
HW7 – Type Inference

SS 476, Fall 2023

1 Instructions

Begin by downloading the file hw7-base.ml from the course website and renaming it to hw7.ml. This file contains the functions that you will
use and modify in the homework. Submit your completed hw7.ml via Gradescope. As always, please don’t hesitate to ask for help on Piazza
(https://piazza.com/class/lkwp62qwo734i9).

2 Type Inference

In this assignment, you will extend the get constraints function to perform type inference for more features of our functional programming
language. Recall that get constraints gamma e returns a pair of a type t and constraint set s, following rules of the form gamma ⊢ e : t | s.

1. (5 points) The type inference rule for tuples is:

Γ ⊢ e1 : τ1 | S1 Γ ⊢ e2 : τ2 | S2

Γ ⊢ (e1, e2) : τ1 ∗ τ2 | S1 ∪ S2

Add a case for Tuple expressions according to this rule. The type τ1 ∗ τ2 is represented in code by TupleTy (τ1, τ2). Constraint sets S are
represented by lists of pairs of types, and can be manipulated with the usual OCaml list operations :: and @.

2. (6 points) The type inference rules for fst and snd are:

Γ ⊢ e : τ | S τ1, τ2 fresh

Γ ⊢ fst e : τ1 | {τ = τ1 ∗ τ2} ∪ S

Γ ⊢ e : τ | S τ1, τ2 fresh

Γ ⊢ snd e : τ2 | {τ = τ1 ∗ τ2} ∪ S

Add cases for Fst and Snd expressions according to these rules. A constraint a = b is represented in OCaml code by the pair (a, b) in a
constraint list. You can use the fresh tyvar function to generate fresh type variables.

1

https://piazza.com/class/lkwp62qwo734i9

3. (for graduate students) The type inference rules for sum types and match statements are:

Γ ⊢ e : τ1 | S τ2 fresh

Γ ⊢ inl e : τ1 + τ2 | S
Γ ⊢ e : τ2 | S τ1 fresh

Γ ⊢ inr e : τ1 + τ2 | S

Γ ⊢ e : τ | S τa, τb fresh Γ[x1 7→ τa] ⊢ e1 : τ1 | S1 Γ[x2 7→ τb] ⊢ e2 : τ2 | S2

Γ ⊢ (match e with inl x1 -> e1 | inr x2 -> e2) : τ1 | {τ = τa + τb, τ1 = τ2} ∪ S ∪ S1 ∪ S2

Add cases for Inl, Inr, and Match according to these rules.

2

	Instructions
	Type Inference

