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ABSTRACT

Several approaches have been proposed to pre-train an audio encoder
to learn fundamental audio knowledge. These training frameworks
range from supervised learning to self-supervised learning with a
contrastive objective under multi-modal supervision. However, these
approaches are constrained to a single pretext task, preventing their
adaptability to multi-modal interactions beyond the modalities pro-
vided in training data. Continual learning (CL), in the meantime,
allows machine learning systems to incrementally learn a new task
while preserving the previously acquired knowledge, making the
system more knowledgeable over time. The existing CL approaches
are limited to learning downstream tasks such as classification. In
this work, we propose to combine CL methods with several audio en-
coder pre-training methods. The audio encoders, when pre-trained
continually over a sequence of multi-modal tasks, namely audio-
visual and audio-text, exhibit improved performance across various
downstream tasks compared to their non-continual learning counter-
parts, due to knowledge accumulation. The audio encoders are also
capable of performing cross-modal tasks of all learned modalities.

Index Terms— Continual Learning, Multi-Modal Learning,
Audio Representation Learning, Audio Classification, Cross-Modal
Retrieval

1. INTRODUCTION

Audio encoders have been pre-trained for various pretext tasks. As a
supervised pre-training method, PANNs [1] create an audio encoder
by employing a sequence of convolutional neural network (CNN)
and pre-train the encoder on AudioSet [2], an annotated large scale
audio data. As self-supervised learning methods gain popularity,
several audio pre-training techniques have leveraged multi-modal
signals through contrastive loss inspired by contrastive language-
image pre-training (CLIP) [3]. For instance, Wav2CLIP [4] builds an
audio encoder capable of handling audio-visual interactions through
video data while CLAP [5] uses audio caption data to pre-train audio
encoders with audio-text interactions.

These audio encoder pre-training methods have limitations as
they are pre-trained with a single task, making them difficult to per-
form downstream tasks that encompass modalities not involved in
the original pre-training. The major challenge in learning many
multi-modal (e.g., tri-modal) interactions is the complexity of ac-
quiring training data that spans more modalities. AudioCLIP [6]
attempts to learn tri-modalities, audio-visual-text, but it requires the
training data, where all modalities need to be jointly aligned by each
sample. This prevents the method from broad applications.
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Continual learning (CL), meanwhile, is a learning paradigm in
which a system learns a sequence of tasks to become more capa-
ble of performing various tasks by knowledge accumulation in the
process. The major challenge in CL is catastrophic forgetting [7], a
phenomenon where the system forgets the previous knowledge after
learning a new task. The existing approaches to CL mainly focus on
downstream tasks such as classification [8]. Recently, [9] proposes a
continual pre-training method, but it is limited to unimodal tasks in
natural language processing. Although [10] proposed an evaluation
benchmark for CL systems in pre-training multi-modal tasks, it is
limited to bimodal interactions, namely, vision-language.

In this work, we propose to combine CL methods with sev-
eral audio encoder pre-training methods and show the efficacy of
CL techniques in constructing general audio encoders for various
multi-modal tasks in the audio domain. This work makes the fol-
lowing contributions. 1) Our work provides the first study on con-
tinual pre-training of audio encoders for a sequence of multi-modal
tasks. Namely, using an audio encoder pre-trained with audio data,
we continually pre-train it on two sequences of multi-modal tasks:
i) from audio to audio-text task and ii) from audio to audio-vision
task, followed by audio-text task. 2) We adapt existing CL meth-
ods and provide a training framework for continual pre-training of
audio encoders. 3) We systematically evaluate the continually pre-
trained audio encoders for various downstream tasks including linear
probing, zero-shot audio classification, and cross-modal retrieval of
all the learned modalities. We found that the audio encoders con-
tinually pre-trained with CL methods show improvements in most
downstream tasks due to knowledge accumulation and they are also
capable of performing cross-modal retrieval tasks of all modalities.

