
CS 476 – Programming
Language Design
William Mansky

Constraint-Based Type Inference

• We can do this in two steps:
― First, gather all the constraints on type variables
― Second, find a solution to the constraints

• For step 1, we need constraints for each typing rule:

• Γ ⊢ 𝑙 ∶ 𝜏 | 𝑆 means “𝑙 has type 𝜏 in context Γ, as long as
constraints 𝑆 are satisfied”

Γ ⊢ 𝑙1 ∶ 𝜏1 → 𝜏2 Γ ⊢ 𝑙2 ∶ 𝜏1

Γ ⊢ 𝑙1 𝑙2 ∶ 𝜏2

Γ ⊢ 𝑙1 ∶ 𝜏1 Γ ⊢ 𝑙2 ∶ 𝜏2

Γ ⊢ 𝑙1 𝑙2 ∶ 𝜏 | {𝜏1 = 𝜏2 → 𝜏}

Unification

• Now we have to solve the constraints

let unify (c : constraints) : (ident -> typ option) = …

• Unification produces a substitution of types for type variables

unify {𝜏3 = int, 𝜏4 = int, 𝜏1 = 𝜏2 → 𝜏3, 𝜏1 = int → 𝜏4} = …

• Exercise: How would you solve this unification problem? How
would you figure out the values of all the type variables?

Constraint-Based Type Inference

• Now we have to solve the constraints

let unify (c : constraints) : (ident -> typ option) = …

• Unification produces a substitution of types for type variables

unify {𝜏3 = int, 𝜏4 = int, 𝜏1 = 𝜏2 → 𝜏3, 𝜏1 = int → 𝜏4} =

 {𝜏3 = int, 𝜏4 = int, 𝜏1 = int → int, 𝜏2 = int}

let type_of (gamma : context) (e : exp) =

 let (t, c) = get_constraints gamma e in

 let s = unify c in apply_subst s t

Unification

• Input: a set of constraints of the form 𝐿 = 𝑅, where 𝐿 and 𝑅
are types with type variables in them

• Output: a substitution, a map from type variables to types
(which still may have variables in them)

• The output substitution 𝜎 should solve all the constraints: for
each 𝐿 = 𝑅 in the input, 𝜎 𝐿 is exactly the same as 𝜎 𝑅

The Unification Algorithm

• Pick a constraint 𝐿 = 𝑅 from the current set 𝑆

• Apply one of the following rules, as appropriate:
1. Discard
2. Substitute left
3. Substitute right
4. Decompose

• Update the constraint set 𝑆 and the substitution 𝜎 accordingly

• Repeat on the remaining constraints

The Unification Algorithm: Discard

• Applies when the constraint is of the form 𝑇 = 𝑇

• Action: remove the constraint from 𝑆, while leaving 𝜎 and the
rest of 𝑆 unchanged

 𝑆: int = int, 𝜏1 = 𝜏2, …

 𝜎: {𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, … }

The Unification Algorithm: Discard

• Applies when the constraint is of the form 𝑇 = 𝑇

• Action: remove the constraint from 𝑆, while leaving 𝜎 and the
rest of 𝑆 unchanged

 𝑆: int = int, 𝜏1 = 𝜏2, … ⇒ {𝜏1 = 𝜏2, … }

 𝜎: {𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, … }

The Unification Algorithm: Substitute (L)

• Applies when the constraint is of the form 𝑥 = 𝑇

• Action: add {𝑥 ↦ 𝑇} to 𝜎, and apply it to the rest of 𝜎 and 𝑆

 𝑆: 𝜏5 = bool, 𝜏1 = int → 𝜏5, …

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

The Unification Algorithm: Substitute (L)

• Applies when the constraint is of the form 𝑥 = 𝑇

• Action: add {𝑥 ↦ 𝑇} to 𝜎, and apply it to the rest of 𝜎 and 𝑆

 𝑆: 𝜏5 = bool, 𝜏1 = int → 𝜏5, … ⇒ {𝜏1 = int → bool, … }

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, … ⇒ 𝜏5 ↦ bool, 𝜏4 ↦ bool → 𝜏6, …

The Unification Algorithm: Substitute (L)

• Applies when the constraint is of the form 𝑥 = 𝑇

• Action: add {𝑥 ↦ 𝑇} to 𝜎, and apply it to the rest of 𝜎 and 𝑆

 𝑆: 𝜏5 = 𝜏 → 𝜏5, 𝜏1 = int → 𝜏5, …

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

• “Occurs check”: 𝑥 must not be free in 𝑇

The Unification Algorithm: Substitute (L)

