
CS 472 – Provably Correct
Programming
William Mansky

Welcome to the Course!

• This is CS 472, Provably Correct Programming

• I’m glad you’re here!

• Meets MW 2:00-3:15 PM in TBH 180F

• My office hours: Tuesday 12-1 and Wednesday 10-11, and by
appointment, in SEO 1331 and on Zoom via Blackboard

• TA office hours: Monday 1-2 and Thursday 2-3
― Office hours are great for homework help, or just to say hi!

Course Information

• Professor: William Mansky (he/him) (mansky1@uic.edu)

• TA: Chao Ding (he/him) (cding22@uic.edu)

• Prerequisites: CS 301 (logic and proofs)

• Website: https://www.cs.uic.edu/~mansky/teaching/cs472/sp24/

• Anonymous in-class questions: https://pollev.com/wmansky771

• In-person lectures, recordings (probably incomplete) on
Blackboard

• Discussion board on Piazza, assignments via Gradescope (entry
code VBPRNW)

mailto:mansky1@uic.edu
mailto:cding22@uic.edu
https://www.cs.uic.edu/~mansky/teaching/cs472/sp24/
https://pollev.com/wmansky771
https://uic.blackboard.com/
https://piazza.com/class/lqgtzpb52y02jj
https://www.gradescope.com/

Asking questions

• In class: raise your hand (or type in BBCollab chat) anytime

• You can ask questions anonymously with PollEverywhere
(https://pollev.com/wmansky771)

• On Piazza
― Can ask/answer anonymously
― Can post privately to instructors
― Can answer other students’ questions

• In office hours

• If you have a question, someone else probably has the same
question!

https://pollev.com/wmansky771
piazza.com/uic/fall2021/cs476

Software works badly

https://en.wikipedia.org/wiki/Spirit_(rover)

https://en.wikipedia.org/wiki/2009%E2%80%932011_Toyota_vehicle_recalls

https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-
million/

https://en.wikipedia.org/wiki/Spirit_(rover)
https://en.wikipedia.org/wiki/2009%E2%80%932011_Toyota_vehicle_recalls
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/

Can we change the way we program?

Can we change the way we program?

• Programs in safer languages (Rust, OCaml, …) still have bugs

• Most programmers don’t get to choose what language they
write in!

― Need to maintain/interoperate with existing code
― We mostly write in the languages we know

• Prove programs correct!

• This program will:
― never overflow its stack
― never dereference a null pointer
― never call a function without meeting its preconditions
― always return the right result!

Can we change the way we program?

i = 1;

while(i <= n){

 r = r * i;

 i++;

}

This course:

How can we write these proofs?

How can we write programs so they’re
easier to prove?

Grading

• In-class exercises: 25%

• Assignments: 50%

• Project: 25%

Exercises

• In each class, we’ll work through some example
problems/proofs

• Submit via Gradescope

• Due at the start of the next class

• You get credit as long as you make some progress on the
problem

• Feel free to discuss with your neighbors, ask questions, suggest
other approaches, etc.!

https://www.gradescope.com/

Assignments

• Programming/proving assignments

• Submit via Gradescope

• Due at 11:59 PM on the due date

• You can discuss strategy with other students, but don’t look at
each other’s code!

• Cite your sources (websites, other students, StackOverflow,
ChatGPT, etc.)

• You’ll get most of the credit for attempting a problem, even if
you don’t finish it – do what you can, and we’ll work through
tricky ones in class after the deadline

https://www.gradescope.com/

Online Sources and ChatGPT

• You can find solutions online, but:

1. Always cite your sources!

2. Please don’t make your solutions public (e.g. on GitHub)

3. There’s less theorem-prover code out there than other kinds
of code, so what you find will often be outdated or unreliable

4. You can always run your proofs and see if they work! (and if
they don’t, don’t submit them!)

Schedule Disruptions

• Next week: I’ll be at POPL
― 1/15 is MLK Day; for 1/17, I’ll ask you to watch some videos about

proved-correct programming

• Sometime mid-April: I’m expecting my second child
― We’ll probably have a few online classes – more details when we

get closer

https://popl24.sigplan.org/

Getting Started with Proofs

• You already know how to write programs: languages,
compilers, IDEs, etc.

• How do we write proofs? The same way: with software tools!

• Tool #1: The Coq proof assistant (https://coq.inria.fr/)

• For the first ~4 weeks, we’ll learn how to use it to write
guaranteed-correct mathematical proofs

• After that, we’ll apply those techniques to programs!

• And look at some complicated use cases, esp. concurrent
programs (see also CS 454)

https://coq.inria.fr/

Interactive Theorem Provers

• In the theorem prover, we can:

1. Write definitions, in a math-like programming language

2. Write proofs about those definitions, using logic “tactics”

3. See the proof state at each point in a proof (what do we
know? what do we still need to show?)

4. Automatically check that each step of our proofs is valid

Logical Foundations

https://softwarefoundations.cis.upenn.edu/lf-current/index.html

•Online textbook, each chapter is a file
that can be run in Coq

•Contents:
― Introduction to Coq
― Basic logic and functional programming
― More advanced logic, mostly induction
― How to describe the behavior of

programs

https://softwarefoundations.cis.upenn.edu/lf-current/index.html

Getting Started with Coq

• Available online at https://coq.inria.fr/

• You can download installers for Windows and Mac from the
website

• Coq file extension is .v

• If it matters, we’ll use version 8.17.1

• Two main IDEs: CoqIDE (ships with Coq) and Visual Studio Code
(VSCoq extension)

https://coq.inria.fr/

Today’s Exercise

1. Download and install Coq
(https://github.com/coq/platform/releases/tag/2023.03.0, or from the
download links at https://coq.inria.fr/)

2. Download and unpack the textbook
(https://softwarefoundations.cis.upenn.edu/lf-current/index.html)
― It’s a .tgz file, so you may need to install 7-zip (https://www.7-zip.org/) to unpack it

3. Run make in the textbook’s folder to compile the textbook. If you don’t
have a command line with make, you’ll need to set one up: I use Cygwin
(https://cygwin.com/install.html)

4. If you finish, run demo.v, then submit it for Exercise 1/8 on Gradescope. If
you haven’t finished, submit a description of where you’re stuck instead.

If you get stuck, raise your hand, post on Piazza, or come by office hours

https://github.com/coq/platform/releases/tag/2023.03.0
https://coq.inria.fr/
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://www.7-zip.org/
https://cygwin.com/install.html
https://www.cs.uic.edu/~mansky/teaching/cs472/sp24/lectures/demo.v

	Slide 0: CS 472 – Provably Correct Programming
	Slide 1
	Slide 2: Welcome to the Course!
	Slide 3: Course Information
	Slide 4: Asking questions
	Slide 5
	Slide 6: Software works badly
	Slide 7: Can we change the way we program?
	Slide 8: Can we change the way we program?
	Slide 9: Can we change the way we program?
	Slide 10
	Slide 11: Grading
	Slide 12: Exercises
	Slide 13: Assignments
	Slide 14: Online Sources and ChatGPT
	Slide 15: Schedule Disruptions
	Slide 16
	Slide 17: Getting Started with Proofs
	Slide 18: Interactive Theorem Provers
	Slide 19: Logical Foundations
	Slide 20: Getting Started with Coq
	Slide 21: Today’s Exercise
	Slide 22

