
CS 494 – Provably Correct 
Programming
William Mansky



Software works badly

https://en.wikipedia.org/wiki/Spirit_(rover)

https://en.wikipedia.org/wiki/2009%E2%80%932011_Toyota_vehicle_recalls

https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-
million/

https://en.wikipedia.org/wiki/Spirit_(rover)
https://en.wikipedia.org/wiki/2009%E2%80%932011_Toyota_vehicle_recalls
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/


Can we change the way we program?



Can we change the way we program?

• Programs in safer languages (Rust, OCaml, …) still have bugs

• Most programmers don’t get to choose what language they 
write in!

― Need to maintain/interoperate with existing code
― We mostly write in the languages we know



• Prove programs correct!

• This program will:
― never overflow its stack
― never dereference a null pointer
― never call a function without meeting its preconditions
― always return the right result!

Can we change the way we program?

i = 1;

while(i <= n){

r = r * i;

i++;

}

This course:

How can we write these proofs?

How can we write programs so they’re 
easier to prove?





Welcome to the Course!

• This is CS 494, Provably Correct Programming

• I’m glad you’re here!

• Meets TR 2:00-3:15 PM

• You can attend:
― in person, in TBH 180C (after the first two weeks)
― online live, through Echo360 on Blackboard
― online asynchronously, by watching recorded lectures on Echo360

• Office hours Monday 12-1 and Thursday 11-12, and by 
appointment, in SEO 1331 and on Blackboard Collaborate

― Office hours are great for homework help, or just to say hi!



Course Information

• Professor: William Mansky (he/him) (mansky1@uic.edu)

• Prerequisites: CS 301 (logic and proofs)

• Website: https://www.cs.uic.edu/~mansky/teaching/cs494sf/sp22/

• Anonymous in-class questions: https://pollev.com/wmansky771

• In-person lectures will be streamed and recorded via Echo360 
on Blackboard

• Discussion board on Piazza, assignments via Gradescope (entry 
code ERYG7D)

mailto:mansky1@uic.edu
https://www.cs.uic.edu/~mansky/teaching/cs494sf/sp22/
https://pollev.com/wmansky771
https://uic.blackboard.com/
https://piazza.com/class/kxyw2e6w2p02fi
https://www.gradescope.com/


Asking questions

• In class: raise your hand (or type in BBCollab chat) anytime

• You can ask questions anonymously with PollEverywhere
(https://pollev.com/wmansky771)

• On Piazza
― Can ask/answer anonymously
― Can post privately to instructors
― Can answer other students’ questions

• In office hours, Monday 12-1 and Thursday 11-12

• If you have a question, someone else probably has the same 
question!

https://pollev.com/wmansky771
piazza.com/uic/fall2021/cs476


Grading

• Exercises: 25%

• Assignments: 50%

• Project: 25%



Exercises

• In each class, we’ll work through some example 
problems/proofs

• Submit via Gradescope

• Due at the start of the next class

• You get credit as long as you make some progress on the 
problem

https://www.gradescope.com/


Assignments

• Programming/proving assignments

• Submit via Gradescope

• Due at 2 PM on the due date

• You can discuss strategy with other students, but don’t look at 
each other’s code!

• Cite your sources (websites, other students, stackoverflow, 
etc.)

• You’ll get most of the credit for attempting a problem, even if 
you don’t finish it – do what you can, and we’ll work through 
tricky ones in class after the deadline

https://www.gradescope.com/




Getting Started with Proofs

• You already know how to write programs: languages, 
compilers, IDEs, etc.

• How do we write proofs? The same way: with digital tools!

• Tool #1: The Coq proof assistant (https://coq.inria.fr/)

• For the first ~4 weeks, we’ll learn how to use it to write 
guaranteed-correct mathematical proofs

• After that, we’ll apply those techniques to programs!

https://coq.inria.fr/


Interactive Theorem Provers

• In the theorem prover, we can:

1. Write definitions, in a math-like programming language

2. Write proofs about those definitions, using logic “tactics”

3. See the proof state at each point in a proof (what do we 
know? what do we still need to show?)

4. Automatically check that each step of our proofs is valid



Logical Foundations

https://softwarefoundations.cis.upenn.edu/lf-current/index.html

•Online textbook, each chapter is a file 
that can be run in Coq

•Contents:
― Introduction to Coq
― Basic logic and functional programming
― More advanced logic, mostly induction
― How to describe the behavior of 

programs

https://softwarefoundations.cis.upenn.edu/lf-current/index.html


Getting Started with Coq

• Available online at https://coq.inria.fr/

• You can download installers for Windows and Mac from the 
website

• Coq file extension is .v

• If it matters, we’ll use version 8.13.2

• Two main IDEs: CoqIDE (ships with Coq) and Visual Studio Code 
(VSCoq extension)

https://coq.inria.fr/


Today’s Exercise

1. Download and install Coq 
(https://github.com/coq/platform/releases/tag/2021.09.0, or from the 
download links at https://coq.inria.fr/)

2. Download and unpack the textbook 
(https://softwarefoundations.cis.upenn.edu/lf-current/index.html)
― It’s a .tgz file, so you may need to install 7-zip (https://www.7-zip.org/) to unpack it

3. Run make in the textbook’s folder to compile the textbook. If you don’t 
have a command line with make, you’ll need to set one up: I use Cygwin 
(https://cygwin.com/install.html)

4. If you finish, run demo.v, then submit it for Exercise 1/11 on Gradescope. If 
you haven’t finished, submit a description of where you’re stuck instead.

If you get stuck at any point, say so in chat, on https://pollev.com/wmansky771, 
or on Piazza

https://github.com/coq/platform/releases/tag/2021.09.0
https://coq.inria.fr/
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://www.7-zip.org/
https://cygwin.com/install.html
https://www.cs.uic.edu/~mansky/teaching/cs494sf/sp22/lectures/demo.v
https://pollev.com/wmansky771