• Applies when the constraint is of the form 𝑥 = 𝑇

• Action: add {𝑥 ↦ 𝑇} to 𝜎, and apply it to the rest of 𝜎 and 𝑆

 𝑆: 𝜏5 = 𝜏 → 𝜏5, 𝜏1 = int → 𝜏5, … ⇒ fail

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

• “Occurs check”: 𝑥 must not be free in 𝑇

The Unification Algorithm: Substitute (R)

• Applies when the constraint is of the form 𝑇 = 𝑥

• Action: add {𝑥 ↦ 𝑇} to 𝜎, and apply it to the rest of 𝜎 and 𝑆

 𝑆: bool = 𝜏5, 𝜏1 = int → 𝜏5, … ⇒ {𝜏1 = int → bool, … }

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, … ⇒ 𝜏5 ↦ bool, 𝜏4 ↦ bool → 𝜏6, …

• “Occurs check”: 𝑥 must not be free in 𝑇

The Unification Algorithm: Decompose

• Applies when the constraint is of the form
𝑇(𝜏1, … 𝜏𝑛) = 𝑇(𝜐1, … , 𝜐𝑛)

• Action: add 𝜏1 = 𝜐1, … , 𝜏𝑛 = 𝜐𝑛 to 𝑆

 𝑆: 𝜏6 → 𝜏2 = 𝜏5 → int, 𝜏1 = int → 𝜏5, …

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

The Unification Algorithm: Decompose

• Applies when the constraint is of the form
𝑇(𝜏1, … 𝜏𝑛) = 𝑇(𝜐1, … , 𝜐𝑛)

• Action: add 𝜏1 = 𝜐1, … , 𝜏𝑛 = 𝜐𝑛 to 𝑆

 𝑆: 𝜏6 → 𝜏2 = 𝜏5 → int, 𝜏1 = int → 𝜏5, … ⇒

𝜏6 = 𝜏5, 𝜏2 = int, 𝜏1 = int → 𝜏5, …

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

The Unification Algorithm: Decompose

• Applies when the constraint is of the form
𝑇(𝜏1, … 𝜏𝑛) = 𝑇(𝜐1, … , 𝜐𝑛)

• Action: add 𝜏1 = 𝜐1, … , 𝜏𝑛 = 𝜐𝑛 to 𝑆

 𝑆: 𝜏6 → 𝜏2 = 𝜏5 ∗ int, 𝜏1 = int → 𝜏5, …

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

The Unification Algorithm: Decompose

• Applies when the constraint is of the form
𝑇(𝜏1, … 𝜏𝑛) = 𝑇(𝜐1, … , 𝜐𝑛)

• Action: add 𝜏1 = 𝜐1, … , 𝜏𝑛 = 𝜐𝑛 to 𝑆

 𝑆: 𝜏6 → 𝜏2 = 𝜏5 ∗ int, 𝜏1 = int → 𝜏5, … ⇒ fail

 𝜎: 𝜏3 ↦ int, 𝜏4 ↦ 𝜏5 → 𝜏6, …

• If the constructors or number of arguments are different, no
solution exists

The Unification Algorithm

• Pick a constraint 𝐿 = 𝑅 from the current set 𝑆

• Apply one of the following rules, as appropriate:
1. Discard
2. Substitute left
3. Substitute right
4. Decompose

• Update the constraint set 𝑆 and the substitution 𝜎 accordingly

• Repeat on the remaining constraints

• When finished, 𝜎 will unify all the original constraints

Constraint-Based Type Inference

• Step 1: gather constraints, outputs pair (𝜏, 𝑆) such that if 𝑆 can be
solved, 𝜏 is the type of the expression

• Step 2: unify constraints 𝑆, obtain solving substitution 𝜎

• Step 3: apply 𝜎 to 𝜏 to get the type of the expression

let type_of (gamma : context) (e : exp) =

 let (t, c) = get_constraints gamma e in

 let s = unify c in apply_subst s t

Constraint-Based Type Inference: Rules

(𝑛 is an integer literal)

