
CS 476/MCS 415:
Programming Language
Design
https://www.cs.uic.edu/~mansky/teaching/cs476/fa23/

https://www.cs.uic.edu/~mansky/teaching/cs476/fa23/

Welcome!

• This is CS 476/MCS 415, Programming Language Design

• I’m glad you’re here!

• Meets MWF 10:00-10:50 AM in BH 208

• Office hours 2:00 Monday and Friday in SEO 1331 (me), 1:00
Wednesday and 11:00 Thursday in ??? (TA), and by
appointment, in-person and on Zoom via Blackboard

― Office hours are great for homework help!

Course Overview

• Professor: William Mansky (he/him) (mansky1@uic.edu)

• TA: Joseph Wiseman (he/him) (jwisem6@uic.edu)

• Prerequisites: CS 341 (functional programming), CS 151 (logic
and proofs)

• Website: https://www.cs.uic.edu/~mansky/teaching/cs476/fa23/

• Anonymous in-class questions: https://pollev.com/wmansky771

• Lectures recorded via Zoom on Blackboard

• Discussion board on Piazza, assignments via Gradescope

mailto:mansky1@uic.edu
mailto:jwisem6@uic.edu
https://www.cs.uic.edu/~mansky/teaching/cs476/fa23/
https://pollev.com/wmansky771
piazza.com/uic/fall2023/cs476
https://www.gradescope.com/

Asking questions

• In class: raise your hand anytime

• You can ask questions anonymously with PollEverywhere
(https://pollev.com/wmansky771)

• On Piazza
― Can ask/answer anonymously
― Can post privately to instructors
― Can answer other students’ questions

• In office hours

• If you have a question, someone else probably has the same
question!

https://pollev.com/wmansky771
piazza.com/uic/fall2023/cs476

Programming Language Design

• Up till now, you’ve interacted with PLs as users

• We’ll look at PLs as designers (how should the language work?)
and implementers (how do we get a computer to run it?)

• We’ll look at different kinds of languages and features
(imperative, OO, functional, pointers, concurrency, etc.) and
figure out how to describe them, and what choices we can
make about how they work!

Structure of a language

• Syntax
― Concrete: what do programs look like?
― Abstract: what are the pieces of a program?

• Semantics
― Static: which programs make sense?
― Dynamic: what do programs do when we run them?

• Pragmatics
― Implementation: how can we actually make the semantics happen?
― IDE, tool support, etc.

Metalanguages

• We want to describe how programming languages should work

• We need a metalanguage: a language for talking about
programming languages

• Metalanguage 1: English (or other natural language)

“The code x := y + z sets the value of x to the value of y
plus the value of z.”

Metalanguages: Natural Language

• Metalanguage 1: English (or other natural language)

“The code x := y + z sets the value of x to the value of y
plus the value of z.”

• Pros: intuitive, familiar, easy to write

• Cons: ambiguous, informal

Metalanguages: Inference Rules

• Metalanguage 2: mathematical logic

• Pros: precise, formal

• Cons: hard to read and write (we’ll work on that!), hard to
apply to real programs

𝑒, 𝜎 ⇓ 𝑣

𝑥 ≔ 𝑒, 𝜎 ⇓ 𝜎[𝑥 ↦ 𝑣]

“If the value of 𝑒 is 𝑣…”

“then 𝑥 ≔ 𝑒 sets 𝑥 to 𝑣.”

Metalanguages: Interpreters

• Metalanguage 3: the OCaml programming language

match s with
| Assign x e => update env x (eval env e)

• Pros: precise, executable, designed to describe programming
languages

• Cons: can be tricky to write (we’ll work on that!), has to
produce a single answer

Metalanguages

• We want to describe how languages should work, and write
code that actually runs those languages

• Natural language: “x := y + z sets x to be y plus z”

• Inference rules:

• OCaml: match s with
 | Assign x e => update env x (eval env e)

• We’ll learn to translate between these three metalanguages!

