD data. The
proposed fine-tuning is different. Its Stage 1 training uses only the IND data
to learn features for the IND data. In Stage 2, with the feature extractor h(·)
fixed, we fine-tune only the final classification layer f(·) using the IND data
and the pseudo-OOD data. Since the feature extractor h(·) is not updated by
the pseudo-OOD data, the final model f(·) will not overfit the pseudo-OOD
data and can give the model more generalization power for OOD detection.
Experimental results will demonstrate the extreme importance of the proposed
two-stage training.

4 Experiments

We construct OOD detection tasks using benchmark datasets and compare the
proposed CMG with the state-of-the-art existing methods.

4.1 Experiment Settings and Data Preparation

We use two experimental settings for evaluation.
Setting 1 - Near-OOD Detection on the Same Dataset: In this setting,

IND (in-distribution) and OOD instances are from different classes of the same
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dataset. This setting is often called open-set detection. We use the following 4
popular datasets for our experiments in this setting.

(1) MNIST [29]: A handwritten digit classification dataset of 10 classes. The
dataset has 70,000 examples/instances, with the splitting of 60,000 for training
and 10,000 for testing.

(2) CIFAR-10 [26]: A 10-class classification dataset consisting of 60,000
32x32 color images with the splitting of 50,000 for training and 10,000 for testing.

(3) SVHN [39]: A colorful street view house number classification dataset
of 10 classes. It contains 99289 instances with the splitting of 73257 for training
and 26032 for testing.

(4) TinyImageNet [28]: A classification dataset of 200 classes. Each class
contains 500 training samples and 50 testing samples of resolution 64x64.

We follow the data processing method in [51, 58] to split known and unknown
classes. For each dataset, we conduct 5 experiments using different splits of known
(IND) and unknown (OOD) classes. These same 5 splits are used by all baselines
and our system. Following [51], for MNIST, CIFAR-10 and SVHN, 6 classes are
chosen as IND classes, and the other 4 classes are regarded as OOD classes. The
following 5 fixed sets of IND classes, 0-5, 1-6, 2-7, 3-8, and 4-9, are used and
they are called partitions 1, 2, 3, 4, and 5, respectively. The rest 4 classes in
each case serve as the OOD classes. For TinyImageNet, each set of IND data
contains 20 classes and the sets of IND classes in the 5 experiments are 0-19,
40-59, 80-99, 120-139, and 160-189 respectively. The rest 180 classes are regarded
as the OOD classes. The reason for using different partitions is discussed in the
supplementary material.

Setting 2 - Far-OOD Detection on Different Datasets: The IND data
and OOD data come from different datasets. We use CIFAR-10 and CIFAR100
as the IND dataset respectively and each of the following datasets as the OOD
dataset. When CIFAR-10 is used as the IND dataset, the following are used as
the OOD datsets (when CIFAR100 is used as the IND dataset, CIFAR-10 is also
one of the OOD datasets).

(1) SVHN [39]: See above. All 26032 testing samples are used as OOD data.

(2) LSUN [56]: This is a large-scale scene understanding dataset with a
testing set of 10,000 images from 10 different scenes. Images are resized to 32x32
in our experiment.

(3) LSUN-FIX [53]: To avoid artificial noises brought by general resizing
operation, this dataset is generated by using a fixed resizing operation on LSUN
to change the images to 32x32.

(4) TinyImageNet [28]: See above. All 10,000 testing samples are used as
OOD data.

(5) ImageNet-FIX [28]: 10,000 images are randomly selected from the
training set of ImageNet-30, excluding “airliner”, “ambulance”, “parkingmeter”,
and “schooner” to avoid overlapping with CIFAR-10. A resizing operation is
applied to transform the images to 32x32.

(6) CIFAR100 [27]: An image classification dataset with 60,000 32x32 color
images of 100 classes. Its 10,000 test samples are used as the OOD data.
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4.2 Baselines

We compare with 10 state-of-the-art baselines, including 2 generative methods
and 2 contrastive learning methods.

(1) Softmax: This is the popular classification score model. The highest
softmax probability is used as the confidence score for OOD detection.

