
CS 476 – Programming
Language Design
William Mansky

Turing-Completeness

• Almost every programming language is Turing-complete: it can
theoretically express any computation

• And so are a lot of other things:

Turing-Completeness: Representation

• Functional, imperative, etc. languages can all simulate each
other

• We can define any language in OCaml (syntax, type system,
semantics, interpreter)

― Or in C, or in Java, or…

• We don’t have to choose language based on what’s possible to
compute

Turing-Incomplete Languages

• We don’t have to choose language based on what’s possible to
compute

• But also, our languages don’t have to be able to compute
everything!

• There are some useful Turing-incomplete domain-specific
languages (DSLs):

― Regular expressions
― HTML
― Some versions of SQL
― Configuration languages
― Interactive theorem provers

E ::= <#> | <ident>

 | E + E | E – E | E * E

 | <bool>

 | E and E | E or E

 | not E

 | E = E

Turing-Incomplete Languages

C ::= <ident> := E

 | C; C

 | skip

 | if(E){ C } else { C }

 | while(E) { C }

E ::= <#> | <ident>

 | E + E | E – E | E * E

 | <bool>

 | E and E | E or E

 | not E

 | E = E

Turing-Incomplete Languages

C ::= <ident> := E

 | C; C

 | skip

 | if(E){ C } else { C }

 | while(E) max <#> { C }

while(x > 0) max 10 {

 y := y * x; x := x – 1; }

E ::= <#> | <ident>

 | E + E | E – E | E * E

 | <bool>

 | E and E | E or E

 | not E

 | E = E

Turing-Incomplete Languages

C ::= <ident> := E

 | C; C

 | skip

 | if(E){ C } else { C }

 | while(E) max E { C }

while(x > 0) max x {

 y := y * x; x := x – 1; }

Turing-Incomplete Languages

(𝑣 > 0)

while(𝑒) max 𝑣 {𝑐}, 𝜌 →

if(𝑒){ 𝑐; while(𝑒) max 𝑣 − 1 {𝑐} } else skip, 𝜌

C ::= … | while(E) max E { C }

while(x > 0) max x {

 y := y * x; x := x – 1; }

Turing-Incomplete Languages

• Our languages don’t have to be able to compute everything!

• There are some useful Turing-incomplete domain-specific
languages (DSLs):

― Regular expressions
― HTML
― Some versions of SQL
― Interactive theorem provers

• And we can make a Turing-incomplete general-purpose
language just by bounding loops

― But there will be some functions we can’t compute, and we won’t
know which until we try!

Course Evaluations

• Exercise: Please take a few minutes to fill out the course
evaluation, and then submit “finished” for Exercise 11/29.

• If you’d rather not and still want to get credit for the exercise,
you can submit “finished” anyway.

• Thank you for your feedback!

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Turing-Completeness
	Slide 3: Turing-Completeness: Representation
	Slide 4: Turing-Incomplete Languages
	Slide 5: Turing-Incomplete Languages
	Slide 6: Turing-Incomplete Languages
	Slide 7: Turing-Incomplete Languages
	Slide 8: Turing-Incomplete Languages
	Slide 9: Turing-Incomplete Languages
	Slide 10
	Slide 11: Course Evaluations

