CS 476 — Programming
Language Design

William Mansky

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Turing-Completeness

* Almost every programming language is Turing-complete: it can
theoretically express any computation

* And so are a lot of other things:

Java Ge arXiv.org > cs > arXiv:

Abstract

This paper describes a reduction from the halting p1
machines to subtype checking in Java, It follor
checking in Java is undecidable, which answers a q
Kennedy and Pierce in 2007. It also follows that Jar
can recognize any recursive language, which imp
Gil and Levy from 2016. The latter point is illusti
generator for fluent interfaces.

Posted by u/_gigo 1 year ago

1904.09828

Computer Science > Artificial Intelligence

[Submitted on 24 Mar 2019 (v1), last revised 23 Apr 2019 (this version, v2)]

Magic: The Gathering is Turing Complete
Alex Churchill, Stella Biderman, Austin Herrick

Magic: The Gathering is a popular and famously complicated trading card game about magical combat. In this paper we show that optimal play in real-world Magic is at least as hard as the Halting
Problem, solving a problem that has been open for a decade. To do this, we present a methodology for embedding an arbitrary Turing machine into a game of Magic such that the first player is
guaranteed to win the game if and only if the Turing machine halts. Our result applies to how real Magic is played, can be achieved using standard-size tournament-legal decks, and does not rely on
stochasticity or hidden information. Our result is also highly unusual in that all moves of both players are forced in the construction. This shows that even recognising who will win a game in which
neither player has a non-trivial decision to make for the rest of the game is undecidable. We conclude with a discussion of the implications for a unified computational theory of games and remarks
about the playability of such a board in a tournament setting.

Subjects: Artificial Intelligence (cs.Al); Computational Complexity (cs.CC); Logic in Computer Science (cs.LO)
Cite as: arXiv:1904.09828 [cs.Al]
(or arXiv:1904.09828v2 [cs.Al] for this version)

Turing-Completeness: Representation

e Functional, imperative, etc. languages can all simulate each
other

* We can define any language in OCaml (syntax, type system,
semantics, interpreter)

— OrinC, orinJava, or...

* We don’t have to choose language based on what's possible to
compute

Turing-Incomplete Languages

* We don’t have to choose language based on what's possible to
compute

e But also, our languages don’t have to be able to compute
everything!

* There are some useful Turing-incomplete domain-specific
languages (DSLs):
— Regular expressions
— HTML
— Some versions of SQL
— Configuration languages
— Interactive theorem provers

Turing-Incomplete Languages

E ::=<#> | <ident> C:=<ident> :=E
E+E|E-E|E*E C; C
<bool> skip
EandE | EorE if(E){C}else{C}
not E while(E) { C}
E=E

Turing-Incomplete Languages

E ::=<#> | <ident> C:=<ident> :=E
E+E|E-E|E*E C; C
<bool> skip
EandE | EorE if(E){C}else{C}
not E while(E) max <#> { C}
E=E

while(x > @) max 10 {
y =y *Xx; x :=x-1; }

Turing-Incomplete Languages

E ::=<#> | <ident> C:=<ident> :=E
E+E|E-E|E*E C; C
<bool> skip
EandE | EorE if(E){C}else{C}
not E while(E) max E {C}
E=E

while(x > @) max x {
y =y *Xx; x :=x-1; }

(v>0)

(while(e) max v {c},p) —
(if(e){ c; while(e) max (v —1) {c} } elseskip,p)

C:=..|while(E) max E {C}

while(x > @) max x {
y =y *Xx; x :=x-1; }

Turing-Incomplete Languages

* Our languages don’t have to be able to compute everything!

* There are some useful Turing-incomplete domain-specific
languages (DSLs):
— Regular expressions
— HTML
— Some versions of SQL
— Interactive theorem provers

* And we can make a Turing-incomplete general-purpose
language just by bounding loops
— But there will be some functions we can’t compute, and we won't
know which until we try!

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Course Evaluations

e Exercise: Please take a few minutes to fill out the course
evaluation, and then submit “finished” for Exercise 11/29.

* If you’d rather not and still want to get credit for the exercise,
you can submit “finished” anyway.

* Thank you for your feedback!

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Turing-Completeness
	Slide 3: Turing-Completeness: Representation
	Slide 4: Turing-Incomplete Languages
	Slide 5: Turing-Incomplete Languages
	Slide 6: Turing-Incomplete Languages
	Slide 7: Turing-Incomplete Languages
	Slide 8: Turing-Incomplete Languages
	Slide 9: Turing-Incomplete Languages
	Slide 10
	Slide 11: Course Evaluations

