
CS 476 – Programming
Language Design
William Mansky

Java-Like Language: Semantics

• Values: ints, objects

• How should we represent an object?

Name Value

x 3

y 5

getx() return x;

sety(n) y := n;

Point(x = 3, y = 5)

Java-Like Language: Semantics

• Values: ints, objects

• How should we represent an object?

• In general: 𝐶(𝑥1 = 𝑣1, … , 𝑥𝑛 = 𝑣𝑛) where 𝐶 is the object’s class, 𝑣1 is
the value of its field 𝑥1, etc.

― Including fields inherited from superclasses!

• We can also write 𝐶(𝑓𝑠) where 𝑓𝑠 is a map from fields to their values

Point(x = 3, y = 5) Square(side = 4) Item(type = “book”, len = 200)

Java-Like Language: Semantics

• Exercise: Fill in the rule to give semantics for field access.

𝑒. 𝑓, 𝜌 ⇓

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 fields Γ, 𝐶 = 𝜏1 𝑓1, … , 𝜏𝑛 𝑓𝑛

new 𝐶 𝑒1, … , 𝑒𝑛 , 𝜌 ⇓ 𝐶(𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛)

Java-Like Language: Semantics

𝑒, 𝜌 ⇓ 𝐶 𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛

𝑒. 𝑓𝑖 , 𝜌 ⇓ 𝑣𝑖

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 fields Γ, 𝐶 = 𝜏1 𝑓1, … , 𝜏𝑛 𝑓𝑛

new 𝐶 𝑒1, … , 𝑒𝑛 , 𝜌 ⇓ 𝐶(𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛)

Java-Like Language: Semantics

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 fields Γ, 𝐶 = 𝜏1 𝑓1, … , 𝜏𝑛 𝑓𝑛

new 𝐶 𝑒1, … , 𝑒𝑛 , 𝜌 ⇓ 𝐶(𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛)

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 𝑓𝑠 𝑓 = 𝑣

𝑒. 𝑓, 𝜌 ⇓ 𝑣

Java-Like Language: Contexts

• In IMP, the type context Γ stored function signatures and the
runtime environment 𝜌 stored function definitions

• In Java, both typing and semantics might need the whole class
declaration

Γ[𝑥1 ↦ 𝜏1, … , 𝑥𝑛 ↦ 𝜏𝑛] ⊢ 𝑐 ∶ ok

Γ ⊢ 𝜏 𝑓 𝜏1 𝑥1, … , 𝜏𝑛 𝑥𝑛 𝑐 ∶ Γ[𝑓 ↦ 𝜏 𝜏1 𝑥1, … , 𝜏𝑛 𝑥𝑛]

𝜏 𝑓 𝜏1 𝑥1, … , 𝜏𝑛 𝑥𝑛 𝑐 , 𝜌 → (skip, 𝜌 𝑓 ↦ 𝑥1, … , 𝑥𝑛 {𝑐})

Java-Like Language: Contexts

• In IMP, the type context Γ stored function signatures and the
runtime environment 𝜌 stored function definitions

• In Java, both typing and semantics might need the whole class
declaration

• Java uses type information at runtime!
― Every object is tagged with its class in memory
― Used to find fields, figure out which version of a method to call, etc.

• Vs. IMP, C, etc., where types disappear at runtime

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 fields Γ, 𝐶 = 𝜏1 𝑓1, … , 𝜏𝑛 𝑓𝑛

new 𝐶 𝑒1, … , 𝑒𝑛 , 𝜌 ⇓ 𝐶(𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛)

Functions: Semantics of Calls

• Evaluate the arguments 𝑒1, … , 𝑒𝑛

• Look up 𝑓 in 𝜌

• Execute the body of 𝑓 and produce a return value

• Assign the return value to 𝑥

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 (𝜌 𝑓 = 𝑥1, … , 𝑥𝑛 𝑐)

𝑥 = 𝑓 𝑒1, … , 𝑒𝑛 , 𝑘, 𝜌 →

(𝑐, 𝜌, 𝑥 ∷ 𝑘, 𝜌 𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛)

OO: Semantics of Methods

• Evaluate the arguments 𝑒1, … , 𝑒𝑛

• Look up 𝑓 in 𝜌

• Execute the body of 𝑓 and produce a return value

• Assign the return value to 𝑥

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 𝜌 𝑓 = 𝑥1, … , 𝑥𝑛 𝑐

𝑥 = 𝑒. 𝑚 𝑒1, … , 𝑒𝑛 , 𝑘, 𝜌 →

(𝑐, 𝜌, 𝑥 ∷ 𝑘, 𝜌 𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛)

