CS 476 — Programming
Language Design

William Mansky

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Functional Programming

* Functions are the basic unit of computation

e Functions are values! (“first-class functions”)
— Functions can take functions as arguments, return functions, etc.

e Immutable variables by default

* Everything is an expression, state changes (“side effects”) are
specially marked

e Usually contrasted with imperative languages
e Examples: F#, OCaml, Lisp, Haskell, [ambda-expressions

The First Functional Language

e Functional languages are older than computers!

 The lambda calculus was invented as a mathematical model of
“what can be computed”, and it consists entirely of functions

Math notation Lambda calculus OCaml|
fx)=x+1 Ax.x + 1 funx ->x+1

glx,y) =y Ax. (1y.y) funxy->vy

Multi-Argument Functions

* Math notation: g(x,y) = x + vy
g(1,2) returns 3

 OCaml notation: funxy ->x+vy
(funxy->x+vy)12returns 3

* What about: (funxy->x+vy)1
(funxy->x+vy)1returns (funy->1+vy)

Multi-Argument Functions

* Math notation: g(x,y) = x + vy
g(1,2) returns 3

 OCaml notation: funxy ->x+vy
(funxy->x+vy)12returns 3

* What about: (funxy->x+vy)1
(funxy->x+vy)1returns (funy->1+vy)
And then (funy->1+vy) 2 returns 3

Multi-Argument Functions

e OCaml notation: funxy ->x+vy
(funxy->x+vy)12returns 3

* What about: (funxy->vy) 1
(funxy->x+vy)lreturns (funy->1+y)
And then (funy ->1+vy) 2 returns 3

e (funxy->x+vy)12isactually ((funx->(funy->x+vy)) 1) 2

“Apply this function to 1, get back another function, and then
apply that new function to 2”

Multi-Argument Functions

e (funxy->x+vy)12isactually ((funxy->x+vy)1)2

“Apply this function to 1, get back another function, and then
apply that new function to 2”

* This is called “currying”: to make a function that takes multiple
arguments, write a function that returns another function!

* In lambda calculus, we write the same function as Ax. (Ay.x + y)

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lambda Calculus Basics

e Functions are values, and functions are the only values!
* No declarations, no lets, just anonymous functions
A function hastwoparts: A x . B

i

argument name body (any term, can contain x)
“bound variable”

e Functions can be applied to other terms (also functions)

e Application is evaluated by replacing the bound variable with
the argument in the body

(Ax. (Ay.x)) z

e Functions are values, and functions are the only values!
* No declarations, no lets, just anonymous functions
A function hastwoparts: A x . B

argument name body (any term, can contain x)
“bound variable”

e Functions can be applied to other terms (also functions)

e Application is evaluated by replacing the bound variable with
the argument in the body

(Ax. (Ay.x)) z = (Ay.x) with x replaced by z

e Functions are values, and functions are the only values!
* No declarations, no lets, just anonymous functions
A function hastwoparts: A x . B

argument name body (any term, can contain x)
“bound variable”

e Functions can be applied to other terms (also functions)

e Application is evaluated by replacing the bound variable with
the argument in the body

(Ax. (Ay.x)) z = (Ay.x) with x replaced by z i.e., Ay.z

Variable Binding

int f(int x){ return x + 1; }

.

int x = 5;
f(x + 2);

Lambda Calculus: Binding and Scope

e A\x.B binds x in B

* In other words, wherever x appears in B, it means “the
argument passed to this function”

e Each variable refers to the innermost A-binding around it

Ax. ((/bc x (Ax. x x)) x)

YV YW

* A variable that is not bound is free, like y in Ax.y x

Lambda Calculus: Renaming

* The name of the argument to a function doesn’t really matter

* Ax.x isthe same as Ay.y
* We can always rename a bound variable

Lambda Calculus: Renaming

* The name of the argument to a function doesn’t really matter

* Ax.x isthe same as Ay.y
* We can always rename a bound variable

Ax. ((Ax x (Ay.yy)) x)
v

Lambda Calculus: Renaming

* The name of the argument to a function doesn’t really matter

* Ax.x isthe same as Ay.y
* We can always rename a bound variable

Ax. ((AZ. z(Ay.yy)) x)

D UV P

* Renaming (sometimes called “alpha-conversion”) shouldn’t
change the behavior of a function

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lambda Calculus: Syntax

L ::=<ident> | A<ident>.L | LL

e Everything is a function, so there are no interesting types
— Every function takes a function and returns a function

* The only kind of term that steps to anything is application

— So the only question for semantics is “how do we apply a function
to an argument?”

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z

* Exercise: (/1x. (Ay. x)) (Az. z) evaluates to
[x = (Az.2)](Ay. x) which is ()[y. (Az. Z))

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z

* Exercise: (/bc. (Ay. x)) Z evaluates to ?

