
CS 476 – Programming
Language Design
William Mansky

Structure of a Language

➢Syntax
― Abstract – what are the pieces of a program?
― Concrete – what do programs look like?

• Semantics
― Static – what are acceptable programs?

― Dynamic – what do programs do when we run them?

• Pragmatics
― Implementation – how can we actually make the semantics happen?
― IDE, tool support, etc.

Metalanguages

• We want to describe how languages should work, and write
code that actually runs those languages

• Natural language: “x := y + z sets x to be y plus z”

• Inference rules:

• OCaml: match s with
 | Assign x e => update env x (eval env e)

• We’ll learn to translate between these three metalanguages!

𝑒, 𝜎 ⇓ 𝑣

𝑥 ≔ 𝑒, 𝜎 ⇓ 𝜎[𝑥 ↦ 𝑣]

Defining Syntax for a Language

•This language has expressions and commands

•Expressions are things like adding or subtracting two
numbers, or calling a function

•Commands include assigning values to variables,
and if-then-else blocks

Defining Syntax for a Language

•This language has expressions E and commands C

•Expressions are things like adding two numbers, or
calling a function

•Commands include assigning values to variables,
and if-then-else blocks

Defining Syntax for a Language

•This language has expressions E and commands C

• E := <num> + <num> | <name> (E)

•Commands include assigning values to variables,
and if-then-else blocks

Defining Syntax for a Language

•This language has expressions E and commands C

• E := <num> + <num> | <name> (E)

• C := <name> = E ; | if (E) { C } else { C }

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• Each rule has a nonterminal on the left, and a sequence of
nonterminals and terminals (letters, numbers, operators, etc.)
on the right

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

nonterminals: E C terminals: <num> <name> + () = ; if else { }

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• Any string that can be made by applying the rules belongs to
the language

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

C

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• Any string that can be made by applying the rules belongs to
the language

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

C ⇒ x = E ;

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• Any string that can be made by applying the rules belongs to
the language

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

C ⇒ x = E ; ⇒ x = f (E) ;

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• Any string that can be made by applying the rules belongs to
the language

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

C ⇒ x = E ; ⇒ x = f (E) ; ⇒ x = f (2 + 4) ;

• This is “just syntax”: it doesn’t do anything yet!

A program in the
language of the grammar

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• …that looks a lot like an inductive datatype!

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add | Call

type C = Assign | If

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• …that looks a lot like an inductive datatype!

• We’re interested in the abstract syntax, the parts that can vary

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add | Call

type C = Assign | If

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• …that looks a lot like an inductive datatype!

• We’re interested in the abstract syntax, the parts that can vary

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int | Call

type C = Assign | If

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• …that looks a lot like an inductive datatype!

• We’re interested in the abstract syntax, the parts that can vary

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int | Call of name * E

type C = Assign | If

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• …that looks a lot like an inductive datatype!

• We’re interested in the abstract syntax, the parts that can vary

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int | Call of name * E

type C = Assign | If

Context-Free Grammars

• A series of rules describing a set of strings (“language”)

• …that looks a lot like an inductive datatype!

• We’re interested in the abstract syntax, the parts that can vary

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int | Call of name * E

type C = Assign of name * E | If of E * C * C

Grammars: Variations

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int | Call of name * E

type C = Assign of name * E | If of E * C * C

• Exercise: Change one thing about the grammar of the
language. How would that change the OCaml types?

Grammars: Variations

E := <num> + <num> | <name> (E)

C := <name> := E | if E then C else C

type E = Add of int * int | Call of name * E

type C = Assign of name * E | If of E * C * C

• Exercise: Change one thing about the grammar of the
language. How would that change the OCaml types?

Grammars: Variations

E := <num> + <num> - <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int * int | Call of name
* E

type C = Assign of name * E | If of E * C * C

• Exercise: Change one thing about the grammar of the
language. How would that change the OCaml types?

Grammars: Variations

E := <num> + <num> | <name> (E) | <num> * 2

C := <name> = E ; | if (E) { C } else { C } | C; C

type E = Add of int * int | Call of name * E |
Mul2 of int

type C = Assign of name * E | If of E * C * C |
Seq of C * C

• Exercise: Change one thing about the grammar of the language.
How would that change the OCaml types?

Grammars: Variations

E := <num> + <num> | <name> (E)

C := <name> = E ; | if (E) { C } else { C }

type E = Add of int * int | Call of name * E

type C = Assign of name * E | If of E * C * C

• Exercise: Change one thing about the grammar of the
language. How would that change the OCaml types?

Defining Syntax for a Language

•Step 1: write down what’s in the language in English

•Step 2: write a grammar that describes all possible
programs

•Step 3: write a datatype that abstracts the grammar

•Result: a datatype of programs in the language

Writing Functions on Syntax

type E = Add of int * int | Call of name * E

type C = Assign of name * E | If of E * C * C

let my_prog : C = If (Add (3, 4), Assign (“x”, Add (3, 4)), …)

let rec print_vars (prog : C) =

 match prog with

 | Assign (x, e) -> print_string x

 | If (cond, tcase, fcase) ->

 print_vars tcase; print_vars fcase

Writing Functions on Syntax

•Step 1: write down what’s in the language in English
•Step 2: write a grammar that describes all possible
programs
•Step 3: write a datatype that abstracts the grammar
•Result: a datatype of programs in the language

•Now we can write programs that operate on
programs!

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Structure of a Language
	Slide 3: Metalanguages
	Slide 4: Defining Syntax for a Language
	Slide 5: Defining Syntax for a Language
	Slide 6: Defining Syntax for a Language
	Slide 7: Defining Syntax for a Language
	Slide 8: Context-Free Grammars
	Slide 9: Context-Free Grammars
	Slide 10: Context-Free Grammars
	Slide 11: Context-Free Grammars
	Slide 12: Context-Free Grammars
	Slide 13
	Slide 14: Context-Free Grammars
	Slide 15: Context-Free Grammars
	Slide 16: Context-Free Grammars
	Slide 17: Context-Free Grammars
	Slide 18: Context-Free Grammars
	Slide 19: Context-Free Grammars
	Slide 20
	Slide 21: Grammars: Variations
	Slide 22: Grammars: Variations
	Slide 23: Grammars: Variations
	Slide 24: Grammars: Variations
	Slide 25: Grammars: Variations
	Slide 26
	Slide 27: Defining Syntax for a Language
	Slide 28: Writing Functions on Syntax
	Slide 29: Writing Functions on Syntax
	Slide 30