2. METHOD

We pre-train an audio encoder on a sequence of multi-modal data
involving audio signals to construct an audio encoder capable of
performing various downstream tasks in the audio domain. The
overview of the training process is presented in Fig. 1.

For training an audio encoder, we follow the training framework
of CLIP [3], where an image encoder is trained with contrastive loss
on visual data under the supervision of the corresponding text sam-
ples. Suppose an audio encoder fa is initialized from a pre-trained
parameters and it is trained on pairs of audio samples Xk

a and the
corresponding supervision data Xk

s for task k. An example of the
pair in our case is an audio-text or audio-image samples. However,
simply training the encoder without considering the general knowl-
edge in the pre-trained initial encoder leads to the loss of the general
knowledge. This is due to the fact that training on task-specific data
{Xk

a , X
k
s } substantially alters the model’s weights, subsequently

erasing the foundational knowledge. This phenomenon is called
catastrophic forgetting [7].

In order to mitigate the forgetting problem and promote knowl-
edge accumulation, we utilize techniques from continual learning.
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Fig. 1. The overview of the training framework. (a) Initialized with a pre-trained audio encoder f (i.e., task 0), the encoder is pre-trained
for a sequence of multi-modal tasks using the symmetric cross-entropy loss and a continual learning objective. The big square boxes in task
1 and 2 indicate the pairwise cosine similarities between the audio and the supervision embeddings, which are denoted as Ek

a and Ek
s for

task k ∈ {1, 2}, in the contrastive loss. The audio encoder is transferred to the next task and is trained for learning a new task. (b) After
pre-training, the audio encoder is used for downstream tasks of unimodal classification as well as all the learned multi-modal interactions. The
tasks include audio classification via linear probing and cross-modal interactions including zero-shot classification and cross-modal retrieval.

In the following subsections, we present the objective functions
designed to facilitate the learning of multi-modal interactions in
the new task while preserving the accumulated knowledge obtained
throughout the sequence of tasks.

2.1. Continual Pre-Training for Multi-Modal Tasks

Let fk
a be the audio encoder, gk the projection function, and fk

s a
pre-trained encoder (e.g., image or text encoder) employed to gener-
ate embeddings for the data Xk

s paired with the audio data Xk
a for

supervision in task k. Denote the parameters of the functions by θka ,
ϕk
a, and θks , respectively. For N pairs of data {Xk

a , X
k
s }, obtain the

audio and supervision embeddings as

Ek
a = gk(fk

a (X
k
a ; θ

k
a);ϕ

k
a);E

k
s = fk

s (X
k
s ; θ

k
s ),

where both Ek
a and Ek

s are in RN×D . Using the symmetric cross-
entropy loss l introduced in [3], we minimize the contrastive loss

Lc(θ
k
a , ϕ

k
a) = l(Ek

a , E
k
s ). (1)

We do not train the supervision model fk
s as it is already pre-trained

and its purpose is to simply generate embeddings for the audio en-
coder.

The contrastive loss computes pairwise cosine similarity be-
tween Ek

a and Ek
s , and trains the model by aligning the audio

embeddings with their corresponding embeddings correctly paired
by supervision while also pushing apart the audio embeddings from
other incorrectly paired embeddings.

2.2. Continual Learning Methods

Continual learning leverages knowledge distillation (KD) [11]. We
will briefly introduce KD and discuss how to apply it for con-
tinual pre-training of audio encoders. KD is originally proposed
to transfer the knowledge of a large pre-trained teacher network
htchr into a compact student network hstd. The knowledge of a
model is characterized by the acquired mapping from the input X
of the current task to the output vectors hstd(X) and htchr(X).
While minimizing the main objective function L (e.g., cross-entropy
loss), the student network is instructed to mimic the behavior of
the teacher network by minimizing the KL-Divergence (KLD) loss
KLD(hstd(X), htchr(X)). Here, only hstd is trained while htchr

is fixed, and and htchr is discarded after training.
Continual learning adapts KD to alleviate catastrophic forget-

ting. At task k, a new network is initialized using the parameters

from task k − 1. The current network for the new task is seen as the
student network and the previous network containing the previous
knowledge is regarded as the teacher network. However, the exist-
ing CL methods cannot be directly applicable to our problem as they
are designed for a sequence of unimodal tasks [12, 13] or bimodal
tasks of the same modality across tasks [14]. We pre-train audio
encoders for a sequence of tasks, where different tasks may involve
different modalities.