(2) OpenMax [3]: This method combines the softmax score with the distance
between the test sample and IND class centers to detect OOD data.

(3) ODIN [32]: This method improves the OOD detection performance of
a pre-trained neural network by using temperature scaling and adding small
perturbations to the input.

(4) Maha [31]: This method uses Mahalanobis distance to evaluate the
probability that an instance belongs to OOD.

(5) CCC [30]: This is a GAN-based method, jointly training the classification
model and the pseudo-OOD generator for OOD detection.

(6) OSRCI [38]: This method also uses GAN to generate pseudo instances
and further improves the model to predict novelty (OOD) examples.

(7) CAC [34]: This is a distance-based method, using the Class Anchor
Clustering loss to cluster IND samples tightly around the anchored centers.

(8) SupCLR [21]: This is a contrastive learning based method. It extends
contrastive learning to fully-supervised setting to improve the quality of features

(9) CSI [53]: This is also a supervised contrastive learning method. It uses
extensive data augmentations to generate shifted data instances. It also has a
score function that benefits from the augmented instances for OOD detection.

(10) React [52]: This method exploits the internal activations of neural
networks to find distinctive signature patterns for OOD distributions.

For Softmax, OpenMax and OSRCI, we use OSRCI’s implementation5. For
SupCLR and CSI, we use CSI’s code6. For ODIN, Maha, CCC, CAC and React,
we use their original code7891011. We also use their default hyper-parameters.

4.3 Implementation Details

For MNIST, we use a 9-layer CNN as the encoder (feature extractor) and a
2-layer MLP as the projection head. CVAE includes a 2-layer CNN as the encoder
and a 2-layer deconvolution network [57] as the decoder, as well as two 1-layer
MLPs to turn features into means and variations. For CIFAR100, the encoder is
a PreActResnet [15] and the projection head is a 1-layer MLP. Its CVAE is the
same as for the other datasets below. For the other datasets, the encoder is a
ResNet18 [14] and the projection head is a 2-layer MLP. CVAE also uses ResNet18

5 https://github.com/lwneal/counterfactual-open-set
6 https://github.com/alinlab/CSI
7 https://github.com/facebookresearch/odin
8 https://github.com/pokaxpoka/deep Mahalanobis detector
9 https://github.com/alinlab/Confident classifier

10 https://github.com/dimitymiller/cac-openset
11 https://github.com/deeplearning-wisc/react
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as the encoder, and 2 residual blocks and a 3-layer deconvolution network as the
decoder. The mean and variation projection are completed by two 1-layer MLPs.
During the first stage of training, we use Adam optimizer [22] with β1 = 0.9,
β2 = 0.999 and learning rate of 0.001. We train both the classification model and
CVAE model for 200 epochs with batch size 512. In the second stage, the learning
rate is set to 0.0001 and the fine-tuning process with the generated pseudo data
are run for 10 epochs. The number of generated pseudo-OOD data is the same
as the IND data (we will study this further shortly). Each batch has 128 IND
samples and 128 generated OOD samples. There is no special hyper-parameter
for CMG-softmax in stage 2. For CMG-energy, two special hyper-parameters of
the energy loss mind and mood are decided at the beginning of stage 2 by IND
and pseudo data. We calculate the energy of all training IND data and generated
pseudo data. Then mind and mood are chosen to make 80% of IND data’s energy
larger than mind and 80% of pseudo data’s energy smaller than mood. This ensures
that 80% of data get non-zero loss. We use a NVIDIA-GeForce-RTX-2080Ti
GPU for the experiments of evaluating the running speed of different methods.

4.4 Results and Discussions

Table 1 shows the results of the two OOD detection settings on different datasets.
Due to the large image size, numerous IND classes and a large batch size
requirement, we were unable to run SupCLR and CSI using TinyImageNet on
our hardware and thus do not have their results in Setting 1. In Setting 2, CAC
crashes owing to too many IND data classes. On average, our CMG achieves
the best results in both Setting 1 and Setting 2. Specifically, CMG greatly
outperforms the two GAN-based generation methods, CCC and OSRCI, which
shows the superiority of CMG in generating and utilizing pseudo-OOD data. We
also notice that our CMG-s (CMG-softmax) is slightly weaker than our CMG-e
(CMG-energy), which shows the energy function is effective.