OO: Semantics of Methods

• Evaluate the arguments 𝑒1, … , 𝑒𝑛 and the object 𝑒

• Look up 𝑚 in the methods of 𝑒’s class

• Execute the body of 𝑚 (with this set to 𝑒) and produce a
return value

• Assign the return value to 𝑥

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 𝜌 𝑓 = 𝑥1, … , 𝑥𝑛 𝑐

𝑥 = 𝑒. 𝑚 𝑒1, … , 𝑒𝑛 , 𝑘, 𝜌 →

(𝑐, 𝜌, 𝑥 ∷ 𝑘, 𝜌 𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛)

OO: Semantics of Methods

• Evaluate the arguments 𝑒1, … , 𝑒𝑛 and the object 𝑒

• Look up 𝑚 in the methods of 𝑒’s class

• Execute the body of 𝑚 (with this set to 𝑒) and produce a
return value

• Assign the return value to 𝑥

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛

(𝜌 𝑓 = 𝑥1, … , 𝑥𝑛 𝑐)

𝑥 = 𝑒. 𝑚 𝑒1, … , 𝑒𝑛 , 𝑘, 𝜌 →

(𝑐, 𝜌, 𝑥 ∷ 𝑘, 𝜌 𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛)

OO: Semantics of Methods

• Evaluate the arguments 𝑒1, … , 𝑒𝑛 and the object 𝑒

• Look up 𝑚 in the methods of 𝑒’s class

• Execute the body of 𝑚 (with this set to 𝑒) and produce a
return value

• Assign the return value to 𝑥

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛

methods Γ, 𝐶 = ⋯ , 𝜏 𝑚 𝜏1 𝑥1, … , 𝜏𝑛 𝑥𝑛 𝑐

𝑥 = 𝑒. 𝑚 𝑒1, … , 𝑒𝑛 , 𝑘, 𝜌 →

(𝑐, 𝜌, 𝑥 ∷ 𝑘, 𝜌 𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛)

OO: Semantics of Methods

• Evaluate the arguments 𝑒1, … , 𝑒𝑛 and the object 𝑒

• Look up 𝑚 in the methods of 𝑒’s class

• Execute the body of 𝑚 (with this set to 𝑒) and produce a
return value

• Assign the return value to 𝑥

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛

methods Γ, 𝐶 = ⋯ , 𝜏 𝑚 𝜏1 𝑥1, … , 𝜏𝑛 𝑥𝑛 𝑐

𝑥 = 𝑒. 𝑚 𝑒1, … , 𝑒𝑛 , 𝑘, 𝜌 →

(𝑐, 𝜌, 𝑥 ∷ 𝑘, 𝜌 this ↦ 𝐶 𝑓𝑠 , 𝑥1 ↦ 𝑣1, … , 𝑥𝑛 ↦ 𝑣𝑛)

Java-Like Language: Casts

Building build(Building model);

class School extends Building

School s = new School();

s2 = w.build((Building) s);

((School) s2).getCourse();

• Exercise: When can we cast from one class to another?

Java-Like Language: Casts

Building build(Building model);

class School extends Building

School s = new School();

s2 = w.build((Building) s);
// upcast from School to Building

((School) s2).getCourse();
// downcast from Building to School

Java-Like Language: Casts

• Upcast: always safe, doesn’t do anything

• Downcast: safe only if object actually has the right type – we
might not know until runtime

• Other casts: ??

B b = new B();

A a = (A) b;

Java-Like Language: Casts

• Upcast: always safe, doesn’t do anything

• Downcast: safe only if object actually has the right type – we
might not know until runtime

• Other casts: ??

B b = new B();

A a = (A) ((Object) b);

Java-Like Language: Casts

• Upcast: always safe, doesn’t do anything

• Downcast: safe only if object actually has the right type – we
might not know until runtime

• Other casts: never work, but users can write them anyway

B b = new B();

A a = (A) ((Object) b);
Γ ⊢ 𝑒 ∶ 𝐷 𝐷 <: 𝐶 or 𝐶 <: 𝐷

Γ ⊢ 𝐶 𝑒 ∶ 𝐶

Java-Like Language: Casts

• Upcast: always safe, doesn’t do anything

• Downcast: safe only if object actually has the right type

• At runtime, we know the object’s specific type!

