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Abstract

POMDPs provide a principled framework for sequential plan-
ning in single agent settings. An extension of POMDPs to
multiagent settings, called interactive POMDPs (I-POMDPs),
replaces POMDP belief spaces with interactive hierarchical
belief systems which represent an agent’s belief about the
physical world, about beliefs of the other agent(s), about their
beliefs about others’ beliefs, and so on. This modification
makes the difficulties of obtaining solutions due to complex-
ity of the belief and policy spaces even more acute. We
describe a method for obtaining approximate solutions to I-
POMDPs based on particle filtering (PF). We utilize the in-
teractive PF which descends the levels of interactive belief
hierarchies and samples and propagates beliefs at each level.
The interactive PF is able to deal with the belief space com-
plexity, but it does not address the policy space complexity.
We provide experimental results and chart future work.

Introduction
Partially observable Markov decision processes (POMDPs)
offer a principled framework for sequential decision-
making. Their solutions map an agent’s states of belief about
the environment to policies, but optimal solutions are diffi-
cult to compute due to two sources of intractability: The
complexity of the belief representation sometimes called the
curse of dimensionality, and the complexity of the space of
the policies, also called the curse of history. In this paper we
focus on an extension of POMDPs to multiagent settings,
called interactive POMDPs (I-POMDPs) (Gmytrasiewicz &
Doshi 2005). The solutions to I-POMDPs are defined analo-
gously to solutions of POMDPs, but complexity of the belief
space is even greater; they include beliefs about the physi-
cal environment, and possibly the agent’s beliefs about other
agents’ beliefs, their beliefs about others, and so on. This
added complexity of interactive beliefs exasperates difficul-
ties brought about by the curses of dimensionality and his-
tory. To address the problem of belief dimensionality we
propose using an interactive version of the particle filtering
(PF) approach.

Though POMDPs can be used in multiagent settings, it is
so only under the strong assumption that the other agent’s
behavior be adequately represented implicitly within the
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state transition function. The approach taken in I-POMDPs
is to include sophisticated models of other agents in the state
space. These models called intentional models, ascribe be-
liefs, preferences, and rationality to others and are analo-
gous to the notion of agent types in Bayesian games. An
agent’s beliefs are then called interactive beliefs, and they
are nested analogously to the hierarchical belief systems
considered in game theory and in theoretical computer sci-
ence (Mertens & Zamir 1985; Brandenburger & Dekel 1993;
Fagin et al. 1995; Heifetz & Samet 1998).

Since an agent’s belief is defined over other agents’ mod-
els, which may be a complex continuous space, sampling
methods, which are immune to the high dimensionality of
the underlying space are a promising approach. In (Doshi
& Gmytrasiewicz 2005), we adapted PF (Doucet, Freitas, &
Gordon 2001; Gordon, Salmond, & Smith 1993), and more
specifically the bootstrap filter, resulting in the interactive
PF, to approximate the state estimation in multiagent set-
tings. In this paper, we combine the interactive PF with
value iteration to present the first method for computing ap-
proximately optimal policies in the I-POMDP framework.
We derive error bounds of our approach, and empirically
demonstrate its performance on simple test problems.

Particle filters have previously been successfully applied
to approximate the belief update in continuous state single
agent POMDPs. While Thrun(2000) integrates PF with Q-
learning to learn the policy, Poupart et al.(2001) assume the
existence of an exact value function and present an error
bound analysis of using particle filters. Loosely related to
our work are the sampling algorithms that appear in (Ortiz &
Kaelbling 2000) for selecting actions in influence diagrams,
but this work does not focus on sequential decision making.
In the multiagent setting, PFs have been employed for col-
laborative multi-robot localization (Fox et al. 2000). There,
the emphasis was on predicting the position of the robot, and
not the decisions and actions of the other robots.

Overview of Finitely Nested I-POMDPs
I-POMDPs (Gmytrasiewicz & Doshi 2005) generalize
POMDPs to handle multiple agents. They do this by includ-
ing models of other agents in the state space. We will limit
the discussion to intentional models, analogous to types in
Bayesian games, which include all private information in-
fluencing the other agents’ behavior. For simplicity of pre-



sentation let us consider an agent, i, that is interacting with
one other agent, j.