Γ ⊢ 𝑛 ∶ int | {}

Γ 𝑥 = 𝜏

Γ ⊢ 𝑥 ∶ 𝜏 | {}

Γ 𝑥 ↦ 𝜏1 ⊢ 𝑙 ∶ 𝜏2 | 𝑆 𝜏1 fresh

Γ ⊢ fun 𝑥 −> 𝑙 ∶ 𝜏1 → 𝜏2 | 𝑆

Γ ⊢ 𝑙1 ∶ 𝜏1 𝑆1 Γ ⊢ 𝑙2 ∶ 𝜏2 𝑆2

Γ ⊢ 𝑙1 + 𝑙2 ∶ int | 𝜏1 = int, 𝜏2 = int ∪ 𝑆1 ∪ 𝑆2

The Unification Algorithm

• Pick a constraint 𝐿 = 𝑅 from the current set 𝑆

• Apply one of the following rules, as appropriate:
1. Discard
2. Substitute left
3. Substitute right
4. Decompose

• Update the constraint set 𝑆 and the substitution 𝜎 accordingly

• Repeat on the remaining constraints

• When finished, 𝜎 will unify all the original constraints

Constraint-Based Type Inference: Example

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

𝑆1 = {𝜏3 = int, 𝜏4 = int, 𝜏1 = 𝜏2 → 𝜏3, 𝜏1 = int → 𝜏4}

Constraint-Based Type Inference: Example

𝑆1 = {𝜏4 = int, 𝜏1 = 𝜏2 → 𝜏3, 𝜏1 = int → 𝜏4}

𝜎 = {𝜏3 ↦ int}

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

Constraint-Based Type Inference: Example

𝑆1 = {𝜏4 = int, 𝜏1 = 𝜏2 → int, 𝜏1 = int → 𝜏4}

𝜎 = {𝜏3 ↦ int}

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

Constraint-Based Type Inference: Example

𝑆1 = {𝜏1 = 𝜏2 → int, 𝜏1 = int → int}

𝜎 = {𝜏3 ↦ int, 𝜏4 ↦ int}

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

Constraint-Based Type Inference: Example

𝑆1 = {𝜏2 → int = int → int}

𝜎 = {𝜏3 ↦ int, 𝜏4 ↦ int, 𝜏1 ↦ 𝜏2 → int}

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

Constraint-Based Type Inference: Example

𝑆1 = {𝜏2 = int, int = int}

𝜎 = {𝜏3 ↦ int, 𝜏4 ↦ int, 𝜏1 ↦ 𝜏2 → int}

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

Constraint-Based Type Inference: Example

𝑆1 = {int = int}

𝜎 = {𝜏3 ↦ int, 𝜏4 ↦ int, 𝜏1 ↦ int → int, 𝜏2 ↦ int}

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

Constraint-Based Type Inference: Example

𝑆1 = {}

𝜎 = {𝜏3 ↦ int, 𝜏4 ↦ int, 𝜏1 ↦ int → int, 𝜏2 ↦ int}

𝜎 𝜏1 → 𝜏2 → int = int → int → int → int

{} ⊢ fun f −> fun x −> f x + f 3 ∶ int → int → int → int

{} ⊢ fun f −> fun x −> f x + f 3 ∶ 𝜏1 → 𝜏2 → int | 𝑆1

	Slide 0: CS 476 – Programming Language Design
	Slide 1
	Slide 2: Constraint-Based Type Inference
	Slide 3: Unification
	Slide 4: Constraint-Based Type Inference
	Slide 5: Unification
	Slide 6: The Unification Algorithm
	Slide 7: The Unification Algorithm: Discard
	Slide 8: The Unification Algorithm: Discard
	Slide 9: The Unification Algorithm: Substitute (L)
	Slide 10: The Unification Algorithm: Substitute (L)
	Slide 11: The Unification Algorithm: Substitute (L)
	Slide 12: The Unification Algorithm: Substitute (L)
	Slide 13: The Unification Algorithm: Substitute (R)
	Slide 14: The Unification Algorithm: Decompose
	Slide 15: The Unification Algorithm: Decompose
	Slide 16: The Unification Algorithm: Decompose
	Slide 17: The Unification Algorithm: Decompose
	Slide 18: The Unification Algorithm
	Slide 19
	Slide 20: Constraint-Based Type Inference
	Slide 21: Constraint-Based Type Inference: Rules
	Slide 22: The Unification Algorithm
	Slide 23: Constraint-Based Type Inference: Example
	Slide 24: Constraint-Based Type Inference: Example
	Slide 25: Constraint-Based Type Inference: Example
	Slide 26: Constraint-Based Type Inference: Example
	Slide 27: Constraint-Based Type Inference: Example
	Slide 28: Constraint-Based Type Inference: Example
	Slide 29: Constraint-Based Type Inference: Example
	Slide 30: Constraint-Based Type Inference: Example
	Slide 31

