From Typed Lambda Calculus to OCaml

• User-friendly syntax
• Basic types, tuples, records
• Inductive datatypes and pattern-matching
• Local declarations

References

• Type inference
• Generics/polymorphism
OCaml: References

• Variables in OCaml are immutable (though hideable)
• What if we want mutable variables?
 1. Don’t! Just make a new thing instead of changing the old one.

let h = empty_map;;
let item = Add (Int 1, Int 3);;
let h1 = map_insert h item;;
OCaml: References

• Variables in OCaml are immutable (though hideable)
• What if we want mutable variables?
 2. Use references

 let h = ref empty_map;; (* h : map ref *)
 let item = Add (Int 1, Int 3);;
 h := map_insert (!h) "e" item;; (* item has now been added to h *)

• Just like references in our OO language, or pointers in C
OCaml: References

\[L ::= ... \mid \text{ref } L \mid L := L \mid !L \]
\[T ::= ... \mid T \text{ ref} \]

- \text{\texttt{ref } } l \text{ makes a new reference whose initial value is } l
- \texttt{x := } l \text{ changes the value at } x
- \texttt{!} l \text{ looks up the value at } l
OCaml: References

\[L ::= \ldots | \text{ref} \ L | \ L ::= \ L | !\ L \]
\[T ::= \ldots | \ T \text{ref} \]

- \(x := l \) is an expression! What does it return?
 - A special “nothing” value: () of type \texttt{unit}
- OCaml expressions now have \textit{side effects}
OCaml: References

\[L ::= \ldots | \text{ref } L | \text{ref } L | L ::= L | \text{ref } L | () | L; L \]

\[T ::= \ldots | T \text{ ref } | \text{unit} \]

- \(x := l \) is an expression, returning () of type \text{unit}
- OCaml expressions now have \textit{side effects}
- \(l_1; l_2 \) throws away the result of \(l_1 \)
References: Example

new_id : unit -> int (* want to return a new int every time *)

let next_id = ref 0 (* next_id : int ref *)

let new_id () : int = let v = !next_id in next_id := !next_id + 1; v
References: Types

\[
\Gamma \vdash l : \tau \quad \quad \Gamma \vdash l : \tau \text{ ref} \quad \quad \Gamma \vdash l_1 : \tau \text{ ref} \quad \Gamma \vdash l_2 : \tau
\]

\[
\frac{\Gamma \vdash \text{ref} \ l : \tau \text{ ref}}{\Gamma \vdash \text{ref} \ l : \tau \text{ ref}} \quad \frac{\Gamma \vdash ! \ l : \tau}{\Gamma \vdash ! \ l : \tau} \quad \frac{\Gamma \vdash l_1 : \tau \text{ ref} \quad \Gamma \vdash l_2 : \tau}{\Gamma \vdash l_1 := l_2 : \text{unit}}
\]

\[
\frac{\Gamma \vdash () : \text{unit}}{\Gamma \vdash () : \text{unit}} \quad \frac{\Gamma \vdash l_1 : \text{unit} \quad \Gamma \vdash l_2 : \tau}{\Gamma \vdash l_1; \ l_2 : \tau}
\]
References: Types

\[\begin{align*}
\Gamma \vdash l : \tau \\
\Gamma \vdash \text{ref}\ l : \tau \text{ ref} \\
\Gamma \vdash l : \tau \text{ ref} \\
\Gamma \vdash !l : \tau \\
\Gamma \vdash l_1 : \tau \text{ ref} \quad \Gamma \vdash l_2 : \tau \\
\Gamma \vdash l_1 := l_2 : \text{unit} \\
\Gamma \vdash () : \text{unit} \\
\Gamma \vdash l_1 : \tau_0 \quad \Gamma \vdash l_2 : \tau \\
\Gamma \vdash l_1; l_2 : \tau
\end{align*}\]
References: Semantics

• References have aliasing:

```ml
let x = ref 1;;  (* {x = r}, {r ↦ 1} *)
let y = x;;  (* {x = r, y = r}, {r ↦ 1} *)
y := 2; !x;;  (* {x = r, y = r}, {r ↦ 2} *)
(* result: 2 *)
```