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z

: (Ax. (Ay. x)) (Az.z) evaluates to
[x = (Az.2)](Ay. x) which is ()[y. (Az. Z))

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z
* (Ax. (Ay.x)) z evaluates to [x + z](Ay.x) whichis 1y.z
. (Ax. (Ay. y)) z evaluates to

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z
: (xlx. (Ay. x)) z evaluates to Ay. z
. (xlx. (Ay. y)) Z evaluates to Ay. y

. (/lx. (x (Ay. y))) Z evaluates to

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z
: (xlx. (Ay. x)) z evaluates to Ay. z
. (xlx. (1y.y)) z evaluates to 1y.y

. (/lx. (x (Ay. y))) z evaluates to z (1y.y)
g (Ax. (x (Ax. x))) Z evaluates to

Lambda Calculus: Substitution

* In general, (Ax. 1) I, evaluates to [x — [,]l
(“l with [, substituted for x”)

* (Ax.x) z evaluates to z
: (xlx. (Ay. x)) z evaluates to Ay. z
. (xlx. (1y.y)) z evaluates to 1y.y

. (/lx. (x (Ay. y))) z evaluates to z (1y.y)
. (Ax. (x (Ax. x))) z evaluates to z (Ax. x)

Lambda Calculus: Syntax

L ::=<ident> | A<ident>.L | LL

Lambda Calculus: Semantics

L ::=<ident> | A<ident>.L | LL

e Functions are values

Lambda Calculus: Semantics

L ::=<ident> | A<ident>.L | LL

*Ax.l is avalue
* Application is evaluated by substitution
* [x = [,]l means “replace all the x’s in [with 1,,”

(Ay. (Ax.x y)) z evaluates to [y — z](Ax.x y)
which is (Ax. x z)

Lambda Calculus: Semantics

L ::=<ident> | A<ident>.L | LL

e Ax.l is a value

ll lz — li lz (/LX l) lz — [X = lz]l

e “Call by name”

Lambda Calculus: Semantics

L ::=<ident> | A<ident>.L | LL

v, - vl (Ax.D) v - [x » v]l

* “Call by value”

Call-By-Name vs. Call-By-Value

(Ax. (Ay.y)) [where [becomes a value in 10 steps

Call-by-name: “evaluate the arg when it’s used”
— (4y.y)
Call-by-value: “evaluate the arg when it’s passed”

- Ax.Ay.y) L » Ax.(Ay.y)) I - > (Ax.(Ay.y)) v
- (Ay.y)

Call-By-Name vs. Call-By-Value

(Ax. (Ay.y)) L where [runs forever
(Ax. (x x)) (Ax. (x x)) = [x » (Ax. (x x))](x x)
which is (Ax. (x x)) (Ax. (x x))!

Call-by-name:
- (Ay.y)

Call-by-value:
- (Ax.Ay.y)) - Ax. Ay.y) [> -

Call-By-Name vs. Call-By-Value

(Ax...x ... x...) L where [becomes a value in 10 steps

Call-by-name:
- Wl -> Ll - vl vl

Call-by-value:
- Ax...x.x.)l{-> > Ax.x.x.)V >

Lambda Calculus and Computability

What can be computed?

“Turing-complete”

Church, 1936 Turing, 1936

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Why Functional Programming?

e Lambda calculus has some unusual ideas:
— Explicit variable binding
— Evaluation by substitution
— Minimal shared context between functions

* This is useful for theory:
— Closer to mathematical functions
— Very simple semantics

— Variable binding, scope, etc. is actually the same as in other
languages, but lambda calculus lets us see it more directly

Why Functional Programming?

e Lambda calculus has some unusual ideas:
— Explicit variable binding
— Evaluation by substitution
— Minimal shared context between functions

* This is useful for theory

* And in practice!
— Programs closer to on-paper task descriptions
— Parallelizes very well (no shared state, mostly pure math)
— Functions as data is useful (most modern languages have lambdas)

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Functional Programming
	Slide 3: The First Functional Language
	Slide 4: Multi-Argument Functions
	Slide 5: Multi-Argument Functions
	Slide 6: Multi-Argument Functions
	Slide 7: Multi-Argument Functions
	Slide 8
	Slide 9: Lambda Calculus Basics
	Slide 10: Lambda Calculus Basics
	Slide 11: Lambda Calculus Basics
	Slide 12: Variable Binding
	Slide 13: Lambda Calculus: Binding and Scope
	Slide 14: Lambda Calculus: Renaming
	Slide 15: Lambda Calculus: Renaming
	Slide 16: Lambda Calculus: Renaming
	Slide 17
	Slide 18: Lambda Calculus: Syntax
	Slide 19: Lambda Calculus: Substitution
	Slide 20: Lambda Calculus: Substitution
	Slide 21: Lambda Calculus: Substitution
	Slide 22: Lambda Calculus: Substitution
	Slide 23: Lambda Calculus: Substitution
	Slide 24: Lambda Calculus: Substitution
	Slide 25: Lambda Calculus: Substitution
	Slide 26: Lambda Calculus: Substitution
	Slide 42: Lambda Calculus: Syntax
	Slide 43: Lambda Calculus: Semantics
	Slide 44: Lambda Calculus: Semantics
	Slide 45: Lambda Calculus: Semantics
	Slide 46: Lambda Calculus: Semantics
	Slide 47: Call-By-Name vs. Call-By-Value
	Slide 48: Call-By-Name vs. Call-By-Value
	Slide 49: Call-By-Name vs. Call-By-Value
	Slide 50: Lambda Calculus and Computability
	Slide 51
	Slide 52: Why Functional Programming?
	Slide 53: Why Functional Programming?

