CS 473: COMPILER DESIGN
Compilation in a Nutshell

Abstract Syntax Tree:

If
 Eq
 Assn
 b
 0
 a
 1

Semantic Analysis

Intermediate Representation

Code Analysis

Optimization

Backend

Intermediate code:

```
11:  %cnd = icmp eq i64 %b, 0
    br i1 %cnd, label %12, label %13
12:    store i64* %a, 1
    br label %13
13:
```

Assembly Code

```
11:
    cmpq %eax, $0
    jeq 12
    jmp 13
12:
    ...
```
Motivating Code Analyses

- There are lots of things that might influence the safety/applicability of an optimization
 - What algorithms and data structures can help?

- How do you know what is a loop?
- How do you know an expression is invariant?
- How do you know if an expression has no side effects?
- How do you keep track of where a variable is defined?
- How do you know where a variable is used?
- How do you know if two reference values may be aliases of one another?
Program 4 Questions

Top
Program 5: Instruction Selection

• (demo)
Questions

Top
Moving Towards Register Allocation

• The Tiger compiler so far generates as many temporary registers as it needs
• We can store as many as we want on the stack, but ideally we’d like to make as many as possible into registers
• Registers are a very limited resource! For most targets, between 16 and 32
• But we can *reuse* registers for multiple temporaries!

\[
\begin{align*}
 r_1 &= fp + 1 \\
 r_2 &= \left[r_1 \right] \\
 r_3 &= r_2 + i \\
 r_4 &= fp + 2 \\
 r_5 &= \left[r_4 \right] \\
 \left[r_3 \right] &= r_5
\end{align*}
\]

• The program is always done with \(r_1 \) before it starts using \(r_4 \), so we can store both \(r_1 \) and \(r_4 \) in the same machine register

*done with \(r_1 \)\n*done with \(r_4 \)
Liveness

\[r1 = fp + 1 \]
\[r2 = [r1] \]
\[r3 = r2 + i \]
\[r4 = fp + 2 \]
\[r5 = [r4] \]
\[[r3] = r5 \]

- The program is always done with \(r1 \) before it starts using \(r4 \), so we can store both \(r1 \) and \(r4 \) in the same machine register.

- Two temps can be assigned to the same register if their values will not be needed at the same time.
 - A temp is *needed* if its contents will be used as a source operand in a later instruction.
- Such a variable is called “live”.
Liveness

- The program is always done with r1 before it starts using r4, so we can store both r1 and r4 in the same machine register.

```
  r1 = fp + 1  [r1]  r1 live
  r2 = [r1]     
  r3 = r2 + i
  r4 = fp + 2  [r4]  r4 live
  r5 = [r4]
  [r3] = r5
```

- Two temps can be assigned to the same register if their values will not be needed at the same time.
 - A temp is *needed* if its contents will be used as a source operand in a later instruction.
- Such a temp is called “*live*”.
- Two temps can share the same register if they are not live at the same time.

- Two temps can be assigned to the same register if their values will not be needed at the same time.

 - A temp is *needed* if its contents will be used as a source operand in a later instruction.

 - Such a temp is called “*live*”.

 - Two temps can share the same register if they are not live at the same time.
Questions
Liveness Analysis

- A temp starts being live when it’s defined, and stays live until it’s no longer used
 - So we’ll need to take into account all the *definitions* and *uses* of temps in the program

- Computing the live temps at each point in the program is called *liveness analysis*
 - Will probably have to be a conservative approximation, since we can never store two temps in one register at the same time!

- Liveness analysis is one example of *dataflow analysis*
 - Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, ...
For the purposes of dataflow analysis, we use the *control flow graph* (CFG) intermediate form.

