CS 476 — Programming
Language Design

William Mansky

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Logic Programming

* Declarative programming: say what you want, not how to do it

* A logic program consists of a series of logical assertions, and a
query:

man(socrates).
mortal(X) :- man(X).
?- mortal(socrates).
true.

Logic Programming

* Declarative programming: say what you want, not how to do it

* A logic program consists of a series of logical assertions, and a
query:

man(socrates).
mortal(X) :- man(X).
?- mortal(X).

X = socrates.

age(personl, 21

().
age(personz, 23). age(X, Xage) age(Y, Yage) Xage > Yage

().

).

age(person3, 25 older(X,Y)

age(person4, 27

older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.
?- older (X, personl), older(Y, X).

Exercise: What values of X and Y make this query true?

age(personl, 21

().

age(personz, 23). age(X, Xage) age(Y, Yage) Xage > Yage
(person3, 25). older(X,Y)

age(persond, 27).

age

older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.
?- older (X, personl), older(Y, X).

X = person2, Y = person3; X = person2, Y = person4;
X = person3, Y=person4.

Logic Programming

eqtdv, e;dv, (W=v;+vy)

e, +e, v

eval(add(E1, E2), V) :- eval(E1, V1), eval(E2, V2),V=V1 + V2.

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Logic Programming: Syntax

T ::=true | <ident> | <#> | <ldent> | <ident>(T, ..., T)
\ }

|
“atom”

* Examples: socrates, personl, pizza, ...

Logic Programming: Syntax

T ::=true | <ident> | <#> | <Ident> | <ident>(T, ..., T)
\ }

|
variable

e Examples: X, Y, Z, ...

Logic Programming: Syntax

T ::=true | <ident> | <#> | <Ident> \\<ident>}(T, e, T)

|
predicate

* Examples: mortal, age, has_value, ...
* Can take any number of arguments

Logic Programming: Syntax

T ::=true | <ident> | <#> | <ldent> | <ident>(T, ..., T)

R:=T:T,..T.
Q:=7°-T,..,T.
P:=R..RQ

Syntactic sugar: t. =>t :- true.

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...
Goals: older(X, person1l), older(Y, X)

older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...
Goals: older(X, person1l), older(Y, X)

older(X’, Y’) :- age(X’, Xage), age(Y’, Yage), Xage > Yage.
unify(older(X, personl), older(X’, Y’)) =
X=X, Y - personl}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...
Goals: elderbX—persend}, older(Y, X)

older(X’, Y’) :- age(X’, Xage), age(Y’, Yage), Xage > Yage.
unify(older(X, personl), older(X’, Y’)) =
X=X, Y - personl}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...

Goals: age(X, Xage), age(personl, Yage), Xage > Yage,
older(Y, X)

older(X’, Y’) :- age(X’, Xage), age(Y’, Yage), Xage > Yage.
unify(older(X, personl), older(X’, Y’)) =
X » X, Y = personl}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...

Goals: age(X, Xage), age(personl, Yage), Xage > Yage,
older(Y, X)

age(personl, 21).
unify(age(X, Xage), age(personl, 21)) =
{X = personl, Xage = 21}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...
Goals: age(personl, Yage), 21 > Yage, older(Y, personl)

age(personl, 21).
unify(age(X, Xage), age(personl, 21)) =
{X = personl, Xage » 21}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...
Goals: 21 > 21, older(Y, personl)

Unprovable!

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...

Goals: age(X, Xage), age(personl, Yage), Xage > Yage,
older(Y, X)

age(personl, 21).
unify(age(X, Xage), age(personl, 21)) =
{X = personl, Xage = 21}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...

Goals: age(X, Xage), age(personl, Yage), Xage > Yage,
older(Y, X)

age(personz, 23).
unify(age(X, Xage), age(person2, 23)) =
{X = person2, Xage — 23}

Logic Programming: Execution

Rules: age(personl, 21), ..., older(X, Y) :- ...
Goals:

{X = person2, Y - person3}

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Logic Programming: Execution

* Maintain a list of goals that still need to be proved

* Pick a goal to prove next

*Find a rule whose conclusion matches the goal, and

apply It:
— |nstantiate it to match the goal, by unification

— Replace the goal with the instantiated premises of the rule

*|f no rules apply, backtrack to the last decision point and
make a different choice

* |f all goals are solved, output the solution

Logic Programming: Semantics

* A configuration is a tuple (g, R, g, k) where:
— g is the list of goals
— R is the set of rules left to consider at this step
— o is the solution (substitution) computed so far
— k is the stack for backtracking

* The small-step relation is
RO l_ (g; R; O-) k) — (g’;R’; OJJ k,)

since we need to keep track of the full rule list as well

Logic Programming: Semantics

r €R
Ry (g :gs,R,o0k)

* Maintain a list of goals that still need to be proved

* Pick a goal to prove next
e Find a rule whose conclusion matches the goal

Logic Programming: Semantics

r €R
Ry (g :gs,R,o0k)

* Pick a goal to prove next

* Find a rule whose conclusion matches the goal
— Choose arule

Logic Programming: Semantics

r € R make_fresh(r) =t:—tq, .., t,
Ry (g :gs,R,ok)