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 𝐶 <: 𝐷

𝐷 𝑒 , 𝜌 ⇓ 𝐶(𝑓𝑠)

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 not 𝐶 <: 𝐷

𝐷 𝑒 , 𝜌 ⇓ ClassCastException

Java-Like Language: Syntax

CL ::= class <id> extends <id> { T <id>; …; T <id>; M … M }

M ::= T <id>(T <id>, …, T <id>){ C }

P ::= CL … CL

E ::= <#> | E + E | <id> | … | E.<id>

C ::= <id> = E | … | <id> = E.<id>(E, …, E)
 | <id> = new <id>(E, …, E)

T ::= int | <id>

Java-Like Language: Syntax

CL ::= class <id> extends <id> { T <id>; …; T <id>; M … M }

M ::= T <id>(T <id>, …, T <id>){ C }

P ::= CL … CL

E ::= <#> | E + E | <id> | … | E.<id>

C ::= <id> = E | … | <id> = E.<id>(E, …, E)
 | <id> = new <id>(E, …, E) | E.<id> = E

T ::= int | <id>

Objects vs. Values

• We said “objects are values”

Objects: Values:

Point(x = 3, y = 5) 5, true, etc.

can be stored in variables can be stored in variables

have pieces that can change can’t change

different objects can have the if the value is the same,
same values in them they’re equal

Objects vs. Values

• We said “objects are values”, but they’re also like variables!

Objects: Values:

Point(x = 3, y = 5) 5, true, etc.

can be stored in variables can be stored in variables

have pieces that can change can’t change

different objects can have the if the value is the same,
same values in them they’re equal

Java-Like Language: Mutable Objects

• Our language so far has no field-set operation!

A a1 = new A(3, 5);

A a2 = a1;

a1.x = 4;

int result = a2.x;

• Exercise: What should the value of result be?

Java-Like Language: Mutable Objects

• Our language so far has no field-set operation!

A a1 = new A(3, 5);

A a2 = a1;

a1.x = 4;

int result = a2.x; // should be 4

Java-Like Language: Mutable Objects

• Our language so far has no field-set operation!

A a1 = new A(3, 5); {a1 = A(x = 3, y = 5)}

A a2 = a1;

a1.x = 4;

int result = a2.x; // should be 4

Java-Like Language: Mutable Objects

• Our language so far has no field-set operation!

A a1 = new A(3, 5); {a1 = A(x = 3, y = 5)}

A a2 = a1; {a1 = A(x = 3, y = 5), a2 = A(x = 3, y = 5))}

a1.x = 4;

int result = a2.x; // should be 4

Java-Like Language: Mutable Objects

• Our language so far has no field-set operation!

A a1 = new A(3, 5); {a1 = A(x = 3, y = 5)}

A a2 = a1; {a1 = A(x = 3, y = 5), a2 = A(x = 3, y = 5)}

a1.x = 4; {a1 = A(x = 4, y = 5), a2 = A(x = 3, y = 5)}

int result = a2.x; // should be 4

Java-Like Language: Mutable Objects

• Our language so far has no field-set operation!

A a1 = new A(3, 5); {a1 = r1, r1 -> A(x = 3, y = 5)}

A a2 = a1; {a1 = r1, a2 = r1, r1 -> A(x = 3, y = 5)}

a1.x = 4; {a1 = r1, a2 = r1, r1 -> A(x = 4, y = 5)}

int result = a2.x; // should be 4

a1 = new A(6, 7); {a1 = r2, a2 = r1, r1 -> A(x = 4, y = 5),
 r2 -> A(x = 6, y = 7)}

• Two-level model: variables hold references, references point to values

Java-Like Language: Mutable Objects

• Split the environment 𝜌 into two levels

• Program state is now a tuple (𝑐, 𝑘, 𝜌, 𝜎) where:
― 𝑐 is the currently executing command
― 𝑘 is the call stack
― 𝜌 is the environment, mapping variables to either primitive values

(int, bool) or references
― 𝜎 is the store, mapping references to object values

Java-Like Language: Semantics

𝑒, 𝜌 ⇓ 𝐶 𝑓𝑠 𝑓𝑠 𝑓 = 𝑣

𝑒. 𝑓, 𝜌 ⇓ 𝑣

Java-Like Language: Semantics

𝑒, 𝜌, 𝜎 ⇓ 𝑟 𝜎 𝑟 = 𝐶 𝑓𝑠 𝑓𝑠 𝑓 = 𝑣

𝑒. 𝑓, 𝜌, 𝜎 ⇓ 𝑣[𝑖]

