CS 472 — Provably Correct
Programming

William Mansky



Questions
Nobody has responded yet.
Hang tight! Responses are coming in.

- __________________________________________________________________________________________________________________________|
] Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




List Reverse




List Reverse




List Reverse

prev




List Reverse




List Reverse




List Reverse




Questions
Nobody has responded yet.
Hang tight! Responses are coming in.

- __________________________________________________________________________________________________________________________|
] Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Mutual Exclusion

Thread 1 Thread 2

add(data, v1); . dat < add(data, v1);
ata

lookup(data); / \ lookup(data)

]

* |f both threads try to add at the same time, something might go wrong



Mutual Exclusion

Thread 1 Thread 2
— acquire(lock); acquire(lock);
add(data, v1); I lock | F add(data, v1);
release(lock); release(lock);
T data N
acquire(lock); acquire(lock);
lookup(data); lookup(data);
release(lock); release(lock);

* |f both threads try to add at the same time, something might go wrong



Mutual Exclusion

Thread 1 Thread 2
acquire(lock); acquire(lock);
— add(data, v1); I lock | T add(data, v1);
release(lock); release(lock);
T data N
acquire(lock); acquire(lock);
lookup(data); lookup(data);
release(lock); release(lock);

* |f both threads try to add at the same time, something might go wrong



Mutual Exclusion

Thread 1 Thread 2
acquire(lock); acquire(lock); «—
— add(data, v1); lock | T / add(data, v1);
release(lock); release(lock);
T data o
acquire(lock); acquire(lock);
lookup(data); lookup(data);
release(lock); release(lock);

* |f both threads try to add at the same time, something might go wrong



Mutual Exclusion

Thread 1 Thread 2

acquire(lock); acquire(lock); <«—

add(data, v1); / lock | T / add(data, v1);
— release(lock); release(lock);
T data o
acquire(lock); acquire(lock);
lookup(data); lookup(data);
release(lock); release(lock);

* |f both threads try to add at the same time, something might go wrong



Mutual Exclusion

Thread 1 Thread 2

acquire(lock); acquire(lock); <«—

add(data, v1); / lock | F / add(data, v1);
release(lock); release(lock);
— cee . data e '
acquire(lock); acquire(lock);
lookup(data); lookup(data);
release(lock); release(lock);

* |f both threads try to add at the same time, something might go wrong



Mutual Exclusion

Thread 1 Thread 2
acquire(lock); acquire(lock);
add(data, v1); lock | T / add(data, v1); «—
release(lock); release(lock);

_> see . data E) '
acquire(lock); acquire(lock);
lookup(data); lookup(data);
release(lock); release(lock);

* |f both threads try to add at the same time, something might go wrong

e Key property: only one thread holds the lock at a time
— And so only one thread accesses the data at a time



Mutual Exclusion: Acquire

Thread 1

acquire(lock);
add(data, v1);
release(lock);

acquire(lock);
lookup(data);
release(lock);

\>

lock

data

—

Thread 2

acquire(lock);
add(data, v1);
release(lock);

acquire(lock);
lookup(data);
release(lock);

e Key property: only one thread holds the lock at a time



Mutual Exclusion: Acquire

Thread 1

acquire(lock);
add(data, v1); I
release(lock);
acquire(lock);

lookup(data);
release(lock);

lock

data

—

Thread 2 acquire:

thread I —> if lock is F
setittoT
else wait

acquire(lock);
add(data, v1);
release(lock);

acquire(lock);
lookup(data);
release(lock);

e Key property: only one thread holds the lock at a time



Mutual Exclusion: Acquire

Thread 1

acquire(lock);
add(data, v1); I
release(lock);
acquire(lock);

lookup(data);
release(lock);

lock

data

—

Thread 2 acquire:

thread 2 — if lock is F
thread 1 — setittoT
else wait

acquire(lock);
add(data, v1);
release(lock);

acquire(lock);
lookup(data);
release(lock);

e Key property: only one thread holds the lock at a time



Mutual Exclusion: Acquire

Thread 1

acquire(lock);
add(data, v1); I
release(lock);
acquire(lock);

lookup(data);
release(lock);

e Key property: only one thread holds the lock at a time

lock

data

—

Thread 2

acquire(lock);
add(data, v1);
release(lock);

acquire(lock);
lookup(data);
release(lock);

thread 1 —»
thread 2—»

acquire:

if lock is F

setittoT A

else wait



Mutual Exclusion: Acquire

Thread 1 Thread 2 acquire:

thread 1 — if |ock is F setitto T
acquire(lock); acquire(lock); thread 2—> .

add(data, v1); I lock | F — add(data, v1); else wait
release(lock); release(lock);

dat

acquire(lock); o acquire(lock);

lookup(data); lookup(data);

release(lock); release(lock);

e Key property: only one thread holds the lock at a time



Mutual Exclusion: Acquire

Thread 1 Thread 2 acquire:
thread I— CAS(lock, F, T)
acquire(lock); acquire(lock); thread 2—> Y
add(data, v1); T lock | F — add(data, v1); else wait
release(lock); release(lock);

dat

acquire(lock); o acquire(lock);

lookup(data); lookup(data);

release(lock); release(lock);

e Key property: only one thread holds the lock at a time

e CAS (compare-and-set) operation lets us check and set in one step



Questions
Nobody has responded yet.
Hang tight! Responses are coming in.

- __________________________________________________________________________________________________________________________|
] Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




	Slide 0: CS 472 – Provably Correct Programming
	Slide 1
	Slide 2: List Reverse
	Slide 3: List Reverse
	Slide 4: List Reverse
	Slide 5: List Reverse
	Slide 6: List Reverse
	Slide 7: List Reverse
	Slide 8
	Slide 9: Mutual Exclusion
	Slide 10: Mutual Exclusion
	Slide 11: Mutual Exclusion
	Slide 12: Mutual Exclusion
	Slide 13: Mutual Exclusion
	Slide 14: Mutual Exclusion
	Slide 15: Mutual Exclusion
	Slide 16: Mutual Exclusion: Acquire
	Slide 17: Mutual Exclusion: Acquire
	Slide 18: Mutual Exclusion: Acquire
	Slide 19: Mutual Exclusion: Acquire
	Slide 20: Mutual Exclusion: Acquire
	Slide 21: Mutual Exclusion: Acquire
	Slide 22