Table 2 demonstrates that CMG’s fine-tuning (stage 2) can improve the 4
best performing baselines in Table 1, i.e., GAN-based OSRCI and contrastive
learning based SupCLR and CSI, and a newest work React. Here after each
baseline finishes its training, we apply fine-tuning of CMG’s stage 2 to fine-tune
the trained model using CMG-energy. We can see that the baselines OSRCI,
SupCLR, CSI and React are all improved.

Table 3 shows that CMG is much more efficient than the contrastive learning
methods. With the best overall performances on OOD detection, CMG spends
about only 10% of contrastive learning training time.

4.5 Ablation Study

We now perform the ablation study with various options of CMG-e and report
AUC scores on the 5 partitions of CIFAR-10 in Setting 1.12

12 We also conducted some experiments using a pre-trained feature extractor. Using a pre-
trained feature extractor can be controversial, which is discussed in the supplementary
material.
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Table 1. AUC (Area Under the ROC curve) (%) on detecting IND and OOD samples
in 2 experimental settings. For Setting 1, the results are averaged over the 5 partitions.
CMG-s uses CMG-softmax fine-tuning and CMG-e uses CMG-energy fine-tuning. Every
experiment was run 5 times. Each result in brackets () in the average row for Setting 1
is the mean of the first three datasets as SupCLR and CSI cannot run on TinyImageNet.
CAC crashed when using CIFAR100 as the IND data.

Datasets Softmax OpenMax ODIN Maha CCC OSRCI CAC SupCLR CSI React CMG-s CMG-e

Setting 1 - Near-OOD Detection on the Same Dataset

MNIST 97.6 98.1 98.1 98.4 94.2 98.3 99.2 97.1 97.2 98.6 98.3 99.0
(std) ±0.7 ±0.5 ±1.1 ±0.4 ±0.8 ±0.9 ±0.1 ±0.2 ±0.3 ±0.1 ±0.2 ±0.2
CIFAR-10 65.5 66.9 79.4 73.4 74.0 67.5 75.9 80.0 84.7 85.5 86.3 85.6
(std) ±0.5 ±0.4 ±1.6 ±2.2 ±1.4 ±0.8 ±0.7 ±0.5 ±0.3 ±0.2 ±1.2 ±0.6
SVHN 90.3 90.7 89.4 91.5 64.6 91.7 93.8 93.8 93.9 92.8 91.8 92.1
(std) ±0.5 ±0.4 ±2.0 ±0.6 ±2.3 ±0.2 ±0.2 ±0.2 ±0.1 ±0.1 ±0.5 ±0.4
TinyImageNet 57.5 57.9 70.9 56.3 51.0 58.1 71.9 \ \ 51.9 72.2 73.7
(std) ±0.7 ±0.2 ±1.5 ±1.9 ±1.2 ±0.4 ±0.7 \ \ ±0.0 ±0.5 ±0.6

