CS 473: COMPILER DESIGN
REGISTER ALLOCATION
Register Allocation Problem

• Given: an IR program that uses an unbounded number of variables

• Find: a mapping from variables to machine registers such that
 – the program behaves the same when temps are replaced with registers
 – as many variables as possible are in registers
 – moves between registers (like `move r1, r2`) are minimized
 – architecture requirements are obeyed (e.g., zero register always has the value 0, argument registers are overwritten on function calls)

• Stack Spilling
 – If there are k registers available and $m > k$ variables are live at the same time, then not all of them will fit into registers
 – So we must "spill" the excess variables to the stack
Register Allocation by Graph Coloring

- Liveness analysis tells us which variables are live at each point in a program
- We can’t assign two variables to the same register if they’re live at the same time
- So we want to match every variable with a register such that no two variables that are live at the same time get the same register

- This is a graph coloring problem! (where colors are registers)
- Graph coloring: color all the nodes of a graph one of k different colors so that no two adjacent nodes have the same color
- Register allocation: assign all the variables in a program to one of k different registers so that no two variables live at the same time have the same register
Nodes of the graph are variables
Edges connect variables that *interfere* with each other
 - Two variables interfere if their live ranges intersect
Register assignment is a *graph coloring*
 - A graph coloring assigns each node in the graph a color (register)
 - Any two nodes connected by an edge must have different colors
Exercise: Color this graph so that no 2 connected nodes have the same color. How many colors are required?

```plaintext
// live = {a}
b1 = addi a, 2 // live = {a, b1}
c = mul b1, b1 // live = {a, c}
b2 = addi c, 1 // live = {a, b2}
ans = mul b2, a // live = {ans}
return ans
```

Interference Graph

2-Coloring of the graph
red = r8
yellow = r9
Register Allocation Questions

• How many colors do we have?
 – As many as there are registers

• Can we efficiently find a k-coloring of the graph whenever possible?
 – Answer: in general the problem is NP-complete
 – But we can do an efficient approximation using heuristics

• How do we assign registers to colors?
 – With a clever approach, we can eliminate some extra move instructions

• What do we do when there aren’t enough colors/registers?
 – We have to use stack space, but how do we do this effectively?
Algorithm for k-coloring a graph by Kempe [1879]

Recursive algorithm with three steps:

- **Step 1:** Find a node with degree $< k$ and cut it out of the graph
 - It has fewer neighbors than there are colors, so we’ll always have a color left for it once we color the rest of the graph
 - Remove the node and all its edges
 - This is called *simplifying* the graph

- **Step 2:** Recursively k-color the remaining subgraph

- **Step 3:** When remaining graph is colored, there must be at least one free color available for the deleted node (since its degree was $< k$). Color the node with one of those free colors.
Example: 3-coloring a graph

1 and 2: recurse down the simplified graphs
Example: 3-color this Graph

3: assign colors on the way back up
Failure of the Algorithm

• If the graph cannot be colored, it will simplify to a graph where every node has at least k neighbors.
 – This might also happen even when the graph can be colored!
 – This is a symptom of NP-hardness – we’d need to try every possibility to always get the best answer

• Example: When trying to 3-color this graph:

![Graph diagram]
Questions
Spilling

• Idea: If we can’t k-color the graph, we need to store (at least) one temporary variable on the stack.

• Which variable to spill?
 – Pick one that isn’t used very frequently
 – Pick one that isn’t used in a (deeply nested) loop
 – Pick one that has high interference (since removing it will make the graph easier to color)

• In practice: some weighted combination of these criteria

• When coloring:
 – Mark the node as spilled
 – Remove it from the graph
 – Keep recursively coloring
Spilling Example

- If no nodes have degree $< k$, select a node to spill
- Mark it and remove it from the graph
- Continue coloring
Optimistic Coloring

- Recall that Kempe’s algorithm sometimes gets stuck even when the graph is \(k\)-colorable.
- So sometimes it’s actually possible to color a node marked for spilling!

Example: When 2-coloring this graph:

- Even though the node was marked for spilling, we can color it yellow.
- So: on the way down, mark for spilling, but don’t actually spill. On the way back up, if the marked node has a color available, color it instead!
• Suppose \(t \) is marked for spilling to stack slot \(fp + o \)

\[
t = a \, \text{op} \, b
\]
\[
\ldots
\]
\[
x = t \, \text{op} \, c
\]
\[
\ldots
\]
\[
y = d \, \text{op} \, t
\]
\[
\text{// def of } t
\]
\[
\text{// use 1 of } t
\]
\[
\text{// use 2 of } t
\]
Example Spill Code

