5. If \(n \) is an integer that is greater than 1, then

\[n \text{ is prime} \iff \forall \text{ positive integers } r \text{ and } s, \]
\[\text{if } n = r \cdot s \text{ then } r = 1 \text{ or } s = 1. \]

\[n \text{ is composite (not prime)} \iff \forall \text{ positive integers } r \text{ and } s \text{ such that } n = r \cdot s \]
\[\text{and } r \neq 1 \text{ and } s \neq 1. \]

Prove: \(n^2 + 3n + 2 \) is not prime.

Proof by contradiction:

Let \(n^2 + 3n + 2 = r \cdot s \)

Assume \(r = 1 \) and \(s = 1 \)
\[n^2 + 3n + 2 = r \cdot s = 1 \]
\[n^2 + 3n = -1 \]
but \(n^2 + 3n \) cannot be -1 because \(n \) is an integer greater than 1.

This introduces a contradiction

So this proves that \(r \neq 1 \) and \(s \neq 1 \).

Thus \(n^2 + 3n + 2 \) holds for the composite case and is not prime.