𝑒, 𝜎 ⇓ 𝑣

𝑥 ≔ 𝑒, 𝜎 ⇓ 𝜎[𝑥 ↦ 𝑣]

Course outline

• Syntax: grammars, abstract syntax

• Operational semantics and interpreters

• Type systems: checking, inference, safety

• Language types: imperative, functional, OO, logic, …

• Extra features: exceptions, concurrency, …

In-Class Exercises

• One question every class, submitted through Gradescope

• Answer them in class if you attend live, or whenever you watch the
lecture (within 7 days) if you’re watching the recordings

• You don’t have to get them right to get credit! Just give your best
guess.

• course code Y732V4

• Today’s exercise: What’s one question about programming
languages you’d like to be able to answer by the end of this course?

Textbook

• Types and Programming Languages, Pierce, 2002

• Available online through the library, so
you don’t need to buy it

http://proxy.cc.uic.edu/login?url=https://ieeexplore-ieee-org.proxy.cc.uic.edu/xpl/bkabstractplus.jsp?bkn=6267321

Grading

• In-class exercises: 25%

• Assignments: 60%

• Final project: 15%

• Participation: up to 5% extra credit (asking questions in class,
posting on Piazza, etc.)

• Final grades will be curved (but only up)

Assignments

• Programming assignments in OCaml: write an interpreter for a
language/feature, implement a type checker, etc.

• Written homework: try out logical systems, write proofs about
programs

• Each assignment will be submitted twice
― First submission: write as much as you can; you’ll receive full credit as

long as you submit anything, and I’ll give you feedback
― Second submission: I’ll actually test your code/check your work and

grade you on correctness

• Collaboration encouraged, but you must write up your own
solution, and cite all sources (websites, collaborators, etc.)

• Submitted and returned via Gradescope (course code Y732V4)

https://www.gradescope.com/

The OCaml Programming Language

• OCaml: a functional language in the ML (“metalanguage”)
family

― ML family also includes SML, F#, F*, etc.
― Designed to operate on elements of programming languages

• Strongly-typed functional language with references, based on
lambda calculus with pattern-matching

OCaml: The Read-Eval-Print Loop (REPL)

• You can run code without installing at https://try.ocamlpro.com/

• (demo)

• Can also be compiled

https://try.ocamlpro.com/

HW1 – Getting Started with OCaml

• Posted on the course website

• Set up your OCaml programming environment and write some
simple functions in OCaml

• First submission due Thursday 8/24 at 11:59 PM
― Do as much as you can, get feedback on where you got stuck!

• Submit via Gradescope

https://www.cs.uic.edu/~mansky/teaching/cs476/fa23/homework1.html
https://www.gradescope.com/

Tuples and Functions

let p1 = (4, "hi");;
(* p1 has type “int * string” *)

let p2 = (3, 5, 2);;
(* p2 has type “int * int * int” *)

let incr x y = (x + 1, y + 2);;
(* incr has type “int -> int -> int * int” *)

incr 5 6;;
(* returns (6, 8) *)

Inductive Data Types

• Define a type by giving a list of cases

type season = Spring | Summer | Fall | Winter

example values: Summer Fall

type value = Intval of int | Stringval of string

 | Floatval of float

example values: Intval 3 Stringval “hi!”

type intlist = Nil | Cons of int * intlist

example values: Nil Cons (1, Nil)
 Cons (1, Cons (2, Cons (3, Nil)))

Pattern-Matching and Recursion

type season = Spring | Summer | Fall | Winter

let get_temp s =

 match s with

 | Spring -> 70

 | Summer -> 80

 | Fall -> 70

 | Winter -> 30

Pattern-Matching and Recursion

type value = Intval of int | Stringval of string

 | Floatval of float

let print_val v =

 match v with

 | Intval i ->

 | Stringval s ->

 | Floatval f ->

• i, s, f are new variables declared in the match cases

Pattern-Matching and Recursion

type value = Intval of int | Stringval of string

 | Floatval of float

let print_val v =

 match v with

 | Intval i -> print_int i

 | Stringval s -> print_string s

 | Floatval f -> print_float f

• i, s, f are new variables declared in the match cases

Pattern-Matching and Recursion

type intlist = Nil | Cons of int * intlist

let rec length l =

 match l with

 | Nil -> 0

 | Cons (i, rest) -> length rest + 1

Common OCaml Errors

• This expression has type ... but is here used with type ...