• Suppose t is marked for spilling to stack slot $fp + o$

\[
t = a \text{ op } b \\
[fp + o] = a \text{ op } b \quad // \text{ def of } t
\]

\[
x = t \text{ op } c \\
x = [fp + o] \text{ op } c \quad // \text{ use 1 of } t
\]

\[
y = d \text{ op } t \\
y = d \text{ op } [fp + o] \quad // \text{ use 2 of } t
\]

• But these instructions don’t exist in most assembly languages!
• Exercise: How would you write this code if we can’t access memory and do \text{ op} in a single instruction?
• We still need to use registers to load from/store to stack variables!
• Suppose t is marked for spilling to stack slot $fp + o$

• Approach 1: reserve r1 and r2 for stack

\[t = a \ op \ b \]
\[[fp + o] = a \ op \ b \quad \// \ def \ of \ t \]
...

\[x = t \ op \ c \]
\[x = [fp + o] \ op \ c \quad \// \ use \ 1 \ of \ t \]
...

\[y = d \ op \ t \]
\[y = d \ op \ [fp + o] \quad \// \ use \ 2 \ of \ t \]
Example Spill Code

• Suppose \(t \) is marked for spilling to stack slot \(fp + o \)
• Approach 1: reserve \(r1 \) and \(r2 \) for stack

\[
\begin{align*}
t = a \text{ op } b \\
\ldots \\
r1 = a \text{ op } b \\
[fp + o] = r1 \\
x = t \text{ op } c \\
\ldots \\
\rightarrow r1 = [fp + o] \\
x = r1 \text{ op } c \\
y = d \text{ op } t \\
r1 = [fp + o] \\
y = d \text{ op } r1 \\
\end{align*}
\]
Example Spill Code

• Suppose \(t \) is marked for spilling to stack slot \(fp + o \)

• Approach 1: reserve \(r1 \) and \(r2 \) for stack

\[
\begin{align*}
t &= a \text{ op } b \\
&\vdots \\
x &= t \text{ op } c \\
&\vdots \\
y &= d \text{ op } t
\end{align*}
\]

\[
\begin{align*}
&\text{r1 = a \text{ op } b} \\
&[fp + o] = r1 \\
&\text{r1 = [fp + o]} \\
&x = r1 \text{ op } c \\
&\text{r1 = [fp + o]} \\
&\text{r2 = [fp + p]} \\
&y = r2 \text{ op } r1
\end{align*}
\]

• If \(d \) is also on the stack, at \(fp + p \)

• In general, we need a register for every operand an instruction can have (often just 2)
Example Spill Code

• Suppose \(t \) is marked for spilling to stack slot \(fp + o \)

• Approach 2: make a new variable for each access to \(t \)

\[
\begin{align*}
 t &= a \text{ op } b \\
 \quad \cdots \\
 t1 &= a \text{ op } b \\
 &\quad \text{// def of } t \\
 [fp + o] &= t1 \\
 x &= t \text{ op } c \\
 \quad \cdots \\
 t2 &= [fp + o] \\
 &\quad \text{// use 1 of } t \\
 x &= t2 \text{ op } c \\
 y &= d \text{ op } t \\
 t3 &= [fp + o] \\
 &\quad \text{// use 2 of } t \\
 y &= d \text{ op } t3
\end{align*}
\]

• Where \(t1, t2, t3 \) are freshly generated temporaries that replace \(t \) for different uses of \(t \)

• Why does this work? We’ve just introduced even more variables that we need to allocate to registers!
 – Because each one is only live for a very short time.
Accessing Spilled Registers

• We can’t usually do operations directly on values in memory, so we need to load stack variables into registers when we use them!

• Approach 1: Reserve specific registers for loading/storing to spilled variables
 – Pro: Only need to color the graph once
 – Con: Need at least two registers (one for each source operand of an instruction), so decreases total # of available registers by 2
 – Not good on x86 (especially 32-bit) because there are too few registers & too many constraints on how they can be used

• Approach 2: Rewrite the program to use a new temporary variable for each access to a spilled variable, and then do register allocation again
 – Pro: Need to reserve fewer registers
 – Con: Introducing a variable changes live ranges, so must recompute liveness & recolor graph
Questions
Precolored Nodes

• Some variables must be pre-assigned to registers
 – Most processors have a dedicated frame pointer register for fp
 – Most instruction sets reserve certain registers for passing function arguments (a0-a3 in MIPS)
 – We can still assign other variables to these registers, too, as long as they’re available when we need them!

