
CS 476 – Programming
Language Design
William Mansky

Logic Programming

• Declarative programming: say what you want, not how to do it

• A logic program consists of a series of logical assertions, and a
query:

man(socrates).

mortal(X) :- man(X).

?- mortal(socrates).

true.

Logic Programming

• Declarative programming: say what you want, not how to do it

• A logic program consists of a series of logical assertions, and a
query:

man(socrates).

mortal(X) :- man(X).

?- mortal(X).

X = socrates.

Logic Programming

age(person1, 21).

age(person2, 23).

age(person3, 25).

age(person4, 27).

older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.

?- older (X, person1), older(Y, X).

Exercise: What values of X and Y make this query true?

age 𝑋, 𝑋age age 𝑌, 𝑌age 𝑋age > 𝑌age

older(𝑋, 𝑌)

Logic Programming

age(person1, 21).

age(person2, 23).

age(person3, 25).

age(person4, 27).

older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.

?- older (X, person1), older(Y, X).

X = person2, Y = person3; X = person2, Y = person4;
X = person3, Y=person4.

age 𝑋, 𝑋age age 𝑌, 𝑌age 𝑋age > 𝑌age

older(𝑋, 𝑌)

Logic Programming

eval(add(E1, E2), V) :- eval(E1, V1), eval(E2, V2), V = V1 + V2.

𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2 (𝑣 = 𝑣1 + 𝑣2)

𝑒1 + 𝑒2 ⇓ 𝑣

• Examples: socrates, person1, pizza, …

Logic Programming: Syntax

T ::= true | <ident> | <#> | <Ident> | <ident>(T, …, T)

“atom”

• Examples: X, Y, Z, …

Logic Programming: Syntax

T ::= true | <ident> | <#> | <Ident> | <ident>(T, …, T)

variable

• Examples: mortal, age, has_value, …

• Can take any number of arguments

Logic Programming: Syntax

T ::= true | <ident> | <#> | <Ident> | <ident>(T, …, T)

predicate

Logic Programming: Syntax

T ::= true | <ident> | <#> | <Ident> | <ident>(T, …, T)

R ::= T :- T, …, T.

Q ::= ?- T, …, T.

P ::= R … R Q

Syntactic sugar: t. => t :- true.

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: older(X, person1), older(Y, X)

older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: older(X, person1), older(Y, X)

older(X’, Y’) :- age(X’, Xage), age(Y’, Yage), Xage > Yage.

unify(older(X, person1), older(X’, Y’)) =

 {X’ ↦ X, Y’ ↦ person1}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: older(X, person1), older(Y, X)

older(X’, Y’) :- age(X’, Xage), age(Y’, Yage), Xage > Yage.

unify(older(X, person1), older(X’, Y’)) =

 {X’ ↦ X, Y’ ↦ person1}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: age(X, Xage), age(person1, Yage), Xage > Yage,
older(Y, X)

older(X’, Y’) :- age(X’, Xage), age(Y’, Yage), Xage > Yage.

unify(older(X, person1), older(X’, Y’)) =

 {X’ ↦ X, Y’ ↦ person1}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: age(X, Xage), age(person1, Yage), Xage > Yage,
older(Y, X)

age(person1, 21).

unify(age(X, Xage), age(person1, 21)) =

 {X ↦ person1, Xage ↦ 21}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: age(person1, Yage), 21 > Yage, older(Y, person1)

age(person1, 21).

unify(age(X, Xage), age(person1, 21)) =

 {X ↦ person1, Xage ↦ 21}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: 21 > 21, older(Y, person1)

Unprovable!

