
CS 476: Programming 
Language Design





Summary

• We’ve looked at PLs as designers (what’s in a language? how should 
it work?) and implementers (how do we get a computer to run it?)

• We described PLs with three different meta-languages:
― Natural language (intuitive description, examples)
― Math (grammars, type rules, big- and small-step semantics rules)
― OCaml (typecheckers, interpreters, etc.)

• We examined the features of:
― Imperative languages (variables, control flow, function calls)
― Object-oriented languages (objects, inheritance, references)
― Functional languages (functions as values, pattern-matching, type 

inference)
― And more!



Summary

We’ve learned to:

• Write OCaml code (or code in another functional language)

• Identify and describe common language features

• Translate inference rules into code

• Think through the implications of adding features to a language

• Implement a new language, or add a feature to an existing 
language design





What else is there in PL?

• A lot more languages and language features! 

• Actually making languages work: parsing, optimization, 
translation to machine code (see also CS 473)

• Social aspects: communities, tools, documentation, industry 
support and adoption, how languages get made and spread

• Metatheory: prove that well-typed programs return values of 
those types, prove that specific programs do what they’re 
supposed to (see also CS 472)


	Slide 0: CS 476: Programming Language Design
	Slide 1
	Slide 2: Summary
	Slide 3: Summary
	Slide 4
	Slide 5: What else is there in PL?

