CS 476 – Programming Language Design

William Mansky

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Constraint-Based Type Inference

- We can do this in two steps:
 - First, gather all the constraints on type variables
 - Second, find a solution to the constraints
- For step 1, we need constraints for each typing rule:

$$\begin{array}{c|c} \Gamma \vdash l_1 : \tau_1 \rightarrow \tau_2 & \Gamma \vdash l_2 : \tau_1 \\ \hline \Gamma \vdash l_1 \, l_2 : \tau_2 \end{array} & \longrightarrow & \begin{array}{c|c} \Gamma \vdash l_1 : \tau_1 & \Gamma \vdash l_2 : \tau_2 \\ \hline \Gamma \vdash l_1 \, l_2 : \tau \mid \{\tau_1 = \tau_2 \rightarrow \tau\} \end{array}$$

• $\Gamma \vdash l : \tau \mid S$ means "l has type τ in context Γ , as long as constraints S are satisfied"

Unification

• Now we have to *solve* the constraints

let unify (c : constraints) : (ident -> typ option) = ...

- Unification produces a *substitution* of types for type variables unify $\{\tau_3 = \text{int}, \tau_4 = \text{int}, \tau_1 = \tau_2 \rightarrow \tau_3, \tau_1 = \text{int} \rightarrow \tau_4\} = ...$
- Exercise: How would you solve this unification problem? How would you figure out the values of all the type variables?

Constraint-Based Type Inference

- Now we have to *solve* the constraints
- let unify (c : constraints) : (ident -> typ option) = ...
- Unification produces a *substitution* of types for type variables unify { $\tau_3 = \text{int}, \tau_4 = \text{int}, \tau_1 = \tau_2 \rightarrow \tau_3, \tau_1 = \text{int} \rightarrow \tau_4$ } = { $\tau_3 = \text{int}, \tau_4 = \text{int}, \tau_1 = \text{int} \rightarrow \text{int}, \tau_2 = \text{int}$ }

Unification

- Input: a set of *constraints* of the form L = R, where L and R are types with type variables in them
- Output: a *substitution,* a map from type variables to types (which still may have variables in them)
- The output substitution σ should solve all the constraints: for each L = R in the input, $[\sigma]L$ is exactly the same as $[\sigma]R$

The Unification Algorithm

- Pick a constraint L = R from the current set S
- Apply one of the following rules, as appropriate:
 - 1. Discard
 - 2. Substitute left
 - 3. Substitute right
 - 4. Decompose
- Update the constraint set S and the substitution σ accordingly
- Repeat on the remaining constraints

The Unification Algorithm: Discard

- Applies when the constraint is of the form T = T
- Action: remove the constraint from S, while leaving σ and the rest of S unchanged

$$S: \{ \text{int} = \text{int}, \tau_1 = \tau_2, \dots \}$$
$$\sigma: \{ \tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots \}$$

The Unification Algorithm: Discard

- Applies when the constraint is of the form T = T
- Action: remove the constraint from S, while leaving σ and the rest of S unchanged

$$S: \{ \text{int} = \text{int}, \tau_1 = \tau_2, \dots \} \Rightarrow \{ \tau_1 = \tau_2, \dots \}$$
$$\sigma: \{ \tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots \}$$

- Applies when the constraint is of the form x = T
- Action: add $\{x \mapsto T\}$ to σ , and apply it to the rest of σ and S

$$S: \{ \tau_5 = \text{bool}, \tau_1 = \text{int} \to \tau_5, \dots \}$$
$$\sigma: \{ \tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots \}$$

- Applies when the constraint is of the form x = T
- Action: add $\{x \mapsto T\}$ to σ , and apply it to the rest of σ and S

$$S: \{\tau_5 = \text{bool}, \tau_1 = \text{int} \to \tau_5, \dots\} \Rightarrow \{\tau_1 = \text{int} \to \text{bool}, \dots\}$$
$$\sigma: \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots\} \Rightarrow \{\tau_5 \mapsto \text{bool}, \tau_4 \mapsto \text{bool} \to \tau_6, \dots\}$$

- Applies when the constraint is of the form x = T
- Action: add $\{x \mapsto T\}$ to σ , and apply it to the rest of σ and S

$$S: \{ \tau_5 = \tau \to \tau_5, \tau_1 = \text{int} \to \tau_5, \dots \}$$
$$\sigma: \{ \tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots \}$$

