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Questions
Nobody has responded yet.
Hang tight! Responses are coming in.

- __________________________________________________________________________________________________________________________|
] Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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* |f both threads try to add at the same time, something might go wrong
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e Key property: only one thread holds the lock at a time
— And so only one thread accesses the data at a time
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e Key property: only one thread holds the lock at a time

e CAS (compare-and-set) operation lets us check and set in one step
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