A *control flow graph* is a graph in which each node is a basic block:
- There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2
- There are no “dangling” edges – there is a block for every jump target

We can build CFGs at various levels: source, target, IRs
- Same general idea, but the exact details will differ
Dataflow over CFGs

- Sometimes it is helpful to think of the fall-through between sequential instructions as an edge of the control-flow graph too.
Liveness is Associated with *Edges*

\[
\begin{align*}
 r_1 &= fp + 1 \\
 r_2 &= [r_1] \\
 r_3 &= r_2 + i \\
 r_4 &= fp + 2 \\
 r_5 &= [r_4] \\
 [r_3] &= r_5
\end{align*}
\]

Instr

Live: a, b

Live: b, d, e

done with r1

done with r4
Liveness is Associated with *Edges*

- This is useful so that the same register can be used for different temporaries in the same statement
- Example: \(a = b + 1 \)

- Compiles to:

  ```
  Mov a, b  
  Add a, 1  
  Mov eax, eax  
  Add eax, 1  
  ```

 Live: a, b
 Live: b, d, e
 Register Allocate: a \(\rightarrow \) eax, b \(\rightarrow \) eax
Uses and Definitions

• Every instruction/statement *uses* some set of variables
 – i.e. reads from them

• Every instruction/statement *defines* some set of variables
 – i.e. writes to them

• For a node/statement s define:
 – $\text{use}[s]$: set of variables used by s
 – $\text{def}[s]$: set of variables defined by s

• Examples:
 – $a = b + c$ $\text{use}[s] = \{b, c\}$ $\text{def}[s] = \{a\}$
 – $a = a + 1$ $\text{use}[s] = \{a\}$ $\text{def}[s] = \{a\}$
Liveness, Formally

- A variable \(v \) is \textit{live} on edge \(e \) if there is:
 - a node \(n \) in the CFG such that \(\text{use}[n] \) contains \(v \), \textit{and}
 - a path from \(e \) to \(n \) such that for every statement \(t \) on the path, \(\text{def}[t] \) does not contain \(v \)

- The first clause says that \(v \) will be used on some path starting from edge \(e \)
- The second clause says that \(v \) won’t be redefined on that path before the use

- Questions:
 - How can we compute this efficiently?
 - How can we use this information (e.g. for register allocation)?
 - How does the choice of IR affect this?
Questions
Simple, inefficient algorithm

- A variable \(v \) is live on an edge \(e \) if there is a node \(n \) in the CFG using it \(\text{and} \) a directed path from \(e \) to \(n \) passing through no def of \(v \).

- Backtracking Algorithm:
 - For each use of a variable \(v \),
 - Follow all paths backwards through the control-flow graph until either \(v \) is defined or a previously visited node has been reached
 - Mark the variable \(v \) live across each edge traversed

- Inefficient because it explores the same paths many times (for different uses and different variables)
Dataflow Analysis

• Idea: compute liveness information for all variables simultaneously
 – Keep track of sets of information about each node

• Approach: define *equations* that should be true in any correct liveness algorithm

• Solve the equations by iteratively converging on a solution
 – Start with a rough approximation to the answer (e.g., nothing is live)
 – Refine the answer using the equations in each iteration
 – Keep going until no more refinement is possible: a *fixpoint* has been reached

• This is an instance of a general framework for computing program properties: dataflow analysis
Dataflow Value Sets for Liveness

- Nodes are program statements, so:
 - use[n]: set of variables used by n
 - def[n]: set of variables defined by n
 - in[n]: set of variables live on entry to n
 - out[n]: set of variables live on exit from n

- Associate in[n] and out[n] with the collected information about incoming/outgoing edges

- For liveness: what constraints are there among these sets?
Other Dataflow Constraints

- \(\text{in}[n] \) must include \(\text{use}[n] \): a variable must be live on entry to \(n \) if it is used by \(n \).

- \(\text{in}[n] \) must also include \(\text{out}[n] - \text{def}[n] \): if a variable is live on exit from \(n \), and \(n \) doesn’t define it, it is live on entry to \(n \).

- And \(\text{out}[n] \) should include \(\text{in}[n'] \) for every \(n' \in \text{succ}[n] \): if a variable is live on entry to a successor node of \(n \), it must be live on exit from \(n \).