I-POMDP A finitely nested interactive POMDP of agent
i, I-POMDPi,l, is: I-POMDPi,l = 〈ISi,l, A, Ti,Ωi, Oi, Ri〉
where:
• ISi,l denotes a set of interactive states defined as, ISi,l =
S × Θj,l−1, for l ≥ 1, and ISi,0 = S, where S is the set
of states of the physical environment, and Θj,l−1 is the set
of (l − 1)th level intentional models of agent j: θj,l−1 =
〈bj,l−1, A,Ωj , Tj , Oj , Rj , OCj〉. bj,l−1 is the agent j’s be-
lief nested to the level (l − 1) and OCj is j’s optimality
criterion. Rest of the notation is standard. Let us rewrite
θj,l−1 as, θj,l−1 = 〈bj,l−1, θ̂j〉, where θ̂j ∈ Θ̂j includes all
elements of the intentional model other than the belief and
is called the agent j’s frame. We refer the reader to (Gmy-
trasiewicz & Doshi 2005) for a detailed inductive definition
of the state space.
• A = Ai × Aj is the set of joint moves of all agents
• Ti is a transition function, Ti : S × A × S → [0, 1] which
describes results of agents’ actions
• Ωi is the set of agent i’s observations
• Oi is an observation function, Oi : S × A × Ωi → [0, 1]
• Ri is defined as, Ri : ISi × A → R. While an agent is
allowed to have preferences over physical states and models
of other agents, usually only the physical state will matter.

Belief Update
There are two differences that complicate a belief update in
multiagent settings, when compared to single-agent ones.
First, since the state of the physical environment depends
on the actions performed by both agents, the prediction of
how the physical state changes has to be made based on the
predicted actions of the other agent. The probabilities of
other’s actions are obtained based on its models. Second,
changes in the models of the other agent – update of the
other agent’s beliefs due to its new observation – has to be
included. For better understanding, we decompose the I-
POMDP belief update into two steps:
• Prediction: When an agent, say i, performs an action
at−1

i , and agent j performs at−1
j , the predicted belief state

is,

Pr(ist|at−1
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j , bt−1
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∫
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where δ is the Dirac-delta function, SE(·) is an abbreviation
for the belief update, Pr(at−1

j |θt−1
j,l−1) is the probability that

at−1
j is Bayes rational for the agent described by θt−1

j,l−1.
• Correction: When agent i perceives an observation, ot

i,
the corrected belief state is a weighted sum of the predicted
belief states for each possible action of j,
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where α is the normalizing constant. Proofs are in (Gmy-
trasiewicz & Doshi 2005).

If j is also modeled as an I-POMDP, then i’s be-
lief update invokes j’s belief update (via the term
SEθ̂t

j

(bt−1
j,l−1, a

t−1
j , ot

j)), which in turn invokes i’s belief up-
date and so on. This recursion in belief nesting bottoms out
at the 0th level. At this level, belief update of the agent re-
duces to a POMDP belief update. 1 For additional details
on I-POMDPs, and how they compare with other multiagent
planning frameworks, see (Gmytrasiewicz & Doshi 2005).

Value Iteration
Each level l belief state in I-POMDP has an associated value
reflecting the maximum payoff the agent can expect in this
belief state:

V t(〈bi,l, θ̂i〉) = max
ai∈Ai

{∫
is

ERi(is, ai)bi,l(is)d(is)+

γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)V
t−1(〈SEθ̂i

(bi,l, ai, oi), θ̂i〉)

}

(1)
where, ERi(is, ai) =

∑
aj

Ri(is, ai, aj)Pr(aj |θj,l−1)

(since is = (s, θj,l−1)). Eq. 1 is a basis for value itera-
tion in I-POMDPs, and can be succinctly rewritten as V t =
HV t−1, where H is commonly known as the backup opera-
tor. Analogous to POMDPs, H is both isotonic and contract-
ing, thereby making the value iteration convergent (Gmy-
trasiewicz & Doshi 2005).

Agent i’s optimal action, a∗
i , is an element of the set of

optimal actions for the belief state, OPT (θi), defined as:

OPT (〈bi,l, θ̂i〉) = argmax
ai∈Ai

{∫
is

ERi(is, ai)bi,l(is)d(is)+

γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)V
t−1(〈SEθ̂i

(bi,l, ai, oi), θ̂i〉)

}

Approximation Technique
As we mentioned, there is a continuum of intentional mod-
els of an agent. Since an agent is unaware of the true mod-
els of interacting agents ex ante, it must maintain a belief
over all possible candidate models. The complexity of this
space precludes practical implementations of I-POMDPs for
all but the simplest settings. Approximations based on sam-
pling use a finite set of sample points to represent a complete
belief state.

In order to sample from nested beliefs we need a lan-
guage to represent them. We introduced a polynomial
based representation for the nested beliefs in (Doshi &
Gmytrasiewicz 2005), which we briefly review. i’s level 0
belief is a probability distribution over S, i.e., a vector of
length |S|. i’s first level belief, which includes a distribution
over j’s level 0 beliefs is represented using a polynomial
over j’s level 0 beliefs, for each state and j’s frames.