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: age(X, Xage), age(person1, Yage), Xage > Yage,
older(Y, X)

age(person1, 21).

unify(age(X, Xage), age(person1, 21)) =

 {X ↦ person1, Xage ↦ 21}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals: age(X, Xage), age(person1, Yage), Xage > Yage,
older(Y, X)

age(person2, 23).

unify(age(X, Xage), age(person2, 23)) =

 {X ↦ person2, Xage ↦ 23}

Logic Programming: Execution

Rules: age(person1, 21), …, older(X, Y) :- …

Goals:

{X ↦ person2, Y ↦ person3}

Logic Programming: Execution

•Maintain a list of goals that still need to be proved

•Pick a goal to prove next

• Find a rule whose conclusion matches the goal, and
apply it:

― Instantiate it to match the goal, by unification
― Replace the goal with the instantiated premises of the rule

• If no rules apply, backtrack to the last decision point and
make a different choice

• If all goals are solved, output the solution

Logic Programming: Semantics

•A configuration is a tuple (𝑔, 𝑅, 𝜎, 𝑘) where:
― 𝑔 is the list of goals
― 𝑅 is the set of rules left to consider at this step
― 𝜎 is the solution (substitution) computed so far
― 𝑘 is the stack for backtracking

•The small-step relation is
𝑅0 ⊢ 𝑔, 𝑅, 𝜎, 𝑘 → 𝑔′, 𝑅′, 𝜎′, 𝑘′

since we need to keep track of the full rule list as well

Logic Programming: Semantics

𝑟 ∈ 𝑅

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘

•Maintain a list of goals that still need to be proved

•Pick a goal to prove next

• Find a rule whose conclusion matches the goal

Logic Programming: Semantics

𝑟 ∈ 𝑅

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘

•Pick a goal to prove next

• Find a rule whose conclusion matches the goal
― Choose a rule

•Pick a goal to prove next

• Find a rule whose conclusion matches the goal
― Choose a rule
― Make a fresh copy of the rule, so variables don’t overlap

Logic Programming: Semantics

𝑟 ∈ 𝑅 make_fresh 𝑟 = 𝑡 : − 𝑡1, … , 𝑡𝑛

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘

•Pick a goal to prove next

• Find a rule whose conclusion matches the goal
― Choose a rule
― Make a fresh copy of the rule, so variables don’t overlap
― Check whether the rule’s conclusion matches the goal

Logic Programming: Semantics

𝑟 ∈ 𝑅 make_fresh 𝑟 = 𝑡 : − 𝑡1, … , 𝑡𝑛 unify 𝑔, 𝑡 = 𝜎1

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘

• Find a rule whose conclusion matches the goal
― Choose a rule
― Make a fresh copy of the rule, so variables don’t overlap
― Check whether the rule’s conclusion matches the goal

•Replace the goal with instantiated premises of the rule

Logic Programming: Semantics

𝑟 ∈ 𝑅 make_fresh 𝑟 = 𝑡 : − 𝑡1, … , 𝑡𝑛 unify 𝑔, 𝑡 = 𝜎1

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘 →

𝜎1 [𝑡1; … ; 𝑡𝑛] @ 𝑔𝑠 , 𝑅0, 𝜎1 ∘ 𝜎, 𝑔 ∷ 𝑔𝑠, 𝑅 − 𝑟 , 𝜎 ∷ 𝑘

Logic Programming: Semantics

𝑟 ∈ 𝑅 make_fresh 𝑟 = 𝑡 : − 𝑡1, … , 𝑡𝑛 unify 𝑔, 𝑡 = 𝜎1

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘 →

𝜎1 [𝑡1; … ; 𝑡𝑛] @ 𝑔𝑠 , 𝑅0, 𝜎1 ∘ 𝜎, 𝑔 ∷ 𝑔𝑠, 𝑅 − 𝑟 , 𝜎 ∷ 𝑘

𝑟 ∈ 𝑅 make_fresh 𝑟 = 𝑡 : − 𝑡1, … , 𝑡𝑛 unify 𝑔, 𝑡 = fail

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘 → 𝑔 ∷ 𝑔𝑠, 𝑅 − 𝑟 , 𝜎, 𝑘

• If the rule doesn’t match, try another rule

Logic Programming: Semantics

• If we solve all the goals, return the current substitution 𝜎

𝑅0 ⊢ [], 𝑅, 𝜎, 𝑘 → 𝜎

Logic Programming: Semantics

• If no rules apply (i.e., we run out of rules to try), backtrack to
the last decision point in the stack and make a different choice

𝑅0 ⊢ [], 𝑅, 𝜎, 𝑘 → 𝜎

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, {}, 𝜎, 𝑔𝑠′, 𝑅′, 𝜎′ ∷ 𝑘 → 𝑔𝑠′, 𝑅′, 𝜎′, 𝑘