* Pick a goal to prove next

e Find a rule whose conclusion matches the goal
— Choose a rule
— Make a fresh copy of the rule, so variables don’t overlap

r € R make_fresh(r) =t:—tq, .., t, unify(g,t) = oy

Ro+(g::gs,R,0,k)

* Pick a goal to prove next

e Find a rule whose conclusion matches the goal
— Choose a rule
— Make a fresh copy of the rule, so variables don’t overlap
— Check whether the rule’s conclusion matches the goal

r € R make_fresh(r) =t:—tq,..,t, unify(g,t) = oy

Ro+(g:gs,R,o0k)—
(lo1]([ty; ... t,] @ gs),Ry,0100,(g :: gs,R —{r}, o) :: k)
*Find a rule whose conclusion matches the goal
— Choose a rule

— Make a fresh copy of the rule, so variables don’t overlap
— Check whether the rule’s conclusion matches the goal

* Replace the goal with instantiated premises of the rule

r € R make_fresh(r) =t:—tq,..,t, unify(g,t) = oy

Ro+(g:gs,R,o0k)—
(lo1]([t1; .5 tn] @ gs), Ry, 01 00,(g :: gs,R —{r},0) :: k)

r € R make_fresh(r) =t:—tq,..,t, unify(g,t) = fail
Ro-(g:gs,Ro,k)—>(g:gs,R—{r}o k)

*|f the rule doesn’t match, try another rule

Logic Programming: Semantics

Ry - ([l,R,o,k) >0

* |f we solve all the goals, return the current substitution o

Ro - ([,R,o,k) > o

Ro+(g:9s,{},o,(gs",R',a’) :: k) > (gs',R',d0', k)

* [f no rules apply (i.e., we run out of rules to try), backtrack to
the last decision point in the stack and make a different choice

Ry - ([l,R,o,k) >0

RO - (g X gS; {}; g, (.gS’;R,; O-,) E k) — (gS’rR’; O-’J k)

Ro (g = gs,{},0,[]) — false

* |f there’s nowhere to backtrack to, the goal is unprovable

Logic Programming: Execution

* Note: this language is Turing-complete!
* So there are non-terminating logic programs

circular(X)

circular(X)

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Logic Programming: Negation

* We can define other connectives in Prolog:

d(P, Q) - P, Q £ O
and(P, Q) :- P, Q. PAO
or(P, Q) :- P. P Q
or(P, Q) :- Q. PvQ PvQ

What about “not”?

Logic Programming: Negation

* We can define other connectives in Prolog:

not(P) :- P, fail.
not(P).

* Problem: not(P) can always be proved true!

Logic Programming: Negation by Cut

* We can define other connectives in Prolog:

not(P) :- P, 1, fail.
not(P).

* No backtracking past | (“cut”)

Logic Programming: Syntax

.| fail | !
r-7,..T
=?-T, ..,T
R .. RQ

T
R ::
Q.
p -

R, + (fail :: gs,R,0,(gs’,R',d') :: k) - (gs',R',0’, k)

Ro+-('::gs,R,0,k) > (gs,R,0,[])

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Logic Programming

* Give a set of rules, ask questions about what can be proved

* Searches for a proof tree for the query, filling in variables as it
goes, and backtracking when it hits a dead end

* Uses unification to figure out how to apply a rule to a goal
* Useful for databases and knowledge retrieval systems

e Can be used for PL too, but not as efficient as syntax-directed
algorithms

 See also AProlog: Prolog + lambda calculus!

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Logic Programming
	Slide 3: Logic Programming
	Slide 4: Logic Programming
	Slide 5: Logic Programming
	Slide 6: Logic Programming
	Slide 7
	Slide 8: Logic Programming: Syntax
	Slide 9: Logic Programming: Syntax
	Slide 10: Logic Programming: Syntax
	Slide 11: Logic Programming: Syntax
	Slide 12
	Slide 13: Logic Programming: Execution
	Slide 14: Logic Programming: Execution
	Slide 15: Logic Programming: Execution
	Slide 16: Logic Programming: Execution
	Slide 17: Logic Programming: Execution
	Slide 18: Logic Programming: Execution
	Slide 19: Logic Programming: Execution
	Slide 20: Logic Programming: Execution
	Slide 21: Logic Programming: Execution
	Slide 22: Logic Programming: Execution
	Slide 23
	Slide 24: Logic Programming: Execution
	Slide 25: Logic Programming: Semantics
	Slide 26: Logic Programming: Semantics
	Slide 27: Logic Programming: Semantics
	Slide 28: Logic Programming: Semantics
	Slide 29: Logic Programming: Semantics
	Slide 30: Logic Programming: Semantics
	Slide 31: Logic Programming: Semantics
	Slide 32: Logic Programming: Semantics
	Slide 33: Logic Programming: Semantics
	Slide 34: Logic Programming: Semantics
	Slide 35: Logic Programming: Execution
	Slide 36
	Slide 37: Logic Programming: Negation
	Slide 38: Logic Programming: Negation
	Slide 39: Logic Programming: Negation by Cut
	Slide 47: Logic Programming: Syntax
	Slide 48: Logic Programming: Semantics
	Slide 49
	Slide 50: Logic Programming

