
HW4 – Interpreting Functions

CS 476, Fall 2023

1 Instructions

Begin by downloading the file hw4-base.ml from the course website, and renaming it
to hw4.ml. Then fill in your answers to the problems, adding or modifying definitions
as you see fit. Submit your completed hw4.ml via Gradescope. As always, please don’t
hesitate to ask for help on Piazza (https://piazza.com/class/lkwp62qwo734i9).

2 Adding Functions to the Interpreter

The file hw4-base.ml defines the types exp of expressions and cmd of commands. It also
defines two main functions: eval exp, a big-step-style interpreter for expressions, and
step cmd, a small-step-style interpreter for commands.

An env is a map from identifiers to the entry type, which can be either Val of
a value (an IntVal/BoolVal) or a function definition Fun, which contains the list of
parameter names and the function body. For instance, if lookup r "f" returns Some

(Fun (["x"; "y"], Return (Var "x"))), this means that in the environment r, the
function f is defined as f(x, y){ return x }.

The function eval exp : exp -> env -> value option takes an expression e and
an environment r and returns a value option: either Some v, if e evaluates to v, or
None, if e fails to evaluate. The function step cmd : config -> config option takes
a config, a configuration of the form (c, k, r) where c is a cmd, k is a stack, and r is an
env, and returns a configuration option:

� Some (c′, k′, r′), if (c, k, r) → (c′, k′, r′)

� None, if there is no step that (c, k, r) can take

The cmd type already includes constructors for function calls and returns. Call takes
two identifiers, representing the variable and function name, and a list of expressions,
representing the arguments. For example, Call ("x", "f", [Num 1, Num 2]) repre-
sents the command x := f(1, 2). Return takes one expression, which computes the
return value of the function. Your job is to extend the step cmd function to implement
these commands.

1. (3 points) Define an object my prog : cmd that represents the program x := 5.
Confirm that when you run it, it returns an environment where x is 5. You can

1

https://piazza.com/class/lkwp62qwo734i9


confirm that using the run config function, which takes a config and applies
step cmd to the config for as many steps as possible. For instance, if you write

let test1 = run_config (my_prog, [], empty_env);;

then the variable test1 will hold the results of running my prog starting with an
empty environment (no variables defined) and an empty stack. The return value
of run config will be a config; you can access its components with code like

let (res_c, res_k, res_r) = test1;;

to store the resulting command, stack, and environment in variables res c, res k,
and res r respectively. You can then look up variables in res r to see whether
the right environment was produced:

lookup res_r "x";;

- : entry option = Some (Val (IntVal 5))

If the call to run config runs forever, you can run the program step by step
manually by calling step cmd on your starting configuration, then calling step cmd

on the result, etc., and see where it gets stuck.

2. (4 points) Add a case to step cmd for the return statement, according to the
following rule:

(e, ρ) ⇓ v

(return e, (ρ0, x) :: k, ρ) → (skip, k, ρ0[x 7→ v])

Test your new case by running run config with a return command and a non-
empty stack, and confirm that the stack gets popped and the return value is stored
in the variable from the popped stack frame, as demonstrated in ret test1 in the
sample code.

3. (8 points) Add a case to step cmd for the call statement, according to the following
rule:

([e1; ...; en], ρ) ⇓ [v1; ...; vn] ρ(f) = ((x1, ..., xn), c)

(x := f(e1, ..., en), k, ρ) → (c, (ρ, x) :: k, ρ[x1 7→ v1; ...;xn 7→ vn])

A function add args has been provided that takes an env r, a list of variables, and
a list of values, and returns the new env r[x1 7→ v1; ...;xn 7→ vn]. There is also
a function eval exps that takes a list of expressions and returns the list of their
values.

You can test your code with run config, or use run prog, which runs an entire
program starting from an initial environment. If you have correctly defined all
commands, then run prog prog1 env0 should result in the command Skip, the
stack [], and an environment in which x is 3 and y is undefined (i.e., None).

2


	Instructions
	Adding Functions to the Interpreter

