CS 472 — Provably Correct Programming

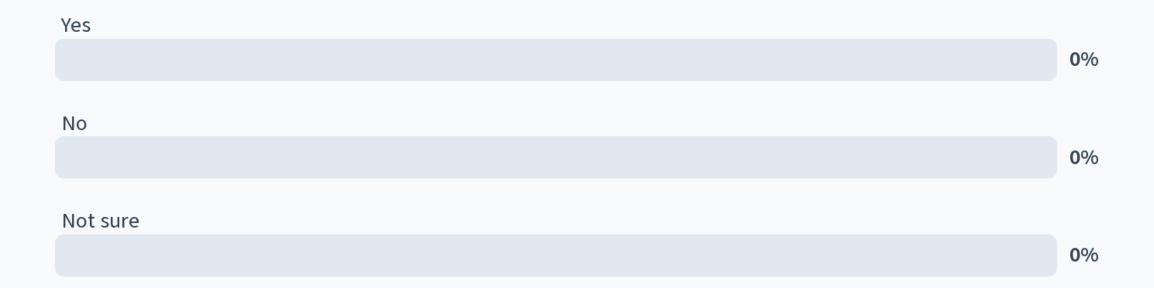
William Mansky

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Interactive Theorem Provers


- In the theorem prover, we can:
- 1. Write definitions, in a math-like programming language
- 2. Write **proofs** about those definitions, using logic "tactics"
- 3. See the **proof state** at each point in a proof (what do we know? what do we still need to show?)
- 4. Automatically check that each step of our proofs is valid

Writing Definitions in Coq

- The definition language of Coq is an OCaml-like functional programming language, called Gallina
- Key features: inductive types, pattern matching, and recursion
- Purpose is to define mathematical objects, not to write programs (though the two are often the same!)

See Basics.v from the textbook

Have you used a functional language with datatypes and pattern matching before?

Inductive Definitions

sunday.

```
Inductive day :=
monday
 tuesday
 wednesday
                   day is a type
                   monday: day
 thursday
                   tuesday: day
 friday
                   saturday: day
 saturday
                   sunday: day
```

Types are sets! {monday, tuesday, ..., saturday, sunday} day is a set monday ∈ day tuesday ∈ day saturday ∈ day sunday ∈ day

Exercise: nandb

- Complete the exercise "nandb" in Basics.v: fill in the definition of nandb, and prove that the examples work
- Submit your definition and example proofs for Exercise 1/10 on Gradescope

• It may help to refer to the definitions of negb, andb, and orb earlier in the file

Inductive Definitions

How would you define the natural numbers?

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

HW1: Basics.v

- Complete all the exercises in Basics.v (you may skip the one marked optional)
- You can run BasicsTest.v to make sure you've gotten all of them; there's also an autograder on Gradescope, though it checks more problems than were assigned
- Due Sunday 1/21 at 11:59 PM
- Submit via Gradescope