- Equations:
 \[
 \text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
 \]
 \[
 \text{out}[n] = \bigcup_{n'\in\text{succ}[n]} \text{in}[n']
 \]
Iterative Dataflow Analysis

- Equations:
 \[\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]
 \[\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]

- Find a solution to those constraints by starting from a rough guess
- Start with: \(\text{in}[n] = \emptyset \) and \(\text{out}[n] = \emptyset \) for every \(n \)
 - They don’t satisfy the equations yet!

- Iteratively re-compute \(\text{in}[n] \) and \(\text{out}[n] \) by applying the equations
 - Each iteration will add variables to the sets \(\text{in}[n] \) and \(\text{out}[n] \)

- Stop when \(\text{in}[n] \) and \(\text{out}[n] \) satisfy the equations, i.e., an iteration doesn’t add any new variables to any set
for all \(n \), \(\text{in}[n] := \emptyset \), \(\text{out}[n] := \emptyset \)

repeat until no change in \(\text{in} \) and \(\text{out} \)

for all \(n \)

\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]

\[
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

end

end

• Finds a \textit{fixpoint} of the \textit{in} and \textit{out} equations
 – The algorithm is guaranteed to terminate... why?

• Why do we start with \(\emptyset \)?
Example Liveness Analysis

- Example flow graph:

```java
int def: e

int use: e

int in: e = 1

int out: e = 1

int in: if x > 0

int out: if x > 0

int in: z = e * e

int out: z = e * e

int in: y = e * x

int out: y = e * x

int in: x = x - 1

int out: x = x - 1

int in: if (x & 1)

int out: if (x & 1)

int in: e = z

int out: e = z

int in: e = y

int out: e = y

int in: return x

int out: return x
def: e

int use: x

int in: z = e * e

int out: z = e * e

int in: y = e * x

int out: y = e * x

int in: x = x - 1

int out: x = x - 1

int in: if (x & 1)

int out: if (x & 1)

int in: e = z

int out: e = z

int in: e = y

int out: e = y

int in: return x

int out: return x

int in: if x > 0

int out: if x > 0

int in: z = e * e

int out: z = e * e

int in: y = e * x

int out: y = e * x

int in: x = x - 1

int out: x = x - 1

int in: if (x & 1)

int out: if (x & 1)

int in: e = z

int out: e = z

int in: e = y

int out: e = y

int in: return x

int out: return x

int in: e = 1

int out: e = 1

int in: if x > 0

int out: if x > 0

int in: z = e * e

int out: z = e * e

int in: y = e * x

int out: y = e * x

int in: x = x - 1

int out: x = x - 1

int in: if (x & 1)

int out: if (x & 1)

int in: e = z

int out: e = z

int in: e = y

int out: e = y

int in: return x

int out: return x

e = 1;
while (x > 0) {
    
    z = e * e;
    y = e * x;
    x = x - 1;
    if (x & 1) {
        e = z;
    } else {
        e = y;
    }
}
return x;
```

\[\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]
\[\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
Example Liveness Analysis

- **Iteration 1:**

 \[\text{in}[2] = x\]
 \[\text{in}[3] = e\]
 \[\text{in}[4] = x\]
 \[\text{in}[5] = e,x\]
 \[\text{in}[6] = x\]
 \[\text{in}[7] = x\]
 \[\text{in}[8] = z\]
 \[\text{in}[9] = y\]

\[\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])\]
\[\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n']\]
Example Liveness Analysis

- **Iteration 2:**

 $\text{out}[1] = x$

 $\text{in}[1] = x$

 $\text{out}[2] = e, x$

 $\text{in}[2] = e, x$

 $\text{out}[3] = e, x$

 $\text{in}[3] = e, x$

 $\text{out}[5] = x$

 $\text{out}[6] = x$

 $\text{out}[7] = z, y$

 $\text{in}[7] = x, z, y$

 $\text{out}[8] = x$

 $\text{in}[8] = x, z$

 $\text{out}[9] = x$

 $\text{in}[9] = x, y$

$\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])$

$\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n']$
Example Liveness Analysis

