HW3 - Operational Semantics

CS 476, Fall 2023

1 Instructions

This is a written assignment. You may write your solutions by hand and scan/take a picture of the paper, or in a text editor (Notepad, Word, LaTeX, etc.) and submit a text file or PDF. If you need any help getting your solutions into a suitable format, just let the instructors know. As always, please don't hesitate to ask for help on Piazza (https://piazza.com/class/ksknvqg6ogb2kc).

2 Operational Semantics of Expressions and Commands

Here are the operational semantics rules for a simple imperative programming language, using the "hybrid style" of big steps for expressions and small steps for commands.

$$
\operatorname{NUM} \frac{(n \text { is a number literal })}{(n, \rho) \Downarrow n} \quad \operatorname{BooL} \frac{(b \text { is a boolean literal })}{(b, \rho) \Downarrow b} \quad \operatorname{VAR} \frac{(\rho(x)=v)}{(x, \rho) \Downarrow v}
$$

$\mathrm{OP} \frac{\left(e_{1}, \rho\right) \Downarrow v_{1} \quad\left(e_{2}, \rho\right) \Downarrow v_{2} \quad\left(v_{1} \oplus v_{2}=v\right)}{\left(e_{1} \text { op } e_{2}, \rho\right) \Downarrow v}$ for each operator op and its meta-level equivalent \oplus

$$
\begin{gathered}
\operatorname{ASGN} \frac{(e, \rho) \Downarrow v}{(x:=e, \rho) \rightarrow(\operatorname{skip}, \rho[x \mapsto v])} \quad \text { SEQ-STRUCT } \frac{\left(c_{1}, \rho\right) \rightarrow\left(c_{1}^{\prime}, \rho^{\prime}\right)}{\left(c_{1} ; c_{2}, \rho\right) \rightarrow\left(c_{1}^{\prime} ; c_{2}, \rho^{\prime}\right)} \\
\operatorname{SEQ}-\mathrm{CoMP} \frac{}{\left(\text { skip } ; c_{2}, \rho\right) \rightarrow\left(c_{2}, \rho\right)}
\end{gathered}
$$

3 Problems

1. (6 points total) Consider the following program configuration:

$$
(\mathrm{a}:=\mathrm{b}+2 ; \mathrm{c}:=3+4,\{\mathrm{~b}=5\})
$$

(a) (2 points) What is the top-level operation in this configuration's program? Put another way, which rule's conclusion would match the entire configuration?
(b) (4 points) Write a proof tree for the step taken by the configuration. The bottom of the tree should have the form $(\mathrm{a}:=\mathrm{b}+2$; $\mathrm{c}:=3+4,\{\mathrm{~b}=5\}) \rightarrow \ldots$, with the.. filled in according to the rules you apply. You only need to write a proof tree for a single small step.
2. (9 points total) Suppose we wanted to add a new ? operation to our language of the form x ? y, where x and y can be any program expression. The program $x ? y$ is meant to return the value of x unless that value is 0 , in which case it returns the value of y instead.
(a) (2 points) Should x ? y be an expression or a command? Why?
(b) (5 points) Write one or more semantic rules for the ? operation, in the appropriate style (big-step or small-step) based on your answer to the previous question.
(c) (2 points) Using your rules, write a proof tree showing that if the value of variable \mathbf{z} is currently 0 and the value of variable a is currently 5 , then the value of z ? a is 5 .
(d) (for graduate students) Now, suppose we want $x ? y$ to change the value of x (which must be a variable) to the value of y when x is 0 , instead of returning the value of y. When x is not zero, $x ? y$ should do nothing at all. Would this change your answer to 2 a ? How would your rule(s) in 2b change?

