CS 476 - Programming Language Design

William Mansky

Questions

Nobody has responded yet.
Hang tight! Responses are coming in.

Logic Programming

- Declarative programming: say what you want, not how to do it
- A logic program consists of a series of logical assertions, and a query:
man(socrates).
mortal(X) :- man(X).
?- mortal(socrates).
true.

Logic Programming

- Declarative programming: say what you want, not how to do it
- A logic program consists of a series of logical assertions, and a query:
man(socrates).
mortal(X) :- man(X).
?- mortal(X).
$X=$ socrates.

Logic Programming

age(person1, 21).
age(person2, 23).
age(person3, 25).

$\frac{\text { age }\left(X, X_{\text {age }}\right)}{} \quad$ age $\left(Y, Y_{\text {age }}\right) \quad X_{\text {age }}>Y_{\text {age }}$

age(person4, 27).
older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.
?- older (X , person1), older(Y, X).
Exercise: What values of X and Y make this query true?

Logic Programming

age(person1, 21).
age(person2, 23).
age(person3, 25).

age $\left(X, X_{\text {age }}\right)$ age $\left(Y, Y_{\text {age }}\right) \quad X_{\text {age }}>Y_{\text {age }}$
 $\operatorname{older}(X, Y)$

age(person4, 27).
older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.
?- older (X, person1), older(Y, X).
$X=$ person2, $Y=$ person3; $X=$ person2, $Y=$ person4;
$X=$ person3, $Y=$ person4.

Logic Programming

$$
\frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2} \quad\left(v=v_{1}+v_{2}\right)}{e_{1}+e_{2} \Downarrow v}
$$

eval(add(E1, E2), V) :- eval(E1, V1), eval(E2, V2), $V=V 1+V 2$.

Questions

Nobody has responded yet.
Hang tight! Responses are coming in.

Logic Programming: Syntax

$T::=$ true \mid <ident> | <\#> | <ldent> | <ident>($T, \ldots, T)$
 "atom"

- Examples: socrates, person1, pizza, ...

Logic Programming: Syntax

$T::=$ true | <ident> | <\#> | <ldent> | <ident>(T, \ldots, T)
 variable

- Examples: X, Y, Z, ...

Logic Programming: Syntax

$T::=$ true \mid <ident> $|<\#>|<$ ldent> $\mid<i d e n t>(T, \ldots, T)$
 predicate

- Examples: mortal, age, has_value, ...
- Can take any number of arguments

Logic Programming: Syntax

$T::=$ true \mid <ident> $|<\#>|<$ ldent> | <ident> (T, \ldots, T) $R::=T:-T, \ldots, T$.
$Q::=?-T, \ldots, T$.
$P::=R \ldots R Q$

Syntactic sugar: t. => t :- true.

Questions

Nobody has responded yet.
Hang tight! Responses are coming in.

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: older(X, person1), older(Y, X)
older(X, Y) :- age(X, Xage), age(Y, Yage), Xage > Yage.

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: older(X, person1), older(Y, X)
 unify(older(X, person1), older($\left.\left.X^{\prime}, Y^{\prime}\right)\right)=$
$\left\{X^{\prime} \mapsto X, Y^{\prime} \mapsto\right.$ person1 $\}$

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: older(X, person1), older(Y, X)
 unify(older(X, person1), older($\left.\left.X^{\prime}, Y^{\prime}\right)\right)=$
$\left\{X^{\prime} \mapsto X, Y^{\prime} \mapsto\right.$ person1 $\}$

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: age(X, Xage), age(person1, Yage), Xage > Yage, older(Y, X)

unify(older(X, person1), older $\left.\left(X^{\prime}, Y^{\prime}\right)\right)=$
$\left\{X^{\prime} \mapsto X, Y^{\prime} \mapsto\right.$ person1\}

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: age(X, Xage), age(person1, Yage), Xage > Yage, older(Y, X)
age(person1, 21).
unify(age(X, Xage), age(person1, 21)) =
$\{X \mapsto$ person1, Xage $\mapsto 21\}$

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: age(person1, Yage), 21 > Yage, older(Y, person1)
age(person1, 21).
unify(age(X, Xage), age(person1, 21)) =
$\{X \mapsto$ person1, Xage $\mapsto 21\}$

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ... Goals: 21 > 21, older(Y, person1)

Unprovable!