𝜌 𝑥 = 𝑣

𝑥, 𝜌, 𝜎 ⇓ 𝑣

𝑒, 𝜌, 𝜎 ⇓ 𝑣

𝑥 = 𝑒, 𝜌, 𝜎 → (skip, 𝜌 𝑥 ↦ 𝑣 , 𝜎)

Java-Like Language: Semantics

𝑒1, 𝜌 ⇓ 𝑣1 … 𝑒𝑛, 𝜌 ⇓ 𝑣𝑛 fields Γ, 𝐶 = 𝜏1 𝑓1, … , 𝜏𝑛 𝑓𝑛

new 𝐶 𝑒1, … , 𝑒𝑛 , 𝜌 ⇓ 𝐶(𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛)

Java-Like Language: Semantics

𝑒1, 𝜌, 𝜎 ⇓ 𝑣1 … 𝑒𝑛, 𝜌, 𝜎 ⇓ 𝑣𝑛

fields Γ, 𝐶 = 𝜏1 𝑓1, … , 𝜏𝑛 𝑓𝑛 𝑟 ∉ dom 𝜎

𝑥 = new 𝐶(𝑒1, … , 𝑒𝑛), 𝜌, 𝜎 →

(skip, 𝜌 𝑥 ↦ 𝑟 , 𝜎 𝑟 ↦ 𝐶 𝑓1 = 𝑣1, … , 𝑓𝑛 = 𝑣𝑛)

𝑒, 𝜌, 𝜎 ⇓ 𝑟 𝜎 𝑟 = 𝐶 𝑓𝑠 𝑒1, 𝜌, 𝜎 ⇓ 𝑣

𝑒. 𝑓 = 𝑒1, 𝜌, 𝜎 → (skip, 𝜌, 𝜎 𝑟 ↦ 𝐶(𝑓𝑠[𝑓 ↦ 𝑣])

Java-Like Language: Mutable Objects

 𝜌 (variables) 𝜎 (memory)

A a1 = new A(3, 5); {a1 = r1} {r1 -> A(x = 3, y = 5)}

A a2 = a1; {a1 = r1, a2 = r1} {r1 -> A(x = 3, y = 5)}

a1.x = 4; {a1 = r1, a2 = r1} {r1 -> A(x = 4, y = 5)}

int result = a2.x; // should be 4

a1 = new A(6, 7); {a1 = r2, a2 = r1} {r1 -> A(x = 4, y = 5),
 r2 -> A(x = 6, y = 7)}

• Two-level model: variables hold references, references point to
values

Homework 5 Overview

• Syntax: types, expressions, commands, declarations

• Records in OCaml

• Field and method lookup

• type_of and typecheck_cmd

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Java-Like Language: Semantics
	Slide 3: Java-Like Language: Semantics
	Slide 4: Java-Like Language: Semantics
	Slide 5: Java-Like Language: Semantics
	Slide 6: Java-Like Language: Semantics
	Slide 7: Java-Like Language: Contexts
	Slide 8: Java-Like Language: Contexts
	Slide 9: Functions: Semantics of Calls
	Slide 10: OO: Semantics of Methods
	Slide 11: OO: Semantics of Methods
	Slide 12: OO: Semantics of Methods
	Slide 13: OO: Semantics of Methods
	Slide 14: OO: Semantics of Methods
	Slide 15
	Slide 16: Java-Like Language: Casts
	Slide 17: Java-Like Language: Casts
	Slide 18: Java-Like Language: Casts
	Slide 19: Java-Like Language: Casts
	Slide 20: Java-Like Language: Casts
	Slide 21: Java-Like Language: Casts
	Slide 22
	Slide 23: Java-Like Language: Syntax
	Slide 24: Java-Like Language: Syntax
	Slide 25: Objects vs. Values
	Slide 26: Objects vs. Values
	Slide 27: Java-Like Language: Mutable Objects
	Slide 28: Java-Like Language: Mutable Objects
	Slide 29: Java-Like Language: Mutable Objects
	Slide 30: Java-Like Language: Mutable Objects
	Slide 31: Java-Like Language: Mutable Objects
	Slide 32: Java-Like Language: Mutable Objects
	Slide 33: Java-Like Language: Mutable Objects
	Slide 34: Java-Like Language: Semantics
	Slide 35: Java-Like Language: Semantics
	Slide 36: Java-Like Language: Semantics
	Slide 37: Java-Like Language: Semantics
	Slide 38: Java-Like Language: Mutable Objects
	Slide 39
	Slide 45
	Slide 46: Homework 5 Overview