Average 77.8 78.4 84.5 79.9 71.0 78.9 85.2 (90.3) (91.9) 82.2 87.2 87.6

Setting 2 - Far-OOD Detection on Different Datasets

CIFAR-10 as IND

SVHN 80.2 82.7 83.2 97.5 83.3 80.2 87.3 97.3 97.9 92.2 95.8 96.2
(std) ±1.8 ±1.9 ±1.5 ±1.6 ±0.8 ±1.8 ±4.6 ±0.1 ±0.1 ±1.1 ±0.6 ±2.5
LSUN 70.1 72.2 82.1 61.5 85.6 79.9 89.1 92.8 97.7 96.5 96.8 97.7
(std) ±2.5 ±1.8 ±1.9 ±5.0 ±2.3 ±1.8 ±3.4 ±0.5 ±0.4 ±0.7 ±1.4 ±0.9
LSUN-FIX 76.7 75.6 84.1 77.8 86.6 78.2 85.5 91.6 93.5 90.6 94.1 93.7
(std) ±0.8 ±1.2 ±1.7 ±2.1 ±1.6 ±0.5 ±0.7 ±1.5 ±0.4 ±1.9 ±0.9 ±0.4
TinyImageNet 62.5 65.2 68.7 56.8 83.2 70.0 86.4 91.4 97.6 94.3 94.8 95.2
(std) ±3.6 ±3.1 ±2.2 ±2.1 ±1.8 ±1.7 ±4.6 ±1.2 ±0.3 ±0.5 ±1.6 ±2.7
ImageNet-FIX 75.9 75.6 74.8 79.0 83.7 78.1 85.6 90.5 94.0 92.0 89.7 92.9
(std) ±4.6 ±0.7 ±0.6 ±3.1 ±1.1 ±0.3 ±0.3 ±0.5 ±0.1 ±2.2 ±0.3 ±1.2
CIFAR100 74.6 75.5 74.5 61.4 81.9 77.4 83.9 88.6 92.2 88.4 87.9 89.3
(std) ±0.5 ±0.4 ±0.8 ±0.9 ±0.5 ±0.4 ±0.2 ±0.2 ±0.1 ±0.7 ±0.4 ±0.4

CIFAR100 as IND

SVHN 66.7 65.9 71.7 93.1 66.0 65.5 \ 83.4 88.2 88.6 90.0 90.2
(std) ±4.0 ±4.5 ±1.7 ±0.6 ±1.0 ±1.1 \ ±0.5 ±0.7 ±1.3 ±2.4 ±2.5
LSUN 48.1 53.7 66.0 95.6 68.7 74.4 \ 81.6 80.9 88.1 85.9 88.3
(std) ±4.6 ±6.7 ±1.0 ±0.1 ±1.0 ±0.8 \ ±0.5 ±0.5 ±2.8 ±2.6 ±3.6
LSUN-FIX 47.5 50.4 72.6 63.4 59.3 69.7 \ 70.9 74.0 69.7 76.5 77.4
(std) ±4.1 ±5.8 ±7.5 ±3.4 ±1.7 ±0.6 \ ±0.1 ±0.2 ±0.5 ±8.5 ±2.4
TinyImageNet 62.5 62.5 73.5 93.3 69.7 63.9 \ 78.5 79.4 87.0 84.3 88.2
(std) ±2.9 ±3.0 ±3.3 ±0.7 ±1.6 ±1.2 \ ±0.8 ±0.2 ±3.2 ±4.9 ±2.0
ImageNet-FIX 64.8 64.5 76.9 61.2 60.6 63.8 \ 75.0 79.2 78.9 72.5 76.5
(std) ±0.5 ±0.6 ±9.1 ±0.9 ±0.0 ±0.9 \ ±0.5 ±0.2 ±0.3 ±2.2 ±1.3
CIFAR-10 63.0 62.7 67.9 56.3 63.7 58.8 \ 72.2 78.2 74.4 68.8 71.5
(std) ±1.0 ±1.0 ±2.1 ±0.5 ±0.5 ±0.8 \ ±0.6 ±0.2 ±1.3 ±3.1 ±2.9

Average 66.1 67.2 74.7 74.7 74.4 71.7 \ 84.5 87.7 86.7 86.4 88.1

CMG’s Two-stage Training vs. One-stage Direct Training. As we
stated in the introduction, one-stage direct training using the IND training and the
generated pseudo-OOD data produces very poor results compared with CMG’s
2-stage training with only fine-tuning of the classification layer in the second
stage. Here we show the comparison results. We compare three training strategies:
(1) Direct Training, (2) Unfrozen Fine-tuning, i.e., keeping stage 1 but fine-tuning
the whole model in stage 2 without freezing the feature extractor, and (3) CMG
Training (CMG-e). Figure 2(a) shows that Direct Training produces very poor
results and Unfrozen Fine-Tuning is also weak. CMG Training (CMG-e) performs
much better. We explained the reason in Sec. 3.3. In these experiments, the
energy function in Eq. 6 is used to compute the OOD score. In the supplementary
material, we also show that in experiment Setting 2, the same trend applies.