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ... Goals: age(X, Xage), age(person1, Yage), Xage > Yage, older(Y, X)
age(person1, 21).
unify(age(X, Xage), age(person1, 21)) =
$\{X \mapsto$ person1, Xage $\mapsto 21\}$

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ...
Goals: age(X, Xage), age(person1, Yage), Xage > Yage, older(Y, X)
age(person2, 23).
unify(age(X, Xage), age(person2, 23)) =
$\{X \mapsto$ person2, Xage $\mapsto 23\}$

Logic Programming: Execution

Rules: age(person1, 21), ..., older(X, Y) :- ... Goals:
$\{\mathrm{X} \mapsto$ person2, $\mathrm{Y} \mapsto$ person3\}

Questions

Nobody has responded yet.
Hang tight! Responses are coming in.

Logic Programming: Execution

- Maintain a list of goals that still need to be proved
- Pick a goal to prove next
- Find a rule whose conclusion matches the goal, and apply it:
- Instantiate it to match the goal, by unification
- Replace the goal with the instantiated premises of the rule
- If no rules apply, backtrack to the last decision point and make a different choice
- If all goals are solved, output the solution

Logic Programming: Semantics

- A configuration is a tuple (g, R, σ, k) where:
$-g$ is the list of goals
$-R$ is the set of rules left to consider at this step
$-\sigma$ is the solution (substitution) computed so far
$-k$ is the stack for backtracking
-The small-step relation is

$$
R_{0} \vdash(g, R, \sigma, k) \rightarrow\left(g^{\prime}, R^{\prime}, \sigma^{\prime}, k^{\prime}\right)
$$

since we need to keep track of the full rule list as well

Logic Programming: Semantics

$$
\frac{r \in R}{R_{0} \vdash(g:: g s, R, \sigma, k)}
$$

- Maintain a list of goals that still need to be proved
- Pick a goal to prove next
- Find a rule whose conclusion matches the goal

Logic Programming: Semantics

$$
\frac{r \in R}{R_{0} \vdash(g:: g s, R, \sigma, k)}
$$

- Pick a goal to prove next
- Find a rule whose conclusion matches the goal
- Choose a rule

Logic Programming: Semantics

$$
\frac{r \in R \quad \text { make_fresh }(r)=t:-t_{1}, \ldots, t_{n}}{R_{0} \vdash(g:: g s, R, \sigma, k)}
$$

- Pick a goal to prove next
- Find a rule whose conclusion matches the goal
- Choose a rule
- Make a fresh copy of the rule, so variables don't overlap

Logic Programming: Semantics

$$
\frac{r \in R \quad \text { make_fresh }(r)=t:-t_{1}, \ldots, t_{n} \quad \operatorname{unify}(g, t)=\sigma_{1}}{R_{0} \vdash(g:: g s, R, \sigma, k)}
$$

- Pick a goal to prove next
- Find a rule whose conclusion matches the goal
- Choose a rule
- Make a fresh copy of the rule, so variables don't overlap
- Check whether the rule's conclusion matches the goal

Logic Programming: Semantics

$$
\begin{gathered}
r \in R \quad \text { make_fresh }(r)=t:-t_{1}, \ldots, t_{n} \quad \text { unify }(g, t)=\sigma_{1} \\
R_{0} \vdash(g:: g s, R, \sigma, k) \rightarrow \\
\left(\left[\sigma_{1}\right]\left(\left[t_{1} ; \ldots ; t_{n}\right] @ g s\right), R_{0}, \sigma_{1} \circ \sigma,(g:: g s, R-\{r\}, \sigma):: k\right)
\end{gathered}
$$

- Find a rule whose conclusion matches the goal
- Choose a rule
- Make a fresh copy of the rule, so variables don't overlap
- Check whether the rule's conclusion matches the goal
- Replace the goal with instantiated premises of the rule