We implement three representative CL methods in knowledge
distillation: LwF [12], CaSSLe [13], and Mod-X [14]. LwF was
proposed for continual learning of classification tasks. As our goal
is to build an audio encoder instead of a classifier, we distill the
features for task k as

Lkd(θ
k
a) = KLD(gk−1(fk

a (Xa)), g
k−1(fk−1

a (Xa))).

As for the self-supervised continual learning method of uni-
modal tasks, CaSSLe introduces an adapter p with parameters γk.
We train the audio encoder so that the embeddings are easily adapt-
able by a simple linear function p with loss

Lkd(θ
k
a , ϕ

k
a, γ

k) = KLD(p(gk(fk
a (Xa))), g

k−1(fk−1
a (Xa))).

The final method Mod-X is designed for bimodal tasks of the
same modality, language-vision. Mod-X defines knowledge through
the cosine similarities between embeddings from audio and supervi-
sion encoders, and instructs the current encoder to follow the previ-
ous knowledge. For KD from an audio encoder trained for a multi-
modal task, we directly apply the Mod-X technique. For KD from an
audio encoder trained for a unimodal task, since there is no encoder
used for supervision (i.e., fs), we utilize the supervision encoder of
the current task and distill the cosine similarities between embed-
dings from the previous audio encoder and the current supervision
encoder.

The final objective function we minimize is formulated as

L = (1− λ)Lc + λLkd, (2)

where Lkd is one of the KD losses defined above and λ is a hyper-
parameter that controls the importance of knowledge distillation. We
set λ to 0.3 in our experiments.

3. EXPERIMENT DESIGN

Pre-training task sequences. We are interested in building an audio
encoder for a sequence of multi-modal tasks including audio-visual



(AV) and audio-text (AT) data. In order to study the effect of contin-
ual pre-training of audio encoder on multi-modal data and its gener-
alization ability to novel downstream tasks in the audio domain, we
conduct our pre-training across two distinct sequences: A-AT and
A-AV-AT. In these sequences, the initial task “A” refers to the pre-
training step on audio-only data. We focus on the AT interactions for
our final tasks with potential increasing applications.
Datasets for pre-training. We have three pre-training tasks: audio-
only (A), audio-visual (AV), and audio-text (AT). The audio-only
(A) pre-training uses supervised learning on the unimodal audio data
AudioSet [2]. For AV pre-training, we use the audio-visual dataset
VGGSound [15] collected from YouTube videos by following the
training protocol in [4]. For AT pre-training, we use the same col-
lection of datasets employed in the audio-text pre-training method
[5]. The collection comprises of FSD50k [16], ClothoV2 [17], Au-
dioCaps [18], and MACS [19] datasets.
Datasets for downstream tasks. After continually pre-training the
audio encoders in each sequence, we evaluate the audio encoders on
various downstream tasks. For audio-only tasks, we adopt the HEAR
Benchmark [20]. We also add UrbanSound8K (US8k) [21] and Au-
dioSet (balanced segment) [2]. We adopt the standard classification
metrics provided in HEAR Benchmark and report the accuracy and
mAP for the three additional tasks.

