HW8 – Type Inference and Polymorphism

CS 476, Fall 2019
Due Nov. 25 at 2 PM

1 Instructions

This assignment is to be completed by hand (or in LaTeX if you know how to use it). Submit your answers as a PDF file via Gradescope. If you don’t have easy access to a scanner, you can use the one in SEO 1120, the main CS office – the staff will be happy to help you. As always, please don’t hesitate to ask for help on Piazza (https://piazza.com/class/jushbjmii13yb).

2 Type Inference Rules

The rules for type inference for a simple OCaml-like language are as follows.

\[
\begin{align*}
\vdash n : \text{int} & \quad \vdash b : \text{bool} \\
\vdash e_1 + e_2 : \text{int} & \quad \vdash e_1 \& e_2 : \text{bool} \\
\vdash e_1 = e_2 : \text{bool} & \\
\vdash x : \tau & \\
\vdash \text{fun} \ x : \tau \to e : \tau_1 \to \tau_2 &
\end{align*}
\]

When we add polymorphism, we add the following additional rules.

\[
\begin{align*}
\vdash e_1 : \tau_1 & \quad \text{fv}(\tau_1) - \text{fv}(\Gamma) = a_1, \ldots, a_n \\
\vdash x \mapsto \tau_1 & \quad \vdash e_2 : \tau \\
\vdash \text{let} \ x = e_1 \ \text{in} \ e_2 : \tau & \\
\vdash x : \forall a_1 \ldots a_n. \ \tau & \quad \text{fresh}
\end{align*}
\]

where \([a_1 \mapsto b_1, \ldots, a_n \mapsto b_n] \tau \) means “replace the bound variables \(a_1 \) through \(a_n \) with the fresh type variables \(b_1 \) through \(b_n \).”
3 Problems

1. (3 points) What is the type of \(\text{fun} \ x \rightarrow \text{fun} \ y : \text{int} \rightarrow (x \ y) + 1 \)?

\[(\text{int} \rightarrow \text{int}) \rightarrow \text{int} \rightarrow \text{int} \]

2. (7 points) Write the proof tree for the judgment
\[
\{\} \vdash \text{fun} \ x \rightarrow \text{fun} \ y : \text{int} \rightarrow (x \ y) + 1) : \tau \ | \ C, \text{where } \tau \text{ and } C \text{ start as blank and are filled in as you complete the proof tree. You do not need to do unification.}
\]

\[
\begin{array}{l}
\{x : a, y : \text{int}\} \vdash x : a | \{\} \\
\{x : a, y : \text{int}\} \vdash y : \text{int} | \{\} \\
\{x : a, y : \text{int}\} \vdash (x \ y) + 1 : \text{int} | \{\tau = \text{int}, \text{int} = \text{int}, a = \text{int} \rightarrow \tau\} \\
\{x : a\} \vdash \text{fun} \ y : \text{int} \rightarrow (x \ y) + 1 : \text{int} \rightarrow \text{int} | \{\tau = \text{int}, \text{int} = \text{int}, a = \text{int} \rightarrow \tau\} \\
\{\} \vdash \text{fun} \ x \rightarrow \text{fun} \ y : \text{int} \rightarrow (x \ y) + 1 : a \rightarrow \text{int} \rightarrow \text{int} | \{\tau = \text{int}, \text{int} = \text{int}, a = \text{int} \rightarrow \tau\}
\end{array}
\]
3. Consider the program \(\text{let } g = (\text{fun } x -> (x = x)) \text{ in } g\ 5 \&\& g\ \text{true}. \)

(a) (5 points) Write a proof tree for the judgment \(\{\} \vdash (\text{fun } x -> (x = x)) : \tau \ | \ C. \) Again, \(\tau \) and \(C \) should start blank and be filled in as you complete the proof tree.

(b) (3 points) Given your answer to part a, what is the polymorphic type (polytype) of \(g \) in the program?

\[\forall a.\ a \rightarrow \text{bool} \]
(c) (7 points) Write the proof tree for the judgment
\[\{ \} \vdash \text{let } g = (\text{fun } x \rightarrow (x = x)) \text{ in } g \ 5 \ \&\& \ g \ \text{true} : \tau \ | \ C. \] Once again, \(\tau \) and \(C \) should start blank and be filled in as you complete the proof tree. You can use \(P_1 \) to stand for your proof tree from part a.

Hint 1: In the type context for the body of the let (i.e., \(g \ 5 \ \&\& \ g \ \text{true} \)), the type of \(g \) should be your answer to part b.

Hint 2: When you reach a variable, make sure to use the polymorphic variable rule from the end of section 2.

Let \(\Gamma \) be \(\{ g : \forall a \ a \rightarrow \text{bool} \}. \) Let \(C \) be \(\{ a = a, \tau_1 = \text{bool}, \tau_2 = \text{bool}, b \rightarrow \text{bool} = \text{int} \rightarrow \tau_1, c \rightarrow \text{bool} = \text{bool} \rightarrow \tau_2 \}. \)

\[
\begin{array}{c}
\Gamma \vdash g : b \rightarrow \text{bool} | \{ \} \\
\Gamma \vdash 5 : \text{int} | \{ \} \\
\Gamma \vdash g : c \rightarrow \text{bool} | \{ \} \\
\Gamma \vdash \text{true} : \text{bool} | \{ \} \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash 5 : \tau_1 | \{ b \rightarrow \text{bool} = \text{int} \rightarrow \tau_1 \} \\
\Gamma \vdash g \ \text{true} : \tau_2 | \{ c \rightarrow \text{bool} = \text{bool} \rightarrow \tau_2 \} \\
\end{array}
\]

\[
\begin{array}{c}
\{ g : \forall a \ a \rightarrow \text{bool} \} \vdash g \ 5 \ \&\& \ g \ \text{true} : \text{bool} | \{ \tau_1 = \text{bool}, \tau_2 = \text{bool}, b \rightarrow \text{bool} = \text{int} \rightarrow \tau_1, c \rightarrow \text{bool} = \text{bool} \rightarrow \tau_2 \} \\
\{ \} \vdash \text{let } g = (\text{fun } x \rightarrow (x = x)) \text{ in } g \ 5 \ \&\& \ g \ \text{true} : \text{bool} | \ C \\
\end{array}
\]