
CS 494 – Provably Correct 
Programming
William Mansky





Interactive Theorem Provers

• In the theorem prover, we can:

1. Write definitions, in a math-like programming language

2. Write proofs about those definitions, using logic “tactics”

3. See the proof state at each point in a proof (what do we 
know? what do we still need to show?)

4. Automatically check that each step of our proofs is valid



Writing Definitions in Coq

• The definition language of Coq is an OCaml-like functional 
programming language, called Gallina

• Key features: inductive types, pattern matching, and recursion

• Purpose is to define mathematical objects, not to write 
programs (though the two are often the same!)

• See Basics.v from the textbook





Inductive Definitions

Inductive day :=

| monday

| tuesday

| wednesday

| thursday

| friday

| saturday

| sunday.

monday, tuesday, … , saturday, sunday

day is a type
monday : day
tuesday : day
…
saturday : day
sunday : day

Types are sets!

day is a set
monday ∈ day
tuesday ∈ day
…
saturday ∈ day
sunday ∈ day



Exercise: nandb

• Complete the exercise “nandb” in Basics.v: fill in the definition
of nandb, and prove that the examples work

• Submit your definition and example proofs for Exercise 1/13 on 
Gradescope

• It may help to refer to the definitions of negb, andb, and orb
earlier in the file



Inductive Definitions

How would you define the natural numbers?





HW1: Basics.v

• Complete all the exercises in Basics.v (you may skip the one 
marked optional)

• You can run BasicsTest.v to make sure you’ve gotten all of them

• Due Thursday 1/20 at 2 PM

• Submit via Gradescope