To evaluate cross-modal interactions, we use audio-visual event
(AVE) [22] and VGGSound [15] test set for audio-visual tasks, and
Clotho [17] for language-based audio retrieval, along with zero-shot
classification from US8k [21] and ESC-50 [23] for audio-text tasks.
For zero-shot classification, we report the accuracy, and for retrieval
tasks, we report Recall@10.
Implemented methods. We implement the audio encoder pre-
training methods CLAP [5] and Wav2CLIP [4] and the representa-
tive CL methods LwF [12], CaSSLe [13], and Mod-X [14]. CLAP
was designed for learning AT task, while Wav2CLIP was for learn-
ing AV task. For details about the CL methods, consult Sec. 2.2. For
comparison, we also implement a multi-task pre-training with Wav-
Caps [24] (MT-WC), a curated subset from AudioSet augmented
with captioning, resulting in a joint audio-visual-text data unlocking
contrastive with both image and text modalities concurrently.
Pre-training details. At the initial task A, instead of training an au-
dio encoder on audio data from scratch, we simply use the popular
pre-trained audio encoder PANNs [1]. We use ResNet-38. In the
subsequent multi-modal pre-training tasks (i.e., AV and AT), we in-
tegrate the audio encoder pre-training methods with the CL methods.
For all tasks, we use Adam [25] optimization with the standard early
stopping criteria.

For task AV, we implement Wav2CLIP both without and with
the CL methods as Eq. 2. We use the CLIP image encoder for super-
vision, train with VGGSound with learning rate as 0.001, and utilize
ReduceLROnPlateau scheduler.

For task AT, we train the audio encoder using the AT pre-training
method CLAP both without and with the CL methods. We follow
closely the training recipes from [26], with CLIP text encoder in-
stead. Since CLIP already learned the joint embedding space of both
image and text, this should help our model to generalize to unseen
modalities. We train the audio encoder with learning rate of 0.0001
and utilize StepLR scheduler.

4. RESULTS AND DISCUSSION

After pre-training on the last task in each pre-training sequences
A-AT and A-AV-AT, we evaluate the audio encoders on the down-
stream tasks. In the following discussion, for both sequences, we
use Wav2CLIP and CLAP to indicate the audio encoders trained

Table 1. Model performances on audio-text downstream tasks after
continual pre-training on the task sequence A-AT. The column T2A
indicates text-based audio retrieval while the column A2T represents
audio-based text retrieval.

ECS-50 US8k Clotho
Zero-shot Zero-shot T2A A2T

CLAP 75.63 77.46 40.75 45.01
LwF 78.17 78.95 40.04 47.21
CaSSLe 74.70 75.36 41.17 43.70
Mod-X 63.18 70.82 34.16 32.63

without any CL methods for task AV and AT, respectively. We use
LwF, CaSSLe, and Mod-X to denote the audio encoders pre-trained
with the three CL methods throughout the tasks, respectively.
After continual pre-training on the sequence A-AT. Tab. 1 gives
the results of the audio encoders evaluated on the downstream tasks
including zero-shot audio classification and audio-text retrieval. For
zero-shot evaluation, we follow the protocol proposed in [3]. We
consider CLAP as the target baseline as it is originally proposed
for learning audio-text (AT) interactions. CLAP achieves 75.63 and
77.46 on the zero-shot classification data ESC-50 and US8k, respec-
tively. In contrary, the audio encoder trained with the continual
learning method LwF achieves 78.17 and 78.95 on the same data.
The performance differences between LwF and CLAP in the two
zero-shot evaluations are 2.54 and 1.49, respectively. The positive
forward transfer, which measures the rate of performance improve-
ment in the new task by continual learning methods compared to
non-continual learning methods, in both data indicates successful
knowledge accumulation through LwF. Similar observations can be
made for audio-text retrieval tasks when comparing LwF to CLAP

The two CL methods, CaSSLe and Mod-X, are not as effective
as LwF. This difference can be attributed to the fact that LwF’s
original application aligns more closely with the task sequence
A-AT. LwF is designed for transferring knowledge of a classifica-
tion model. The initial model which is transferred to task AT is
pre-trained with the audio classification data AudioSet. However,
CaSSLe is designed for self-supervised CL for unimodal tasks and
Mod-X is designed for bimodal learning.
After continual pre-training on the sequence A-AV-AT. We eval-
uate the performances of the audio encoders for the downstream
tasks involving all the modalities learned throughout the pre-training
tasks. For all the methods except Wav2CLIP, we use the final audio
encoders after learning the last task AT. Since Wav2CLIP is orig-
inally designed for learning AV interactions, the model cannot be
trained for AT as training with AT implies changing the original
method. Therefore, we fix the audio encoder after training the task
AV and fine-tune only the adapter when learning AT.