• So we need to use a two-level state again
References: Semantics

References and () are values

\[
\begin{align*}
(l, \rho, \sigma) & \Downarrow (v, \sigma') \quad r \notin \text{dom}(\sigma) \\
\text{(ref } l, \rho, \sigma) & \Downarrow (r, \rho, \sigma'[r \mapsto v])
\end{align*}
\]

\[
\begin{align*}
(l_1, \rho, \sigma) & \Downarrow (r, \sigma) \quad (l_2, \rho, \sigma) \Downarrow (v, \sigma) \\
(l_1 := l_2, \rho, \sigma) & \Downarrow ((\), \rho, \sigma[r \mapsto v])
\end{align*}
\]

\[
\begin{align*}
(l, \rho, \sigma) & \Downarrow (r, \sigma') \quad \sigma'(r) = v \\
(! l, \rho, \sigma) & \Downarrow (v, \rho, \sigma')
\end{align*}
\]
Questions
If any expression can change the state, the order of evaluation matters!

As designers, how should we decide on the order?

\[(l_1, \rho, \sigma?) \downarrow (r, \sigma?) \implies (l_2, \rho, \sigma?) \downarrow (v, \sigma?) \implies (l_1 := l_2, \rho, \sigma) \downarrow ((\cdot), \rho, \sigma?)\]
If any expression can change the state, the order of evaluation matters!

Approach 1: do something logical

\[(l_1, \rho, \sigma) \downarrow (r, \sigma_1) \quad (l_2, \rho, \sigma_1) \downarrow (v, \sigma_2) \quad (l_1 := l_2, \rho, \sigma) \downarrow (\emptyset, \rho, \sigma_2)\]
References: Evaluation Order

• If any expression can change the state, the order of evaluation matters!

• Approach 2: do what the implementation does

\[
(l_1, \rho, \sigma) \downarrow (r, \sigma_2) \quad (l_2, \rho, \sigma) \downarrow (v, \sigma_1) \\
(l_1 := l_2, \rho, \sigma) \downarrow ((), \rho, \sigma_2)
\]
References: Evaluation Order

• If any expression can change the state, the order of evaluation matters!

• Approach 3: either way is allowed

\[
\begin{align*}
(l_1, \rho, \sigma) \downarrow (r, \sigma_1) & \quad (l_2, \rho, \sigma_1) \downarrow (v, \sigma_2) \\
(l_1 := l_2, \rho, \sigma) \downarrow (\emptyset, \rho, \sigma_2)
\end{align*}
\]

\[
\begin{align*}
(l_1, \rho, \sigma_1) \downarrow (r, \sigma_2) & \quad (l_2, \rho, \sigma) \downarrow (v, \sigma_1) \\
(l_1 := l_2, \rho, \sigma) \downarrow (\emptyset, \rho, \sigma_2)
\end{align*}
\]
References: Evaluation Order

• If any expression can change the state, the order of evaluation matters!

• Approach 4: “undefined behavior”

\[
(l_1, \rho, \sigma) \downarrow (r, \sigma_1) \quad (l_2, \rho, \sigma_1) \downarrow (v, \sigma_1) \\
(l_1 := l_2, \rho, \sigma) \downarrow ((), \rho, \sigma_1)
\]

\[
(l_1, \rho, \sigma_1) \downarrow (r, \sigma_1) \quad (l_2, \rho, \sigma) \downarrow (v, \sigma_1) \\
(l_1 := l_2, \rho, \sigma) \downarrow ((), \rho, \sigma_1)
\]
References: Evaluation Order

• If any expression can change the state, the order of evaluation matters!

• Whichever we choose, we have to apply it to every operator with more than one argument:

\[
\begin{align*}
(l_1, \rho, \sigma) &\downarrow (v_1, \sigma_1) \quad (l_2, \rho, \sigma_1) \downarrow (v_2, \sigma_2) \quad (v_1 + v_2 = v) \\
(l_1 + l_2, \rho, \sigma) &\downarrow (v, \rho, \sigma_2)
\end{align*}
\]

since \((x := 1; 3) + (x := 2; 4)\) is now a valid expression
OCaml: Evaluation Order

• Evaluation order matters whenever expressions have side effects
 — References/mutable variables
 — I/O (console, file, network, graphics, etc.)

• Side effects raise important questions:
 — Which subexpression gets evaluated first?
 — When does an expression get evaluated?
 — How many times is it evaluated?

• Avoiding them makes code simpler, but they’re hard to avoid!
Questions