Formally, bi,1 is represented by {f1
i,1, f

2
i,1, . . . , f

|S||Θ̂j |
i,1 }.

Each polynomial fk
i,1 can be written in a parametric form:

fk
i,1 = 〈d, c1, c2, . . . , c(d+1)|S|−1〉, where d ∈ N is the

1The 0th level model is a POMDP: other agent’s actions are
treated as exogenous events and folded into T, O, and R.



degree, and c ∈ R is a coefficient of fk
i,1. To be a legal

probability distribution the areas under the polynomials
must sum to 1. i’s level 2 belief is represented using a tuple
of polynomials over parameters of each of j’s |S||Θ̂i| level
1 polynomials (fk

j,1), for each state and j’s frame. Within
each tuple, the first polynomial is defined over the degree d,
of fk

j,1. For each d, the remaining (d + 1)|S|−1 polynomials
are defined over each coefficient of fk

j,1. In other words, if

j’s level 1 belief is represented by {f 1
j,1, f

2
j,1, . . . , f

|S||Θ̂i|
j,1 },

then i’s level 2 belief, bi,2, is represented by
{{〈f1

i,2, f
2
i,2, . . .〉

1, . . . , 〈f1
i,2, f

2
i,2, . . .〉

|S||Θ̂i|}1, . . . ,

{〈f1
i,2, f

2
i,2, . . .〉

1, . . . , 〈f1
i,2, f

2
i,2, . . .〉

|S||Θ̂i|}|S||Θ̂j |
}. Here

the polynomials in each of the innermost tuples represent
distributions over the parameters of the corresponding level
1 polynomial of j (that with the same superscript as the
tuple). We specify higher levels of beliefs analogously.

Example 1: To illustrate our representation, we use the
multiagent tiger game (Gmytrasiewicz & Doshi 2005) as an
example. An example level 1 belief of i, bi,1, in the tiger
game is one according to which i is uninformed about j’s
beliefs and about the location of the tiger. Polynomial repre-
sentation of this belief is {fTL

i,1 , fTR
i,1 }, where the polynomi-

als fTL
i,1 = fTR

i,1 = 〈0, 0.5〉. A level 2 belief of i is the one in
which i considers increasingly complex level 1 beliefs of j
(i.e. fj,1 of higher degrees) as less likely (Occam’s Razor),
and is uninformed of the location of the tiger. We express
this belief bi,2 by {〈f1

i,2, f
2
i,2, . . .〉

TL, 〈f1
i,2, f

2
i,2, . . .〉

TR}TL,

{〈f1
i,2, f

2
i,2, . . .〉

TL, 〈f1
i,2, f

2
i,2, . . .〉

TR}TR}, f1
i,2 in each tu-

ple is the parametric form of the normalized Taylor series
expansion of 2−d defined over the degree d of j’s level 1
polynomials: α

∑∞
n=0

1
k! (−1)nln(2)n(d − dmax)n, where

α is the normalizing constant and dmax is an upper bound
on d. 2 The remaining upto dmax+1 polynomials in each tu-
ple are p.d.f.s over the coefficients of j’s level 1 polynomials
and are of degree 0.

Interactive Particle Filter
The interactive PF (Doshi & Gmytrasiewicz 2005), similar
to basic particle filtering, requires the key steps of impor-
tance sampling and selection. The resulting algorithm, de-
scribed in Fig. 1, inherits the convergence properties of the
original PF (Doucet, Freitas, & Gordon 2001). It requires
an initial set of N particles, b̃t−1

k,l , that is approximately rep-
resentative of the agent’s belief, along with the action, at−1

k ,
the observation, ot

k, and the level of belief nesting, l > 0.
Each particle in the sample set represents the agent’s pos-
sible interactive state. Here, k will stand for either agent i
or j, and −k for the other agent, j or i, as appropriate. We
generate b̃t−1

k,l by recursively sampling N particles from be-
liefs represented using polynomials at each level of nesting.
The particle filtering proceeds by propagating each particle
forward in time. However, as opposed to the basic particle
filtering, this is not a one-step process. In order to perform

2We use 2−K(x) where K(·) is the Kolmogorov complexity as a
mathematical formalization of Occam’s razor (Li & Vitanyi 1997).

Function I-PARTICLEFILTER(̃bt−1
k,l , at−1

k , ot
k, l > 0)

returns b̃t
k,l

1. b̃
tmp
k,l ← φ, b̃t

k,l ← φ

Importance Sampling
2. for all is
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(n),t−1
−k 〉 ∈ b̃t−1

k,l do
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−k , l − 1)
4. Sample at−1
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−k )
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k , at−1
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6. for all ot
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k , w
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18. