
CS 476 – Programming
Language Design
William Mansky

Functional Programming

• Functions are the basic unit of computation

• Functions are values! (“first-class functions”)
― Functions can take functions as arguments, return functions, etc.

• Immutable variables by default

• Everything is an expression, state changes (“side effects”) are
specially marked

• Usually contrasted with imperative languages

• Examples: F#, OCaml, Lisp, Haskell, lambda-expressions

The First Functional Language

• Functional languages are older than computers!

• The lambda calculus was invented as a mathematical model of
“what can be computed”, and it consists entirely of functions

Math notation Lambda calculus OCaml

𝑓 𝑥 = 𝑥 + 1 𝜆𝑥. 𝑥 + 1 fun x -> x + 1

𝑔 𝑥, 𝑦 = 𝑦 𝜆𝑥. 𝜆𝑦. 𝑦 fun x y -> y

Multi-Argument Functions

• Math notation: 𝑔 𝑥, 𝑦 = 𝑥 + 𝑦

 𝑔 1, 2 returns 3

• OCaml notation: fun x y -> x + y

 (fun x y -> x + y) 1 2 returns 3

• What about: (fun x y -> x + y) 1

 (fun x y -> x + y) 1 returns (fun y -> 1 + y)

Multi-Argument Functions

• Math notation: 𝑔 𝑥, 𝑦 = 𝑥 + 𝑦

 𝑔 1, 2 returns 3

• OCaml notation: fun x y -> x + y

 (fun x y -> x + y) 1 2 returns 3

• What about: (fun x y -> x + y) 1

 (fun x y -> x + y) 1 returns (fun y -> 1 + y)

 And then (fun y -> 1 + y) 2 returns 3

Multi-Argument Functions

• OCaml notation: fun x y -> x + y

 (fun x y -> x + y) 1 2 returns 3

• What about: (fun x y -> y) 1

 (fun x y -> x + y) 1 returns (fun y -> 1 + y)

 And then (fun y -> 1 + y) 2 returns 3

• (fun x y -> x + y) 1 2 is actually ((fun x -> (fun y -> x + y)) 1) 2

 “Apply this function to 1, get back another function, and then
apply that new function to 2”

Multi-Argument Functions

• (fun x y -> x + y) 1 2 is actually ((fun x y -> x + y) 1) 2

 “Apply this function to 1, get back another function, and then
apply that new function to 2”

• This is called “currying”: to make a function that takes multiple
arguments, write a function that returns another function!

• In lambda calculus, we write the same function as 𝜆𝑥. (𝜆𝑦. 𝑥 + 𝑦)

Lambda Calculus Basics

• Functions are values, and functions are the only values!

• No declarations, no lets, just anonymous functions

• A function has two parts:

• Functions can be applied to other terms (also functions)

• Application is evaluated by replacing the bound variable with
the argument in the body

𝜆𝑥. (𝜆𝑦. 𝑥) 𝑧

𝜆 𝑥 . 𝐵

argument name
“bound variable”

body (any term, can contain 𝑥)

Lambda Calculus Basics

• Functions are values, and functions are the only values!

• No declarations, no lets, just anonymous functions

• A function has two parts:

• Functions can be applied to other terms (also functions)

• Application is evaluated by replacing the bound variable with
the argument in the body

𝜆𝑥. (𝜆𝑦. 𝑥) 𝑧 → 𝜆𝑦. 𝑥 with 𝑥 replaced by 𝑧

𝜆 𝑥 . 𝐵

argument name
“bound variable”

body (any term, can contain 𝑥)

Lambda Calculus Basics

• Functions are values, and functions are the only values!

• No declarations, no lets, just anonymous functions

• A function has two parts:

• Functions can be applied to other terms (also functions)

• Application is evaluated by replacing the bound variable with
the argument in the body

𝜆𝑥. (𝜆𝑦. 𝑥) 𝑧 → 𝜆𝑦. 𝑥 with 𝑥 replaced by 𝑧 i.e., 𝜆𝑦. 𝑧

𝜆 𝑥 . 𝐵

argument name
“bound variable”

body (any term, can contain 𝑥)

Variable Binding

int f(int x){ return x + 1; }

int x = 5;

f(x + 2);

Lambda Calculus: Binding and Scope

• 𝜆𝑥. 𝐵 binds 𝑥 in 𝐵

• In other words, wherever 𝑥 appears in 𝐵, it means “the
argument passed to this function”

• Each variable refers to the innermost 𝜆-binding around it

𝜆𝑥. 𝜆𝑥. 𝑥 𝜆𝑥. 𝑥 𝑥 𝑥

• A variable that is not bound is free, like 𝑦 in 𝜆𝑥. 𝑦 𝑥

Lambda Calculus: Renaming

• The name of the argument to a function doesn’t really matter

• 𝜆𝑥. 𝑥 is the same as 𝜆𝑦. 𝑦

• We can always rename a bound variable

𝜆𝑥. 𝜆𝑥. 𝑥 𝜆𝑥. 𝑥 𝑥 𝑥

Lambda Calculus: Renaming

• The name of the argument to a function doesn’t really matter

• 𝜆𝑥. 𝑥 is the same as 𝜆𝑦. 𝑦

• We can always rename a bound variable

𝜆𝑥. 𝜆𝑥. 𝑥 𝜆𝑦. 𝑦 𝑦 𝑥

Lambda Calculus: Renaming

• The name of the argument to a function doesn’t really matter

• 𝜆𝑥. 𝑥 is the same as 𝜆𝑦. 𝑦

• We can always rename a bound variable

• Renaming (sometimes called “alpha-conversion”) shouldn’t
change the behavior of a function

𝜆𝑥. 𝜆𝑧. 𝑧 𝜆𝑦. 𝑦 𝑦 𝑥

Lambda Calculus: Syntax

L ::= <ident> | 𝜆<ident>. L | L L

• Everything is a function, so there are no interesting types
― Every function takes a function and returns a function

• The only kind of term that steps to anything is application
― So the only question for semantics is “how do we apply a function

to an argument?”

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• Exercise: 𝜆𝑥. 𝜆𝑦. 𝑥 𝜆𝑧. 𝑧 evaluates to
[𝑥 ↦ 𝜆𝑧. 𝑧] 𝜆𝑦. 𝑥 which is 𝜆𝑦. 𝜆𝑧. 𝑧

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• Exercise: 𝜆𝑥. 𝜆𝑦. 𝑥 𝑧 evaluates to ?

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑥 𝜆𝑧. 𝑧 evaluates to
[𝑥 ↦ 𝜆𝑧. 𝑧] 𝜆𝑦. 𝑥 which is 𝜆𝑦. 𝜆𝑧. 𝑧

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑥 𝑧 evaluates to [𝑥 ↦ 𝑧](𝜆𝑦. 𝑥) which is 𝜆𝑦. 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑦 𝑧 evaluates to

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑥 𝑧 evaluates to 𝜆𝑦. 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑦 𝑧 evaluates to 𝜆𝑦. 𝑦

• 𝜆𝑥. 𝑥 𝜆𝑦. 𝑦 𝑧 evaluates to

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑥 𝑧 evaluates to 𝜆𝑦. 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑦 𝑧 evaluates to 𝜆𝑦. 𝑦

• 𝜆𝑥. 𝑥 𝜆𝑦. 𝑦 𝑧 evaluates to 𝑧 (𝜆𝑦. 𝑦)

• 𝜆𝑥. 𝑥 𝜆𝑥. 𝑥 𝑧 evaluates to

Lambda Calculus: Substitution

• In general, 𝜆𝑥. 𝑙 𝑙2 evaluates to 𝑥 ↦ 𝑙2 𝑙
(“𝑙 with 𝑙2 substituted for 𝑥”)

• 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑥 𝑧 evaluates to 𝜆𝑦. 𝑧

• 𝜆𝑥. 𝜆𝑦. 𝑦 𝑧 evaluates to 𝜆𝑦. 𝑦

• 𝜆𝑥. 𝑥 𝜆𝑦. 𝑦 𝑧 evaluates to 𝑧 (𝜆𝑦. 𝑦)

• 𝜆𝑥. 𝑥 𝜆𝑥. 𝑥 𝑧 evaluates to 𝑧 (𝜆𝑥. 𝑥)

Lambda Calculus: Syntax

L ::= <ident> | 𝜆<ident>. L | L L

Lambda Calculus: Semantics

L ::= <ident> | 𝜆<ident>. L | L L

• Functions are values

Lambda Calculus: Semantics

L ::= <ident> | 𝜆<ident>. L | L L

•𝜆𝑥. 𝑙 is a value

•Application is evaluated by substitution

• 𝑥 ↦ 𝑙2 𝑙 means “replace all the 𝑥’s in 𝑙 with 𝑙2”

𝜆𝑦. 𝜆𝑥. 𝑥 𝑦 𝑧 evaluates to 𝑦 ↦ 𝑧 𝜆𝑥. 𝑥 𝑦

which is 𝜆𝑥. 𝑥 𝑧

Lambda Calculus: Semantics

L ::= <ident> | 𝜆<ident>. L | L L

•𝜆𝑥. 𝑙 is a value

• “Call by name”

𝜆𝑥. 𝑙 𝑙2 → 𝑥 ↦ 𝑙2 𝑙

𝑙1 → 𝑙1
′

𝑙1 𝑙2 → 𝑙1
′ 𝑙2

Lambda Calculus: Semantics

L ::= <ident> | 𝜆<ident>. L | L L

• “Call by value”