Tab. 2 presents the evaluation results. First, consider the audio-
text interactions: zero-shot classification and audio-text retrieval
using Clotho. The audio encoders pre-trained using the CL meth-
ods CaSSLe and Mod-X significantly outperform both Wav2CLIP
and CLAP. The improvements (i.e., forward transfers) by Mod-
X from CLAP are 7.11 in ESC-50 and 2.96 in US8k. For the
audio-text retrieval tasks, both CaSSLe and Mod-X outperforms
the non-continual learning methods. Although Mod-X performs
slightly lower than CaSSLe in A2T, on average over the two audio-
text retrieval tasks, Mod-X achieves 46.28 while CaSSLe achieves
44.69. This demonstrates the effectiveness of Mod-X in distilling the
knowledge of encoders trained with multi-modal tasks of different
modalities despite the fact that it is originally designed for contin-



Table 2. The model performances on various downstream tasks including zero-shot, audio-text, and audio-visual interactions in A-AV-AT.
Wav2CLIP is evaluated using the audio encoder after training the task AV while all the other methods are based on the audio encoder after
the last task AT. The column I2A indicates image-based audio retrieval while the column A2I represents audio-based image retrieval.

ESC-50 US8k Clotho AVE VGGSound
Zero-shot Zero-shot T2A A2T I2A A2I I2A A2I

MT-WC 0.48 7.53 0.75 1.05 43.28 47.76 3.37 4.97
Wav2CLIP 50.04 41.66 11.93 10.91 65.42 66.42 11.53 13.52
CLAP 72.58 75.06 40.69 42.87 37.44 33.46 3.16 2.61
LwF 73.50 74.84 41.77 44.40 39.55 38.18 3.00 2.75
CaSSLe 77.47 77.00 41.10 48.28 35.32 36.94 2.64 2.79
Mod-X 79.69 78.02 45.80 46.75 42.04 43.78 3.81 3.97

Table 3. Results after linear probing. Here, number1/number2 in the table correspond to the results of audio encoders after pre-training
on the last task in the sequences A-AT and A-AV-AT, respectively. The column GZTAN M/S represents GZTAN Music/Speech data in
HEAR Benchmark. The second last column Avg. indicates the average result across the seven experiments while the last column Full HEAR
indicates the average result across 16 full HEAR Benchmark tasks, including the 7 tasks in the table. For PANNs, MT-WC, and Wav2CLIP,
the results for A-AT and A-AV-AT are identical. This is because, in both sequences, PANNs is based on the initial pre-trained audio encoder,
MT-WC is a multi-task method, and Wav2CLIP is based only on the sequence A-AV-AT.

ESC-50 FSD50K Gunshot US8k AudioSet GZTAN M/S CREMA-D Avg. Full HEAR
A-AT/A-AV-AT

PANNs 92.85 60.89 77.08 83.35 47.84 100.0 53.32 73.62 59.65
MT-WC 91.10 57.03 89.58 81.50 46.89 98.46 52.94 73.93 59.72
Wav2CLIP 91.82 59.66 82.29 81.98 46.83 98.08 51.68 73.19 59.74
CLAP 92.87/91.00 59.78/58.20 77.38/85.86 83.72/81.69 46.20/45.82 97.41/96.44 48.43/49.78 72.26/72.68 59.07/56.06
LwF 93.18/92.35 60.10/59.92 82.74/92.41 83.64/84.27 46.34/45.27 96.88/97.66 54.43/50.62 73.90/74.64 63.73/59.61
CaSSLe 92.42/92.80 58.34/58.93 82.84/82.14 82.16/84.00 45.87/46.48 98.46/96.92 52.70/51.92 73.26/73.31 62.98/61.56
Mod-X 90.20/93.35 55.01/59.87 77.18/82.14 82.56/84.04 45.14/46.09 96.11/97.30 46.42/49.68 70.37/73.21 53.95/60.44