CMG Stage 2. To verify the effect of different options of stage 2, we compare
the results of CMG-e model with (1) without stage 2, i.e., we directly compute
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Table 2. AUC (Area Under the ROC curve) (%) results of the original model (denoted
by original) and the model plus fine-tuning using CMG-energy (denoted by +CMG-e).
Almost every +CMG-e version of the baselines outperforms the original model. Every
experiment was run 5 times.

Datasets
OSRCI SupCLR CSI React

original +CMG-e original +CMG-e original +CMG-e original +CMG-e

Setting 1 - Near-OOD Detection on the Same Dataset

MNIST 98.3±0.9 99.1±0.4 97.1±0.2 98.6±0.2 97.2±0.3 99.3±0.1 98.6±0.1 98.9±0.1
CIFAR-10 67.5±0.8 72.3±0.6 80.0±0.5 88.9±0.5 84.7±0.3 89.8±0.6 85.5±0.2 85.8±0.1
SVHN 91.7±0.2 92.1±0.1 93.8±0.2 96.5±0.3 93.9±0.1 96.7±0.2 92.8±0.1 92.8±0.1
TinyImageNet 58.1±0.4 59.9±0.3 \ \ \ \ 51.9±0.0 51.8±0.1

Average 78.9 80.9 90.3 94.7 91.9 95.3 82.2 82.3

Setting 2 - Far-OOD Detection on Different Datasets

CIFAR-10 as IND

SVHN 80.2±1.8 79.3±2.5 97.3±0.1 93.0±1.3 97.9±0.1 97.8±0.6 92.1±1.1 98.2±0.8
LSUN 79.9±1.8 92.1±0.6 92.8±0.5 97.7±0.6 97.7±0.4 99.2±0.1 96.5±0.7 96.4±0.4
LSUN-FIX 78.2±0.5 81.2±1.0 91.6±1.5 94.1±0.3 93.5±0.4 96.2±0.3 90.6±1.9 91.9±0.2
TinyImageNet 70.0±1.7 83.2±1.7 91.4±1.2 96.3±0.8 97.6±0.3 98.7±0.3 94.3±0.5 94.0±0.6
ImageNet-FIX 78.1±0.3 78.5±0.2 90.5±0.5 92.9±0.3 94.0±0.1 95.7±0.1 92.0±2.2 91.3±0.1
CIFAR100 77.4±0.4 77.4±0.6 88.6±0.2 90.3±0.2 92.2±0.1 92.0±0.2 88.4±0.7 89.2±0.2

CIFAR-100 as IND

SVHN 65.5±1.1 87.2±1.3 83.4±0.5 85.3±1.1 88.2±0.7 85.9±1.2 88.6±1.3 97.1±1.3
LSUN 74.4±0.8 76.5±0.7 81.6±0.5 84.3±0.9 80.9±0.5 89.9±0.8 88.1±2.8 89.3±0.8
LSUN-FIX 69.7±0.6 71.7±0.9 70.9±0.1 69.8±0.8 74.0±0.2 74.0±1.3 69.7±0.5 70.6±2.5
TinyImageNet 63.9±1.2 67.3±0.4 78.5±0.8 84.2±1.1 79.4±0.2 89.4±0.8 87.0±3.2 87.9±0.5
ImageNet-FIX 63.8±0.9 66.1±0.9 75.0±0.5 72.4±0.8 79.2±0.2 79.6±1.1 78.9±0.3 79.8±0.2
CIFAR-10 58.8±0.8 61.9±0.4 72.2±0.6 75.9±0.7 78.2±0.2 72.2±0.4 74.4±1.3 72.9±0.5

Average 71.7 76.9 84.5 86.4 87.7 89.2 86.7 88.2

Table 3. Execution time (min) of each method spent in running the whole experiment
on benchmark datasets for Setting 1.

