CS 476 — Programming
Language Design

William Mansky

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

OCaml: Variants

* Next step up from sum types: variants

inl “hi” : string + 1int inr 123 : string + int
Text “hi” : [Text : string; Num : int; ..]

* Can have any number of choices, and each one is named

e Choice (“field”) names are like OCaml constructors!

OCaml: Variants

L::=..|<ldent>L
| (match Lwith
<ldent> <ident> -> L
<ldent> <ident> -> L)
T:=..|[<ldent>0of T; ...; <ldent>of T |

F|—l3Ti
'-C;l:|[C;ofT1y;...;C;0f 145 ...;Cp OF T,]

?

' - (matchlwithC;xy > 1| ... |Cux, => 1) T

F|—l3Ti
'-C;l:|[C;ofT1y;...;C;0f 145 ...;Cp OF T,]

'-1:[C;of1y;...;C,0f T,]
MMx; 1]l W Tlx, 1] HL T
' - (matchlwithC; xy > 1| ... |Cux,=> 1) T

C vis avalue I
Cl->Cl

(matchlwithCyx; > 1| ... |CLxy,=->1,) =7

C vis avalue [= [

Cl->Cl
[- I
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match lookup gamma x with Exercise: If lookup gamma Xx
returns Some IntTy, what steps

| Some t -> subtype c t
will this program take?

| None -> false

[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match .. with
| Some t -> subtype c t
| None -> false
[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match Some IntTy with
| Some t -> subtype c t
| None -> false

[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match Some IntTy with
| Some t -> subtype c t
| None -> false

[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match Some IntTy with
| Some t -> subtype c t
| None -> false

[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match Some IntTy with

| Some t -> subtype ¢ t — [t » IntTy](subtype c t)
| None -> false
[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

match Some IntTy with

| Some t -> subtype ¢ t — subtype c IntTy
| None -> false
[-
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

OCaml: Variants

L::=..|<ldent>L
| (match Lwith
<ldent> <ident> -> L
<ldent> <ident> -> L)
T:=..|[<ldent>0of T; ...; <ldent>of T |

OCaml: Inductive Datatypes

L::=..| <ldent>L | match L with ...

TD ::= (type <ident> = <ldent>of T | ... | <ldent> of T)
T:=..|<ident>

P:=TD..1TDL

type exp = Num of int | Add of exp * exp

* Every inductive type has a name, so constructors can take the
type being declared as an argument!

C vis avalue [= [

Cl->Cl
[- I
(matchlwithC; x; > 1| ... |Cyx,, => 1) =
(matchl'withCixqy -> 11| ... | G xyy —> 1)

(match C;vwithC;y x; > 1| ... | Cx,, —> 1) = |[x; » v]l;

* We can store type definitions in the type context I
[maps variables to types, type names to definitions

lookup_constr(T,C) = (typet=Coft| ..) TkrIl:1
FFCl:t

'-1:[C;of1y;...;C,0f T,]
Flx;» 1] Fli:iT W Tlx, >t L i T
' - (matchlwithC; xy > 1| ... |Cux, => 1) T

* [has to be of a variant type
* The cases of the match should be the cases of l’s type

e Each case should return something of type
— where each case’s variable gets the type of the constructor

'+1:[C;ofTy;...;C,0f T,]
MMx; 1l FliiT W Tlxy, 1] HL T
' - (matchlwithCyxy > 1| ... |Cux,, => 1) T

* [has to be of an inductive type
* The cases of the match should be the cases of l’s type

e Each case should return something of type
— where each case’s variable gets the type of the constructor

'F1l:t F(t)=(C10FT1|...|CnO'FTn)
[x; LT Ty, L T
' - (matchlwithCy xy > 1| ... |Cux,=>1,) T

Inductive Datatypes: Summary

*In OCaml (and most other functional languages), we can
define datatypes with cases, and match on those cases

* Each datatype has a list of constructors, which build
values of the type and are the patterns we match on

* Sum types: two constructors
* Variant types: any number of constructors, not recursive

* Inductive types: any number of constructors, recursive!

— Because datatypes have names (nominal types), they can
take instances of the same type as arguments

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

PL Courses Next Semester

*CS 472: Provably Correct Programming
— Logic, functional programming, proving programs correct

*CS 473: Compiler Design
— Lexing and parsing, translation to assembly

*CS 474: Object-Oriented Languages and Environments

— Much deeper study (without inference rules) of OO
language features

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: OCaml: Variants
	Slide 3: OCaml: Variants
	Slide 4: OCaml: Variants
	Slide 5: OCaml: Variants
	Slide 6: OCaml: Variants
	Slide 7: OCaml: Variants
	Slide 8: OCaml: Variants
	Slide 9: OCaml: Variants
	Slide 10: OCaml: Variants
	Slide 11: OCaml: Variants
	Slide 12: OCaml: Variants
	Slide 13: OCaml: Variants
	Slide 14: OCaml: Variants
	Slide 15
	Slide 16: OCaml: Variants
	Slide 17: OCaml: Inductive Datatypes
	Slide 18: OCaml: Inductive Datatypes
	Slide 19: OCaml: Inductive Datatypes
	Slide 20: OCaml: Inductive Datatypes
	Slide 21: OCaml: Inductive Datatypes
	Slide 22: Inductive Datatypes: Summary
	Slide 23
	Slide 24: PL Courses Next Semester
	Slide 25

