CS 476 — Programming
Language Design

William Mansky

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Constraint-Based Type Inference

* We can do this in two steps:
— First, gather all the constraints on type variables
— Second, find a solution to the constraints

e For step 1, we need constraints for each typing rule:

=)

Fl—llle_)Tz Fl_l2:T1
Fl—lllz:Tz

F|_l1:T1 Fl‘lZ:Tz
Fl—lllzle{leTz_)T}

' =1:7]S5 means “l hastype T in context I', as long as
constraints S are satisfied”

Unification

* Now we have to solve the constraints

let unify (c : constraints) : (ident -> typ option) = ...
 Unification produces a substitution of types for type variables
unify {t3 = int, 7, = int, 71 =7, 2 73,71 = Iint > 7,} = ...

* Exercise: How would you solve this unification problem? How
would you figure out the values of all the type variables?

Constraint-Based Type Inference

* Now we have to solve the constraints
let unify (c : constraints) : (ident -> typ option) = ...
 Unification produces a substitution of types for type variables
unify {t; = int, 7, = int, 7y =7, =2 73,71 = int = 174} =

{t3 = int, 7, = int,7; = int = int, 7, = int}

let type of (gamma : context) (e : exp) =
let (t, c) = get constraints gamma e in
let s = unify cin apply substst

Unification

* Input: a set of constraints of the form L = R, where L and R
are types with type variables in them

* Qutput: a substitution, a map from type variables to types
(which still may have variables in them)

* The output substitution o should solve all the constraints: for
each L = R in the input, |g]|L is exactly the same as [g|R

The Unification Algorithm

e Pick a constraint L = R from the current set S

* Apply one of the following rules, as appropriate:
1. Discard
2. Substitute left
3. Substitute right
4. Decompose

* Update the constraint set S and the substitution o accordingly
* Repeat on the remaining constraints

The Unification Algorithm: Discard

* Applies when the constraint is of the formT =T

e Action: remove the constraint from S, while leaving o and the
rest of S unchanged

S: {int =int,7; = 1,, ...}
g:{t3 = iInt, 74 » T = Tg, ... }

The Unification Algorithm: Discard

* Applies when the constraint is of the formT =T

e Action: remove the constraint from S, while leaving o and the
rest of S unchanged

S: {lnt — int, 11 = Ty, } = {Tl = 1>, }
g:{t3 = iInt, 74 » T = Tg, ... }

The Unification Algorithm: Substitute (L)

* Applies when the constraint is of the formx =T

* Action: add {x » T} to g, and apply it to the rest of 0 and S

S: {ts = bool,7; = int - 15, ... }

0. {Tg L int,T4_ = Ty = Tg, }

The Unification Algorithm: Substitute (L)

* Applies when the constraint is of the formx =T

* Action: add {x » T} to g, and apply it to the rest of 0 and S

S: {t5 = bool,7; = int - 15, ...} > {r; = int - boo], ...}

o:{13 »int, 7, » 7c > T, ... } = {15 » bool, 7, » bool - 1, ...}

The Unification Algorithm: Substitute (L)

* Applies when the constraint is of the formx =T

* Action: add {x » T} to g, and apply it to the rest of 0 and S

S:{tc =7-> 1,7 =int > 1¢, ... }

0. {Tg L int,T4_ = Ty = Tg, }

e “Occurs check”: x must not be freein T

The Unification Algorithm: Substitute (L)

* Applies when the constraint is of the formx =T

* Action: add {x » T} to g, and apply it to the rest of 0 and S

S: {1t =17 - 1,71 =int - 1¢, ... } = fail

0. {T3 L int,T4_ = Ty = Tg, }

e “Occurs check”: x must not be freein T

The Unification Algorithm: Substitute (R)

* Applies when the constraint is of the form T = x

* Action: add {x » T} to g, and apply it to the rest of 0 and S

S: {bool = 15, 7; = int = 715, ... } > {74 = int - boo], ...}

o:{13 »int, 7, » 7c > T, ... } = {15 » bool, 7, » bool - 1, ...}

e “Occurs check”: x must not be freein T

The Unification Algorithm: Decompose

* Applies when the constraint is of the form
T(Tl, ...Tn) — T(Ul, ...,Un)
* Action:add 7y = V4, ..., T, = VU, t0S

S: {1ty > 1, =7 —int, 7y = int - 15, ... }

0. {Tg L int,T4_ = Ty = Tg, }

The Unification Algorithm: Decompose

* Applies when the constraint is of the form
T(Tl, ...Tn) — T(Ul, ""UTl)
* Action:add 7y = V4, ..., T, = VU, t0S

S:{tg 21, =17~ int, 7y =int-> 15,...} =
{T¢ = 15,7, = int, 7y = int - 7¢, ... }

0. {Tg = int,T4_ = Ty = Tg, }

The Unification Algorithm: Decompose

* Applies when the constraint is of the form
T(Tl, ...Tn) — T(Ul, ...,Un)
* Action:add 7y = V4, ..., T, = VU, t0S