Logic Programming: Semantics

$$
\begin{gathered}
r \in R \quad \text { make_fresh }(r)=t:-t_{1}, \ldots, t_{n} \quad \text { unify }(g, t)=\sigma_{1} \\
R_{0} \vdash(g:: g s, R, \sigma, k) \rightarrow \\
\left(\left[\sigma_{1}\right]\left(\left[t_{1} ; \ldots ; t_{n}\right] @ g s\right), R_{0}, \sigma_{1} \circ \sigma,(g:: g s, R-\{r\}, \sigma):: k\right)
\end{gathered}
$$

$r \in R \quad$ make_fresh $(r)=t:-t_{1}, \ldots, t_{n} \quad$ unify $(g, t)=$ fail

$$
R_{0} \vdash(g:: g s, R, \sigma, k) \rightarrow(g:: g s, R-\{r\}, \sigma, k)
$$

- If the rule doesn't match, try another rule

Logic Programming: Semantics

$$
\overline{R_{0} \vdash([], R, \sigma, k) \rightarrow \sigma}
$$

- If we solve all the goals, return the current substitution σ

Logic Programming: Semantics

$$
\overline{R_{0} \vdash([], R, \sigma, k) \rightarrow \sigma}
$$

$$
\overline{R_{0} \vdash\left(g:: g s,\{ \}, \sigma,\left(g s^{\prime}, R^{\prime}, \sigma^{\prime}\right):: k\right) \rightarrow\left(g s^{\prime}, R^{\prime}, \sigma^{\prime}, k\right)}
$$

- If no rules apply (i.e., we run out of rules to try), backtrack to the last decision point in the stack and make a different choice

Logic Programming: Semantics

$$
\overline{R_{0} \vdash([], R, \sigma, k) \rightarrow \sigma}
$$

$$
\overline{R_{0} \vdash\left(g:: g s,\{ \}, \sigma,\left(g s^{\prime}, R^{\prime}, \sigma^{\prime}\right):: k\right) \rightarrow\left(g s^{\prime}, R^{\prime}, \sigma^{\prime}, k\right)}
$$

$$
\overline{R_{0} \vdash(g:: g s,\{ \}, \sigma,[]) \rightarrow \text { false }}
$$

- If there's nowhere to backtrack to, the goal is unprovable

Logic Programming: Execution

- Note: this language is Turing-complete!
- So there are non-terminating logic programs $\frac{\text { circular }(X)}{\operatorname{circular}(X)}$

Questions

Nobody has responded yet.
Hang tight! Responses are coming in.

Logic Programming: Negation

- We can define other connectives in Prolog:
and $(P, Q):-P, Q$.

$$
\frac{P \quad Q}{P \wedge Q}
$$

or $(P, Q):-P$.
or $(P, Q):-Q$.

$$
\frac{P}{P \vee Q} \quad \frac{Q}{P \vee Q}
$$

What about "not"?

Logic Programming: Negation

- We can define other connectives in Prolog:
not(P) :- P, fail. not(P).
- Problem: not(P) can always be proved true!

Logic Programming: Negation by Cut

- We can define other connectives in Prolog:
not(P) :- P, !, fail. not (P).
- No backtracking past! ("cut")

Logic Programming: Syntax

$$
\begin{aligned}
& T::=\ldots \mid \text { fail|! } \\
& R::=T:-T, \ldots, T . \\
& Q::=?-T, \ldots, T . \\
& P::=R \ldots R Q
\end{aligned}
$$

Logic Programming: Semantics

$$
\overline{R_{0} \vdash\left(\text { fail }:: ~ g s, R, \sigma,\left(g s^{\prime}, R^{\prime}, \sigma^{\prime}\right):: k\right) \rightarrow\left(g s^{\prime}, R^{\prime}, \sigma^{\prime}, k\right)}
$$

$$
\overline{R_{0} \vdash(!:: g s, R, \sigma, k) \rightarrow(g s, R, \sigma,[])}
$$

Questions

Nobody has responded yet.
Hang tight! Responses are coming in.

Logic Programming

- Give a set of rules, ask questions about what can be proved
- Searches for a proof tree for the query, filling in variables as it goes, and backtracking when it hits a dead end
- Uses unification to figure out how to apply a rule to a goal
- Useful for databases and knowledge retrieval systems
- Can be used for PL too, but not as efficient as syntax-directed algorithms
- See also λ Prolog: Prolog + lambda calculus!