let add1 x = x + 1;;

add1 “hi”;;

Common OCaml Errors

• This expression has type ... but is here used with type ...

let add1 x = x + 1;;

add1 “hi”;;

Error: This expression has type string but an expression was expected of
type int

• Think about which of those types is wrong!

Common OCaml Errors

• This expression has type ... but is here used with type ...

let add1 (x : string) = x ^ “1”;;

add1 “hi”;;

(* returns “hi1” *)

• Think about which of those types is wrong!

Common OCaml Errors

• This pattern-matching is not exhaustive

type value = Intval of int | Stringval of string

 | Floatval of float

let print_val v =

 match v with

 | Intval i -> print_int i

 | Stringval s -> print_string s

Warning: this pattern matching is not exhaustive.
Here is an example of a case that is not matched: Floatval _

Common OCaml Errors

• This match case is unused

type intlist = Nil | Cons of int * intlist

let rec length l =

 match l with

 | Nil -> 0

 | Cons (i, rest) -> length rest + 1

 | Cons (j, rest) -> length rest + 2

Common OCaml Errors

• This match case is unused

type intlist = Nil | Cons of int * intlist

let rec length l =

 match l with

 | Nil -> 0

 | Cons (i, rest) -> length rest + 1

 | Cons (j, rest) -> length rest + 2

Warning: this match case is unused

Common OCaml Errors

• This match case is unused

type intlist = Nil | Cons of int * intlist

let rec length l =

 match l with

 | nil -> 0

 | Cons (i, rest) -> length rest + 1

Warning: this match case is unused

Constructors start with capital letters,
variables start with lowercase letters!

every argument matches this case

Common OCaml Errors

• This expression has type ... but is here used with type ...

• This pattern-matching is not exhaustive

• This match case is unused

• For more, see
https://www2.ocaml.org/learn/tutorials/common_error_messages.html

https://www2.ocaml.org/learn/tutorials/common_error_messages.html

	Slide 0: CS 476/MCS 415: Programming Language Design
	Slide 1: Welcome!
	Slide 2: Course Overview
	Slide 3: Asking questions
	Slide 4
	Slide 5: Programming Language Design
	Slide 6: Structure of a language
	Slide 7: Metalanguages
	Slide 8: Metalanguages: Natural Language
	Slide 9: Metalanguages: Inference Rules
	Slide 10: Metalanguages: Interpreters
	Slide 11: Metalanguages
	Slide 12
	Slide 13: Course outline
	Slide 14: In-Class Exercises
	Slide 15: Textbook
	Slide 16: Grading
	Slide 17: Assignments
	Slide 18
	Slide 19: The OCaml Programming Language
	Slide 20: OCaml: The Read-Eval-Print Loop (REPL)
	Slide 21: HW1 – Getting Started with OCaml
	Slide 22
	Slide 23: Tuples and Functions
	Slide 24: Inductive Data Types
	Slide 25: Pattern-Matching and Recursion
	Slide 26: Pattern-Matching and Recursion
	Slide 27: Pattern-Matching and Recursion
	Slide 28: Pattern-Matching and Recursion
	Slide 29: Common OCaml Errors
	Slide 30: Common OCaml Errors
	Slide 31: Common OCaml Errors
	Slide 32: Common OCaml Errors
	Slide 33: Common OCaml Errors
	Slide 34: Common OCaml Errors
	Slide 35: Common OCaml Errors
	Slide 36: Common OCaml Errors
	Slide 37