S: {tg > 1, =T xint, 7, = int - ¢, ... }

0. {Tg L int,T4_ = Ty = Tg, }

The Unification Algorithm: Decompose

* Applies when the constraint is of the form
T(Tl, Tn) — T(Ul, ""UTL)
* Action:add 7y = V4, ..., T, = VU, t0S

S: {tg = 17, = 7c xint, 7, = int > 1, ... } = fail

0. {T3 L int,T4_ = Tg = Tg, }

* [f the constructors or number of arguments are different, no
solution exists

The Unification Algorithm

e Pick a constraint L = R from the current set S

* Apply one of the following rules, as appropriate:
1. Discard
2. Substitute left
3. Substitute right
4. Decompose

* Update the constraint set S and the substitution o accordingly
* Repeat on the remaining constraints
* When finished, o will unify all the original constraints

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Constraint-Based Type Inference

* Step 1: gather constraints, outputs pair (7, S) such that if S can be
solved, T is the type of the expression

e Step 2: unify constraints S, obtain solving substitution o
e Step 3: apply o to T to get the type of the expression

let type of (gamma : context) (e : exp) =
let (t, c) = get_constraints gamma e in
let s = unify cin apply substst

(n is an integer literal) '(x)=T1

[+n:int| {} F'Fx:7|{}

Fl_l1:T1|51 Fl_l2:T2|SZ

[- l1+l2 . int|{’[1 =int,T2 =1nt}U51U52

Mxe— 1| FL:7,|S 714 fresh
' (funx->1):174 -1, |S

The Unification Algorithm

e Pick a constraint L = R from the current set S

* Apply one of the following rules, as appropriate:
1. Discard
2. Substitute left
3. Substitute right
4. Decompose

* Update the constraint set S and the substitution o accordingly
* Repeat on the remaining constraints
* When finished, o will unify all the original constraints

Constraint-Based Type Inference: Example

OFEun £ => fun x => f x + f 3):1y > 1, »int| S,

Si={t3=int,t, =int, 11 =7, 2 73,71 = int = 7,4}

Constraint-Based Type Inference: Example

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5
Sl ={T4 =int,T1 = Ty 13,71 :int—)T4}

o = {13 » int}

Constraint-Based Type Inference: Example

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5
51={T4=int,’[1=T2—>int,T1=int—>T4}

o = {13 » int}

Constraint-Based Type Inference: Example

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5
S;1 = {t1 = 1, = int, 7; = int - int}

o = {13 » int, 7, » int}

Constraint-Based Type Inference: Example

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5
S1 = {1, = int = int - int}

o = {13 = int, 74, » int, 7, » T, = int}

Constraint-Based Type Inference: Example

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5
S1 = {r, = int, int = int}

o = {13 = int, 74, » int, 7, » T, = int}

Constraint-Based Type Inference: Example

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5
S1 = {int = int}

o = {13 » int, 7, » int, 7, » int - int, 7, » int}

A Fun £ => fun x => f x + f 3):1y > 17, —int| 5

51 =1}

o = {13 » int, 7, = int,7; = int = int, 7, » int}
lo](t; = 7, - int) = (int - int) - int - int

1 (fun £ -> fun x => f x + f 3): (int - int) - int — int

u

L

Questions

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Constraint-Based Type Inference
	Slide 3: Unification
	Slide 4: Constraint-Based Type Inference
	Slide 5: Unification
	Slide 6: The Unification Algorithm
	Slide 7: The Unification Algorithm: Discard
	Slide 8: The Unification Algorithm: Discard
	Slide 9: The Unification Algorithm: Substitute (L)
	Slide 10: The Unification Algorithm: Substitute (L)
	Slide 11: The Unification Algorithm: Substitute (L)
	Slide 12: The Unification Algorithm: Substitute (L)
	Slide 13: The Unification Algorithm: Substitute (R)
	Slide 14: The Unification Algorithm: Decompose
	Slide 15: The Unification Algorithm: Decompose
	Slide 16: The Unification Algorithm: Decompose
	Slide 17: The Unification Algorithm: Decompose
	Slide 18: The Unification Algorithm
	Slide 19
	Slide 20: Constraint-Based Type Inference
	Slide 21: Constraint-Based Type Inference: Rules
	Slide 22: The Unification Algorithm
	Slide 23: Constraint-Based Type Inference: Example
	Slide 24: Constraint-Based Type Inference: Example
	Slide 25: Constraint-Based Type Inference: Example
	Slide 26: Constraint-Based Type Inference: Example
	Slide 27: Constraint-Based Type Inference: Example
	Slide 28: Constraint-Based Type Inference: Example
	Slide 29: Constraint-Based Type Inference: Example
	Slide 30: Constraint-Based Type Inference: Example
	Slide 31