• To properly allocate temporaries, we can treat registers as nodes in the interference graph with pre-assigned colors
 – Pre-colored nodes can’t be removed during simplification, and should never be spilled
 – Implementation trick: Treat pre-colored nodes as having infinite degree in the interference graph (so their degree is always > k)
 – When the graph is empty except for the pre-colored nodes, then we start coloring the rest of the nodes.
Picking Good Colors

• When choosing colors during the coloring phase, we can choose any color that isn’t assigned to an adjacent nodes, and some choices are better for performance than others.

• In particular, if we have move t_1, t_2 and assign t_1 and t_2 to the same register, the move is redundant and can be eliminated
 – Note that t_1 and t_2 probably don’t interfere with each other – there’s no reason to keep using both once they have the same value

• A simple color choosing strategy that helps eliminate such moves:
 – Add a new kind of “move-related” edge between the nodes for t_1 and t_2 in the interference graph
 – When choosing a color for t_1 (or t_2), if possible pick the color of an already-colored node reachable by a move-related edge
Example Color Choice

• Consider 3-coloring this graph, where the dashed edge indicates that there is a move from one temporary to another

• After coloring the rest, we have a choice
 – Picking yellow is better than red because it will eliminate a move
Coalescing Interference Graphs

• A more aggressive strategy is to coalesce nodes of the interference graph into a single node if they are connected by move-related edges.
 – Coalescing the nodes forces the two temporaries to be assigned the same register

![Diagram of coalescing interference graph nodes](image)

• Idea: interleave simplification and coalescing to maximize the number of moves that can be eliminated
• Problem: coalescing can sometimes increase the degree of a node

![Diagram of coalescing interference graph nodes](image)
Conservative Coalescing

• Two strategies are guaranteed to preserve the k-colorability of the interference graph:

 • **Brigg’s strategy**: It's safe to coalesce x and y if the resulting node will have fewer than k neighbors (with degree $\geq k$).

 • **George’s strategy**: We can safely coalesce x and y if for every neighbor t of x, either t already interferes with y or t has degree $< k$.
Two strategies are guaranteed to preserve the k-colorability of the interference graph:

- **Brigg’s strategy**: It's safe to coalesce x and y if the resulting node will have fewer than k neighbors (with degree $\geq k$).

- **George’s strategy**: We can safely coalesce x and y if for every neighbor t of x, either t already interferes with y or t has degree $< k$.
Two strategies are guaranteed to preserve the k-colorability of the interference graph:

- **Brigg’s strategy**: It's safe to coalesce x and y if the resulting node will have fewer than k neighbors (with degree $\geq k$).

- **George’s strategy**: We can safely coalesce x and y if for every neighbor t of x, either t already interferes with y or t has degree $< k$.
Questions

Top
Nodes of the graph are variables

Edges connect variables that \textit{interfere} with each other

 Two variables interfere if their live ranges intersect

Register assignment is a \textit{graph coloring}

 A graph coloring assigns each node in the graph a color (register)

 Any two nodes connected by an edge must have different colors

// live = \{a\}
b1 = addi a, 2
// live = \{a, b1\}
c = mul b1, b1
// live = \{a, c\}
b2 = addi c, 1
// live = \{a, b2\}
ans = mul b2, a
// live = \{ans\}
return ans

Interference Graph

2-Coloring of the graph
red = r8
yellow = r9
Complete Register Allocation Algorithm

1. Build interference graph from liveness information, with precolored nodes and move-related edges

2. Reduce the graph (building a stack of nodes to color)
 1. Simplify the graph by removing nodes with degree < k that aren’t move-related; remaining nodes are high-degree or move-related
 2. Coalesce move-related nodes using Brigg’s or George’s strategy
 3. Repeat 2.1 and 2.2 until no node can be simplified or coalesced
 4. If no nodes can be coalesced, remove a move-related edge and keep trying to simplify/coalesce

3. If there are non-precolored nodes left, they have degree $\geq k$: mark one for spilling, remove it from the graph, and go back to step 2

4. When only pre-colored nodes remain, start coloring: pop simplified nodes off the stack and give each one a color its neighbors don’t have
 1. If a node must be spilled, insert spill code and rerun the whole register allocation algorithm starting at step 1

5. After register allocation, the compiler should do an optimization pass to remove redundant moves (like `move r1, r1`)
Register Allocation: Summary

• Once we have liveness information, we can build an *interference graph* showing which variables are live at the same time.

• Coloring the graph (so that no two connected nodes have the same color) with *k* colors corresponds to allocating the variables to *k* machine registers.

• If we can’t color the graph fully, we have to *spill* a variable to the stack and then try again.

• Graph coloring is NP-complete, so we might end up spilling more variables than necessary.

• There are a few tricks for getting efficient allocations (move-related edges, coalescing).

• Once we’ve done this to the output of instruction selection, we’ve translated all the way from source language to real assembly!
Questions