Datasets Softmax OpenMax ODIN Maha CCC OSRCI CAC SupCLR CSI React CMG-e
MNIST 6 6 71 54 133 49 13 1260 1728 65 24
CIFAR-10 20 20 61 56 111 70 49 1110 1428 61 144
SVHN 20 20 142 140 196 71 37 1770 2471 79 249
TinyImageNet 22 22 64 54 46 79 64 \ \ 65 131

the energy score using Eq. (6) on the classification model from stage 1, (2) stage
2 without using pseudo-OOD data, i.e., we use only IND data to fine-tune the
classifier with loss using Eq. (5), and (3) full stage 2. Figure 2(b) shows that
without stage 2, stage 1 produces poor results. Stage 2 without the generated
pseudo-OOD data only improves the performance slightly. The full stage 2 with
the generated pseudo-OOD data greatly improves the performance of OOD
detection. These experiments prove the necessity of stage 2 and the effectiveness
of the generated pseudo-OOD data.

Amount of Pseudo-OOD Data. We run experiments of stage 2 with
different numbers of generated pseudo-OOD samples to analyze their effectiveness.
Figure 2(c) shows that the model benefits significantly from only a few pseudo-
OOD samples. With only 10% of that of the IND data, the pseudo-OOD data
can already improve the results markedly, which indicates the importance of
the pseudo-OOD data. The results are similar when pseudo-OOD samples are
more than a half of the IND samples. We use the same number of pseudo-OOD
samples as the IND samples in all our experiments.
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(a) Training Strategies. (b) CMG-e Stage 2. (c) Amount of Pseudo Data.

Fig. 2. Ablation studies: (a) different training strategies, (b) CMG-e stage 2, and (c)
Amount of Pseudo-OOD Data.

(a) Influence of σ. (b) Filter under σ = 1. (c) Filter under σ = 5.

Fig. 3. Ablation study on different options in generating pseudo-OOD data. Figure
3(a) shows AUC results of different σ values of the sampling distribution. Figure 3(b)
filters values near the center of the Gaussian distribution with σ = 1. Figure 3(c) filters
values near the center of the Gaussian Distribution with σ = 5.

Pseudo-OOD Data Distribution. The CVAE generator is trained to make
the latent variables or features conform to the Gaussian distribution N (0, I)
(see Section 3.2). To make pseudo data diverse and different from the training
data, we sample the latent variables z from a pseudo data sampling distribution
N (0, σ2 ∗I). We conduct experiments to study the effect of the distribution. First,
we study the influence of σ. Note that σ is 1 in training. With larger σ values, the
sampled values will be more likely to be far from 0 (which is the mean) to make
the latent features different from those seen in training.13 Figure 3(a) shows the
results, which indicate the necessity of using σ > 1 and results are similar for a
large range of σ values. We use σ = 5 in all our experiments.

Intuitively, we may only keep latent features z that are far from the Gaussian
distribution mean by filtering out values that are close to 0 (or the mean). We
use a filtering threshold t to filter out the sampled z whose component values are
within the range [−t, t]. Experimental results in Figure 3(b) allow us to make
the following observations. When σ = 1, as t grows, the performance improves
slightly. But comparing with Figure 3(a), we see that a larger σ improves the
performance more. Figure 3(c) tells us that when σ = 5, the effect of filtering
diminishes. For simplicity and efficiency, all our experiments employed σ = 5

13 We include images generated with different choices of σ in the supplementary material.
Images generated with larger σ’s are more different from the IND data and show a
more comprehensive coverage of the OOD area.
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without filtration. In the supplementary material, a visual analysis is done for
our pseudo-OOD data to further illustrate their high quality.

5 Conclusion

This paper proposed a novel and yet simple method for OOD detection based on
OOD data generation and classifier fine-tuning, which not only produces SOTA
results but is also much more efficient than existing highly effective contrastive
learning based OOD detection methods. Also importantly, we discovered that
using the IND data and the generated pseudo-OOD data to directly train a
classifier performs very poorly. The proposed fine-tuning framework CMG works
dramatically better. It is also worth noting that the proposed framework can
improve the results of diverse state-of-the-art OOD methods too.
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