Quiz Two (CS201)

Your Name: _________________________________ Your SSN: _____________________

Instructions

• This is a closed-book quiz.
• The quiz has 8 questions, and the full mark is 75.
• Write the answer for each question in the space provided below the question.

1. (15 marks) Give the first 5 terms \((k = 1, 2, 3, 4, 5)\) of the following recursively defined sequences?
 (a). \(V(k)=V(k-1)+V(k-2)\) for integers \(k>=3\)
 \(V(1)= 1, V(2)= 1\)
 \textbf{Solution:} \(V(3)= 2, V(4)= 3, V(5)= 5\)
 (b). \(V(k)=V(k-1)*2\) for integers \(k>=2\)
 \(V(1)= 6\)
 \textbf{Solution:} \(V(2)=12, V(3)=24, V(4)=48, v(5)=96\)
 (c). \(V(k)=V(k+1)-V(k-1)\) for integers \(k>=2\)
 \(V(1)=1, V(2)=1\)
 \textbf{Solution:} \(V(3)=2, V(4)=3, V(5)=5\)

2. (5 marks) Give the following recursive definition of a set \(S\)
 (1). 3 belongs to \(S\) (i.e., \(3 \in S\)).
 (2). for every \(x, y\) belongs to \(S\), \(x+y\) also belongs to \(S\).

Which of the following do not belong to \(S\)? The answer could be more than 1.

3, 9, 4, 27, 216, 1345, 1788

\textbf{Solution: 4, 1345}

3. (5 marks) What does the following algorithm compute? Give a simple formula.

 \begin{verbatim}
 int foo(int n , int x) {
 if (n==1)
 return x;
 else
 return x+foo(n-1,x);
 }
 \end{verbatim}

\textbf{Solution: x*n}
4. (5 marks) Write the recurrence equation for the following recursive algorithm.

```c
int V(int n) {
    if (n <= 4)
      return(1);
    else
      return(2 * V(n-1));
}

Solution:

\[ T(n) = 1, \text{ for } n \leq 4 \]
\[ T(n) = 2 \cdot T(n-1), \text{ for } n > 4 \]
```

5. (5 marks) Which of following statements are true?

(a) \[5n^3 - 2n^2 - n + 2 = O(n^3) \]
(b) \[100n^2 + n^3 - n + 2 = O(n^2) \]
(c) \[5n^3 - 1000n^{200} - 2n + 2 = O(n^{200}) \]
(d) \[5n^3 - 1000n^{200} - 2n + 2 = O(2^n) \]
(e) \[3n^2 \log n + 200n + (n+100)^2 = O(n^2 \log n) \]
(f) \[3n^2 \log n + 200n + (n+100)^2 = O((n+100)^2) \]

Solution: (a)(d)(e) are true, (b)(c)(f) are false.

6. (5 marks) Rank the following typical bounds in increasing order of growth rate:

\[O(\log n), O(n^3), O(3^n), O(n), O(n \log n), O(n^2) \]

Solution: \[O(\log n), O(n), O(n \log n), O(n^2), O(3^n) \]

7. (20 marks) For each of the following loops, give the tightest upper bound using big O notation.

(1) for (int i = 0; i < n; i++)
 {
 sum ++;
 for (int j = 0; j < n; j++)
 sum ++;
 }

Solution: \(O(n^2) \)

(2) for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < i; j++)
 sum ++;
 }

Solution: \(O(n^2) \)
(3) for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < i; j++)
 sum++;
 for (int j = 0; j < n*n; j++)
 sum++;
 }

Solution: O(n^3)

(4) for (int i = 0; i < n; i++)
 for (int j = 1; j < n*n; 2*j)
 sum++;

Solution: O(nlogn)

8. (15 marks) An algorithm takes 1 ms for input size N = 100. How long will it take for input size of 500 if the running time is the following?

(a). linear
 Solution: \(\frac{500}{100} \times 1 = 5\) ms

(b). quadratic
 Solution: \(\left(\frac{500}{100}\right)^2 \times 1 = 25\) ms

(c). cubic
 Solution: \(\left(\frac{500}{100}\right)^3 \times 1 = 125\) ms