• "Occurs check": x must not be free in T

- Applies when the constraint is of the form x = T
- Action: add $\{x \mapsto T\}$ to σ , and apply it to the rest of σ and S

$$S: \{\tau_5 = \tau \to \tau_5, \tau_1 = \text{int} \to \tau_5, \dots\} \Rightarrow \text{fail}$$
$$\sigma: \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots\}$$

• "Occurs check": x must not be free in T

- Applies when the constraint is of the form T = x
- Action: add $\{x \mapsto T\}$ to σ , and apply it to the rest of σ and S

S: {bool =
$$\tau_5, \tau_1 = \text{int} \to \tau_5, \dots$$
} \Rightarrow { $\tau_1 = \text{int} \to \text{bool}, \dots$ }
 σ : { $\tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots$ } \Rightarrow { $\tau_5 \mapsto \text{bool}, \tau_4 \mapsto \text{bool} \to \tau_6, \dots$ }

• "Occurs check": x must not be free in T

• Applies when the constraint is of the form $T(\tau_1, \dots \tau_n) = T(v_1, \dots, v_n)$

• Action: add $\tau_1 = v_1, \dots, \tau_n = v_n$ to S

$$S: \{\tau_6 \to \tau_2 = \tau_5 \to \text{int}, \tau_1 = \text{int} \to \tau_5, \dots\}$$
$$\sigma: \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots\}$$

• Applies when the constraint is of the form $T(\tau_1, \dots \tau_n) = T(v_1, \dots, v_n)$

• Action: add $\tau_1 = v_1, \dots, \tau_n = v_n$ to S

$$S: \{\tau_6 \to \tau_2 = \tau_5 \to \text{int}, \tau_1 = \text{int} \to \tau_5, \dots\} \Rightarrow$$
$$\{\tau_6 = \tau_5, \tau_2 = \text{int}, \tau_1 = \text{int} \to \tau_5, \dots\}$$
$$\sigma: \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots\}$$

• Applies when the constraint is of the form $T(\tau_1, \dots \tau_n) = T(v_1, \dots, v_n)$

• Action: add $\tau_1 = v_1, \dots, \tau_n = v_n$ to S

$$S: \{\tau_6 \to \tau_2 = \tau_5 * \text{ int}, \tau_1 = \text{ int} \to \tau_5, \dots\}$$
$$\sigma: \{\tau_3 \mapsto \text{ int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots\}$$

• Applies when the constraint is of the form $T(\tau_1, \dots \tau_n) = T(v_1, \dots, v_n)$

• Action: add $\tau_1 = v_1, \dots, \tau_n = v_n$ to S

$$S: \{\tau_6 \to \tau_2 = \tau_5 * \text{ int}, \tau_1 = \text{ int} \to \tau_5, \dots\} \Rightarrow \text{ fail}$$
$$\sigma: \{\tau_3 \mapsto \text{ int}, \tau_4 \mapsto \tau_5 \to \tau_6, \dots\}$$

• If the constructors or number of arguments are different, no solution exists

The Unification Algorithm

- Pick a constraint L = R from the current set S
- Apply one of the following rules, as appropriate:
 - 1. Discard
 - 2. Substitute left
 - 3. Substitute right
 - 4. Decompose
- Update the constraint set S and the substitution σ accordingly
- Repeat on the remaining constraints
- When finished, σ will unify all the original constraints

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Constraint-Based Type Inference

- Step 1: gather constraints, outputs pair (τ, S) such that if S can be solved, τ is the type of the expression
- Step 2: unify constraints S, obtain solving substitution σ
- Step 3: apply σ to τ to get the type of the expression

let type_of (gamma : context) (e : exp) =
let (t, c) = get_constraints gamma e in
let s = unify c in apply_subst s t

Constraint-Based Type Inference: Rules

 $\frac{(n \text{ is an integer literal})}{\Gamma \vdash n : \text{ int } | \{\}} \qquad \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau | \{\}}$

$$\Gamma \vdash l_1 : \tau_1 \mid S_1 \quad \Gamma \vdash l_2 : \tau_2 \mid S_2$$

$$\overline{\Gamma \vdash l_1 + l_2} : \operatorname{int} \mid \{\tau_1 = \operatorname{int}, \tau_2 = \operatorname{int}\} \cup S_1 \cup S_2$$

$$\frac{\Gamma[x \mapsto \tau_1] \vdash l : \tau_2 \mid S \quad \tau_1 \text{ fresh}}{\Gamma \vdash (\text{fun } x \rightarrow l) : \tau_1 \rightarrow \tau_2 \mid S}$$

