CS 476 — Programming
Language Design

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Writing Functions on Syntax

eStep 1: write down what’s in the language in English

*Step 2: write a grammar that describes all possible
programs

eStep 3: write a datatype that abstracts the grammar

*Result: a datatype of programs in the language, so
we can write functions that operate on programs

eLet’s try it out on a programming language!

Language #1: Expressions

e Simple arithmetic and boolean operations
e Every term computes to a value, either int or bool

* Arithmetic operators: plus, minus, times
* Boolean operators: and, or, not, comparison, if-then-else

*3 + 5 * 9should compute to 48
eif 1 =0 or 1 =1 then 2 else 4 should compute to 2

Expressions: Syntax

* Arithmetic operators: plus, minus, times
* Boolean operators: and, or, not, comparison, if-then-else

Expressions: Syntax

E::=<#> type exp = Num of int
E+E|E-E|E*E Add of exp * exp | ...
<bool> Bool of bool
EandE | EorE And of exp * exp | ...
not E Not of exp
E=E Eg of exp * exp
1f Ethen Eelse E If of exp * exp * exp

Interpreters

* An interpreter is a function that takes a program and returns its
result

* One way to implement a programming language!
— Interpreted languages: Python, Javascript, JVM bytecode, ...

— Alternative to compiling
— Usually less efficient, but easier to write

e Even for compiled languages, useful as a reference
— like https://github.com/WebAssembly/spec/tree/master/interpreter

https://github.com/WebAssembly/spec/tree/master/interpreter

Expressions: Syntax

E::=<#> type exp = Num of int
E+E|E-E|E*E Add of exp * exp | ...
<bool> Bool of bool
EandE | EorE And of exp * exp | ...
not E Not of exp
E=E Eg of exp * exp
1f Ethen Eelse E If of exp * exp * exp

Expressions: Interpreter

e Every term computes to a value, either int or bool
type retval = IntVal of int | BoolVal of bool

let rec eval (e : exp) : retval = (* let rec eval e = ¥*)
match e with

Num i ->

Add (el, e2) ->

Expressions: Interpreter

e Every term computes to a value, either int or bool
type retval = IntVal of int | BoolVal of bool

let rec eval (e : exp) : retval = (* let rec eval e = ¥*)

match e with
Num i -> IntVal |

Add (el, e2) ->

e Every term computes to a value, either int or bool
type retval = IntVal of int | BoolVal of bool

let rec eval (e : exp) : retval = (* let rec eval e = ¥*)
match e with
Num i-> IntVal i

Add (el, e2) ->eval el + eval e2
Error: This expression has type retval but

an expression was expected of type int

Expressions: Interpreter

let rec eval (e : exp) : retval =
match e with
| Num i ->IntVal i
| Add (el, e2) ->
(match eval el, eval e2 with

| IntVal i1, IntVal i2 -> IntVal (i1 +i2)
->7?)

|

e Exercise: What should happen if we try to add things that
aren’t integers?

Expressions: Interpreter with Errors

let rec eval (e : exp) : retval =
match e with
| Num i ->IntVal i
| Add (el, e2) ->
(match eval el, eval e2 with
| IntVal i1, IntVal i2 -> IntVal (i1 +i2)
-> None)

type ‘a option = Some of ‘a | None

Expressions: Interpreter with Errors

let rec eval (e : exp) : retval option =
match e with
| Num i ->IntVal i
| Add (el, e2) ->
(match eval el, eval e2 with
| IntVal i1, IntVal i2 -> IntVal (i1 +i2)
|, ->None)

type ‘a option = Some of ‘a | None

Expressions: Interpreter with Errors

let rec eval (e : exp) : retval option =
match e with
| Num i -> Some (IntVal i)
| Add (el, e2) ->
(match eval el, eval e2 with
| Some (IntVal il), Some (IntVal i2) -> Some (IntVal (i1 + i2))
-> None)

type ‘a option = Some of ‘a | None

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Expressions: Interpreter with Errors

let rec eval (e : exp) : retval option =
match e with

Bool b -> Some (BoolVal b)
And (el, e2) ->
(match eval el, eval e2 with
| Some (BoolVal bl), Some (BoolVal b2) ->
Some (BoolVal (b1 && b2))
|, ->None)

Expressions: Interpreter with Errors

let rec eval (e : exp) : retval option =
match e with

Eqg (el, e2) >
(match eval el, eval e2 with
Some (IntVal il), Some (IntVal i2) -> Some (BoolVal (i1l =i2))

)

* What kinds of results should we be able to compare?

Expressions: Interpreting Comparison

let rec eval (e : exp) : retval option =
match e with

Eqg (el, e2) >
(match eval el, eval e2 with
Some vl, Some v2 -> Some (BoolVal (v1 = v2))

)

Expressions: Interpreting Comparison

let rec eval (e : exp) : retval option =
match e with

Eqg (el, e2) -> Some (BoolVal (eval el = eval e2))

e Should we be able to compare ints and bools? Should two
erroneous expressions be equal? Depends on what kind of
language we want!

Expressions: Interpreter with Errors

let rec eval (e : exp) : retval option =
match e with

If (e, el, e2) ->
(match eval e with
Some (BoolVal b) -> if b then eval el else eval e2

~ ->None)

Expressions: Int-only Interpreter

let rec eval (e : exp) :int =
match e with
Num i -> |
Add (el, e2) ->eval el + eval e2
Bool b ->ifbthen1elseO

If (e, el, e2) ->if eval e <> 0 then eval el else eval e2

e Simpler interpreter, but behavior may surprise programmers!

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Writing Functions on Syntax
	Slide 3: Language #1: Expressions
	Slide 4: Expressions: Syntax
	Slide 5: Expressions: Syntax
	Slide 6: Interpreters
	Slide 7: Expressions: Syntax
	Slide 8: Expressions: Interpreter
	Slide 9: Expressions: Interpreter
	Slide 10: Expressions: Interpreter
	Slide 11: Expressions: Interpreter
	Slide 12: Expressions: Interpreter with Errors
	Slide 13: Expressions: Interpreter with Errors
	Slide 14: Expressions: Interpreter with Errors
	Slide 15
	Slide 16: Expressions: Interpreter with Errors
	Slide 17: Expressions: Interpreter with Errors
	Slide 18: Expressions: Interpreting Comparison
	Slide 19: Expressions: Interpreting Comparison
	Slide 20: Expressions: Interpreter with Errors
	Slide 21: Expressions: Int-only Interpreter
	Slide 22