ual learning of multi-modal tasks of the same modality. Note that
Wav2CLIP performs very poorly since its audio encoder cannot be
trained for AT. Surprisingly, MT-WC trained with three co-existing
modalities concurrently performs even worse than Wav2CLIP, given
that we use both CLIP image and text encoders, which are already
projected in the joint space. We think that this might be due to that
the supervisions provided from two modalities needs to be weighted,
as currently one loss term is dominating.

For the downstream tasks of audio-visual interactions, all the
methods experience performance drops compared to Wav2CLIP. We
term this performance drops of the audio encoders in audio-visual
downstream task after learning the pre-training task AT as forget-
ting or negative backward transfer. Notably, the audio encoder of
Wav2CLIP has preserved the knowledge as it is fixed after pre-
trained on the task AV. Only an adapter is trained to AT to perform
audio-text downstream tasks. Mod-X shows relatively mild negative
backward transfer compared to the other CL methods due to the
positive transfer from AV to AT. All the CL methods achieve less
than 40 in the audio-visual retrieval tasks of AVE while Mod-X
achieves at least 42 from both tasks. We also observe that LwF
is stronger than CaSSLe. This implies that the indirect distillation
via additional projection function p in CaSSLe is good for forward
transfer, but is in fact less effective in knowledge protection. Finally,
although MT-WC shows strong performances in the audio-visual
retrieval tasks, it requires the three modalities in the training data,
which is expensive to acquire and less flexible in reality.
Audio-only downstream task with linear probing. We evaluate
the audio encoders continually pre-trained on both A-AT and A-AV-
AT on the downstream tasks involving only audio. Following the
evaluation protocol in [3], we fix the audio encoder and fine-tune
only a classifier for the audio classification data. The results are pre-
sented in Tab. 3. We report only partial and average of (unreported)

full results from HEAR Benchmark due to constraint on space.
The audio encoders by CL methods except Mod-X in the se-

quence A-AT exhibit comparative performances to the average
73.62 of the initial audio encoder PANNs despite their additional
capacity in handling multi-modal interactions. The non-CL methods
Wav2CLIP and CLAP show slightly lower performances, which
are 73.19 and 72.68, respectively, than PANNs. In contrast, the
audio encoders by the CL methods, when pre-trained on the longer
sequence A-AV-AT, achieve higher performances than the non-CL
counterparts. This demonstrates the efficacy of CL methods in
knowledge accumulation for general audio encoder.

Compare the average performances of CL methods between the
two task sequences. Although Mod-X shows a great improvement
in performance when it is pre-trained for more diverse tasks (i.e.,
A-AV-AT), the other CL methods do not experience much improve-
ments. However, as we have seen previously in Tab. 2, the perfor-
mance gains in audio-text interactions and the abilities in performing
audio-visual downstream tasks facilitated through A-AV-AT demon-
strates the advantage of continual pre-training over diverse tasks. Fi-
nally, although MT-WC is trained on dataset jointly satisfying the
three modalities (audio-visual-text), it only achieves 73.93 on aver-
age, which is slightly lower than 94.64 of LwF.

5. CONCLUSION

This paper studied continual pre-training of audio encoders for mul-
timodal tasks and evaluated the models using the standard bench-
mark data within the audio domain. The audio encoders, trained with
continual learning techniques, are able to accumulate the knowledge
across a series of multimodal interaction tasks. The models are eval-
uated on various downstream tasks covering all the learned modal-
ities and exhibit superior performances over models trained for a
single task or without any continual learning technique.
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