The Unification Algorithm

- Pick a constraint L = R from the current set S
- Apply one of the following rules, as appropriate:
 - 1. Discard
 - 2. Substitute left
 - 3. Substitute right
 - 4. Decompose
- Update the constraint set S and the substitution σ accordingly
- Repeat on the remaining constraints
- When finished, σ will unify all the original constraints

$$\{\} \vdash (\mathsf{fun f} \rightarrow \mathsf{fun x} \rightarrow \mathsf{fx} + \mathsf{f3}) : \tau_1 \rightarrow \tau_2 \rightarrow \mathsf{int} \mid S_1$$

$$S_1 = \{\tau_3 = \text{int}, \tau_4 = \text{int}, \tau_1 = \tau_2 \to \tau_3, \tau_1 = \text{int} \to \tau_4\}$$

$$\{\} \vdash (\text{fun } f \rightarrow \text{fun } x \rightarrow \text{f } x + f 3) : \tau_1 \rightarrow \tau_2 \rightarrow \text{int} \mid S_1$$
$$S_1 = \{\tau_4 = \text{int}, \tau_1 = \tau_2 \rightarrow \tau_3, \tau_1 = \text{int} \rightarrow \tau_4\}$$
$$\sigma = \{\tau_3 \mapsto \text{int}\}$$

$$\{\} \vdash (\text{fun } f \rightarrow \text{fun } x \rightarrow \text{f } x + f 3) : \tau_1 \rightarrow \tau_2 \rightarrow \text{int} \mid S_1$$
$$S_1 = \{\tau_4 = \text{int}, \tau_1 = \tau_2 \rightarrow \text{int}, \tau_1 = \text{int} \rightarrow \tau_4\}$$
$$\sigma = \{\tau_3 \mapsto \text{int}\}$$

$$\{\} \vdash (\text{fun } f \rightarrow \text{fun } x \rightarrow f x + f 3) : \tau_1 \rightarrow \tau_2 \rightarrow \text{int} \mid S_1$$
$$S_1 = \{\tau_1 = \tau_2 \rightarrow \text{int}, \tau_1 = \text{int} \rightarrow \text{int}\}$$
$$\sigma = \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \text{int}\}$$

 $\{\} \vdash (\text{fun } f \rightarrow \text{fun } x \rightarrow f x + f 3) : \tau_1 \rightarrow \tau_2 \rightarrow \text{int} \mid S_1$ $S_1 = \{\tau_2 \rightarrow \text{int} = \text{int} \rightarrow \text{int}\}$ $\sigma = \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \text{int}, \tau_1 \mapsto \tau_2 \rightarrow \text{int}\}$

 $\{\} \vdash (\text{fun } f \rightarrow \text{fun } x \rightarrow \text{f } x + f 3) : \tau_1 \rightarrow \tau_2 \rightarrow \text{int} \mid S_1$ $S_1 = \{\tau_2 = \text{int, int} = \text{int}\}$ $\sigma = \{\tau_3 \mapsto \text{int, } \tau_4 \mapsto \text{int, } \tau_1 \mapsto \tau_2 \rightarrow \text{int}\}$

- $\{\} \vdash (\texttt{fun } f \rightarrow \texttt{fun } x \rightarrow \texttt{f } x + \texttt{f } 3) : \tau_1 \rightarrow \tau_2 \rightarrow \texttt{int} \mid S_1$ $S_1 = \{\texttt{int} = \texttt{int}\}$
 - $\sigma = \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \text{int}, \tau_1 \mapsto \text{int} \to \text{int}, \tau_2 \mapsto \text{int}\}$

 $\{\} \vdash (\text{fun f} \rightarrow \text{fun } x \rightarrow f x + f 3) : \tau_1 \rightarrow \tau_2 \rightarrow \text{int} \mid S_1$ $S_1 = \{\}$ $\sigma = \{\tau_3 \mapsto \text{int}, \tau_4 \mapsto \text{int}, \tau_1 \mapsto \text{int} \to \text{int}, \tau_2 \mapsto \text{int}\}$ $[\sigma](\tau_1 \rightarrow \tau_2 \rightarrow \text{int}) = (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \rightarrow \text{int}$ $\{\} \vdash (fun f \rightarrow fun x \rightarrow f x + f 3) : (int \rightarrow int) \rightarrow int \rightarrow int$

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.