𝜆𝑥. 𝑙 𝑣 → 𝑥 ↦ 𝑣 𝑙

𝑙1 → 𝑙1
′

𝑙1 𝑙2 → 𝑙1
′ 𝑙2

𝑙2 → 𝑙2
′

𝑣 𝑙2 → 𝑣 𝑙2
′

Call-By-Name vs. Call-By-Value

𝜆𝑥. (𝜆𝑦. 𝑦) 𝑙 where 𝑙 becomes a value in 10 steps

Call-by-name: “evaluate the arg when it’s used”
→ (𝜆𝑦. 𝑦)

Call-by-value: “evaluate the arg when it’s passed”
→ 𝜆𝑥. (𝜆𝑦. 𝑦) 𝑙1 → 𝜆𝑥. (𝜆𝑦. 𝑦) 𝑙2 → ⋯ → 𝜆𝑥. (𝜆𝑦. 𝑦) 𝑣
→ (𝜆𝑦. 𝑦)

Call-By-Name vs. Call-By-Value

𝜆𝑥. (𝜆𝑦. 𝑦) 𝑙 where 𝑙 runs forever
𝜆𝑥. (𝑥 𝑥) 𝜆𝑥. (𝑥 𝑥) → [𝑥 ↦ (𝜆𝑥. 𝑥 𝑥)](𝑥 𝑥)

which is 𝜆𝑥. (𝑥 𝑥) 𝜆𝑥. (𝑥 𝑥) !

Call-by-name:
→ (𝜆𝑦. 𝑦)

Call-by-value:
→ 𝜆𝑥. (𝜆𝑦. 𝑦) 𝑙 → 𝜆𝑥. (𝜆𝑦. 𝑦) 𝑙 → ⋯

Call-By-Name vs. Call-By-Value

𝜆𝑥. … 𝑥 … 𝑥 … 𝑙 where 𝑙 becomes a value in 10 steps

Call-by-name:
→ … 𝑙 … 𝑙 … → … 𝑙1 … 𝑙 … → … 𝑣 … 𝑙 … → … 𝑣 … 𝑙1 … → ⋯

Call-by-value:
→ 𝜆𝑥. … 𝑥 … 𝑥 … 𝑙1 → ⋯ → 𝜆𝑥. … 𝑥 … 𝑥 … 𝑣 → … 𝑣 … 𝑣 …

Lambda Calculus and Computability

 What can be computed?

𝜆𝑥. (𝜆𝑦. 𝑥 𝑦) 𝜆𝑧. 𝑧

Church, 1936 Turing, 1936

“Turing-complete”

Why Functional Programming?

• Lambda calculus has some unusual ideas:
― Explicit variable binding
― Evaluation by substitution
― Minimal shared context between functions

• This is useful for theory:
― Closer to mathematical functions
― Very simple semantics
― Variable binding, scope, etc. is actually the same as in other

languages, but lambda calculus lets us see it more directly

Why Functional Programming?

• Lambda calculus has some unusual ideas:
― Explicit variable binding
― Evaluation by substitution
― Minimal shared context between functions

• This is useful for theory

• And in practice!
― Programs closer to on-paper task descriptions
― Parallelizes very well (no shared state, mostly pure math)
― Functions as data is useful (most modern languages have lambdas)

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Functional Programming
	Slide 3: The First Functional Language
	Slide 4: Multi-Argument Functions
	Slide 5: Multi-Argument Functions
	Slide 6: Multi-Argument Functions
	Slide 7: Multi-Argument Functions
	Slide 8
	Slide 9: Lambda Calculus Basics
	Slide 10: Lambda Calculus Basics
	Slide 11: Lambda Calculus Basics
	Slide 12: Variable Binding
	Slide 13: Lambda Calculus: Binding and Scope
	Slide 14: Lambda Calculus: Renaming
	Slide 15: Lambda Calculus: Renaming
	Slide 16: Lambda Calculus: Renaming
	Slide 17
	Slide 18: Lambda Calculus: Syntax
	Slide 19: Lambda Calculus: Substitution
	Slide 20: Lambda Calculus: Substitution
	Slide 21: Lambda Calculus: Substitution
	Slide 22: Lambda Calculus: Substitution
	Slide 23: Lambda Calculus: Substitution
	Slide 24: Lambda Calculus: Substitution
	Slide 25: Lambda Calculus: Substitution
	Slide 26: Lambda Calculus: Substitution
	Slide 42: Lambda Calculus: Syntax
	Slide 43: Lambda Calculus: Semantics
	Slide 44: Lambda Calculus: Semantics
	Slide 45: Lambda Calculus: Semantics
	Slide 46: Lambda Calculus: Semantics
	Slide 47: Call-By-Name vs. Call-By-Value
	Slide 48: Call-By-Name vs. Call-By-Value
	Slide 49: Call-By-Name vs. Call-By-Value
	Slide 50: Lambda Calculus and Computability
	Slide 51
	Slide 52: Why Functional Programming?
	Slide 53: Why Functional Programming?