Logic Programming: Semantics

• If there’s nowhere to backtrack to, the goal is unprovable

𝑅0 ⊢ [], 𝑅, 𝜎, 𝑘 → 𝜎

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, {}, 𝜎, 𝑔𝑠′, 𝑅′, 𝜎′ ∷ 𝑘 → 𝑔𝑠′, 𝑅′, 𝜎′, 𝑘

𝑅0 ⊢ 𝑔 ∷ 𝑔𝑠, {}, 𝜎, [] → false

Logic Programming: Execution

•Note: this language is Turing-complete!

• So there are non-terminating logic programs

circular(𝑋)

circular(𝑋)

Logic Programming: Negation

• We can define other connectives in Prolog:

and(P, Q) :- P, Q.

or(P, Q) :- P.

or(P, Q) :- Q.

What about “not”?

 𝑃 𝑄

𝑃 ∧ 𝑄

 𝑃

𝑃 ∨ 𝑄

 𝑄

𝑃 ∨ 𝑄

Logic Programming: Negation

• We can define other connectives in Prolog:

not(P) :- P, fail.

not(P).

• Problem: not(P) can always be proved true!

Logic Programming: Negation by Cut

• We can define other connectives in Prolog:

not(P) :- P, !, fail.

not(P).

• No backtracking past ! (“cut”)

Logic Programming: Syntax

T ::= … | fail | !

R ::= T :- T, …, T.

Q ::= ?- T, …, T.

P ::= R … R Q

Logic Programming: Semantics

𝑅0 ⊢ ! ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑘 → (𝑔𝑠, 𝑅, 𝜎, [])

𝑅0 ⊢ fail ∷ 𝑔𝑠, 𝑅, 𝜎, 𝑔𝑠′, 𝑅′, 𝜎′ ∷ 𝑘 → 𝑔𝑠′, 𝑅′, 𝜎′, 𝑘

Logic Programming

• Give a set of rules, ask questions about what can be proved

• Searches for a proof tree for the query, filling in variables as it
goes, and backtracking when it hits a dead end

• Uses unification to figure out how to apply a rule to a goal

• Useful for databases and knowledge retrieval systems

• Can be used for PL too, but not as efficient as syntax-directed
algorithms

• See also λProlog: Prolog + lambda calculus!

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Logic Programming
	Slide 3: Logic Programming
	Slide 4: Logic Programming
	Slide 5: Logic Programming
	Slide 6: Logic Programming
	Slide 7
	Slide 8: Logic Programming: Syntax
	Slide 9: Logic Programming: Syntax
	Slide 10: Logic Programming: Syntax
	Slide 11: Logic Programming: Syntax
	Slide 12
	Slide 13: Logic Programming: Execution
	Slide 14: Logic Programming: Execution
	Slide 15: Logic Programming: Execution
	Slide 16: Logic Programming: Execution
	Slide 17: Logic Programming: Execution
	Slide 18: Logic Programming: Execution
	Slide 19: Logic Programming: Execution
	Slide 20: Logic Programming: Execution
	Slide 21: Logic Programming: Execution
	Slide 22: Logic Programming: Execution
	Slide 23
	Slide 24: Logic Programming: Execution
	Slide 25: Logic Programming: Semantics
	Slide 26: Logic Programming: Semantics
	Slide 27: Logic Programming: Semantics
	Slide 28: Logic Programming: Semantics
	Slide 29: Logic Programming: Semantics
	Slide 30: Logic Programming: Semantics
	Slide 31: Logic Programming: Semantics
	Slide 32: Logic Programming: Semantics
	Slide 33: Logic Programming: Semantics
	Slide 34: Logic Programming: Semantics
	Slide 35: Logic Programming: Execution
	Slide 36
	Slide 37: Logic Programming: Negation
	Slide 38: Logic Programming: Negation
	Slide 39: Logic Programming: Negation by Cut
	Slide 47: Logic Programming: Syntax
	Slide 48: Logic Programming: Semantics
	Slide 49
	Slide 50: Logic Programming