- Iteration 3:
 out[1] = e, x
 out[6] = x, y, z
 in[6] = x, y, z
 out[7] = x, y, z
 out[8] = e, x
 out[9] = e, x

in[n] = use[n] ∪ (out[n] – def[n])
out[n] = ∪_{n' ∈ succ[n]} in[n']
Example Liveness Analysis

- Iteration 4:
 out[5] = x,y,z
 in[5] = e,x,z

\[
\begin{align*}
in[n] &= \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \\
\text{out}[n] &= \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\end{align*}
\]
Example Liveness Analysis

- Iteration 5:
 out[3] = e, x, z

Done!

\[
\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]
\[
\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
Questions

Top
Improving the Algorithm

- This algorithm requires us to go through every node in the graph in every iteration. How can we do better?
 \[\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]
 \[\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]

- The only nodes we update are the ones that have new information coming to them from their successors, using the rule
 \[\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
 - This is the only rule that involves more than one node

- So if a node’s successors haven’t changed, then the node itself won’t change.

- Keep track of which nodes’ successors have changed in an iteration, update only those nodes in the next iteration
A Worklist Algorithm

- Use a queue w of nodes to be updated ("worklist")

for all n, $\text{in}[n] := \emptyset$, $\text{out}[n] := \emptyset$

w = new queue with all nodes

repeat until w is empty

let $n = w.\text{pop}()$ // pull a node off the queue
old_in = $\text{in}[n]$ // remember old $\text{in}[n]$

$\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']$

$\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])$

if (old_in != $\text{in}[n]$), // if $\text{in}[n]$ has changed
 for all m in $\text{pred}[n]$, $w.\text{push}(m)$ // add predecessors to worklist
end
Example Liveness Analysis

- Example flow graph:

```java
int x = 1;
while (x > 0) {
    int z = e * e;
    int y = e * x;
    x = x - 1;
    if (x & 1) {
        e = z;
    } else {
        e = y;
    }
}
return x;
```

\[
in[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]
\[
\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
Example Liveness Analysis

- Iteration 1:
 in[2] = x
 in[3] = e
 in[4] = x
 in[5] = e,x
 in[6] = x
 in[7] = x
 in[8] = z
 in[9] = y

\[
in[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

\[
\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
Example Liveness Analysis

- Iteration 2:
 out[1] = x
 in[1] = x
 out[2] = e, x
 in[2] = e, x
 out[3] = e, x
 in[3] = e, x
 out[5] = x
 out[6] = x
 out[7] = z, y
 in[7] = x, z, y
 out[8] = x
 in[8] = x, z
 out[9] = x
 in[9] = x, y

in[n] = use[n] ∪ (out[n] – def[n])
out[n] = ∪_{n′ ∈ succ[n]} in[n′]
Example Liveness Analysis

- Iteration 3:
 out[1] = e, x
 out[6] = x, y, z
 in[6] = x, y, z
 out[7] = x, y, z
 out[8] = e, x
 out[9] = e, x

\[
\begin{align*}
in[n] &= \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \\
\text{out}[n] &= \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\end{align*}
\]
Example Liveness Analysis

- Iteration 4:
 out[5] = x, y, z
 in[5] = e, x, z

\[
in[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]
\[
\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
Example Liveness Analysis

- Iteration 5:
 out[3] = e, x, z

Done!

in[n] = use[n] ∪ (out[n] − def[n])
out[n] = ∪_{n' ∈ succ[n]} in[n']
Questions

Top
Dataflow Analysis: Summary

• Goal: collect some information about every statement/instruction/block in a program

• Approach: propagate information along the edges of a control flow graph
 – Set up equations describing how the information at one node relates to the information at adjacent nodes
 – Start with an initial state, and then repeatedly use the equations to update the information for each node
 – When we reach a fixpoint (no change in an iteration), we’re done!

• Questions we can answer:
 – What variables are still going to be used at this point?
 – What values can each variable have at this point?
 – What expressions have already been computed at this point?

• Result: control flow graph with information for each node
 – What good is this? Depends on the information!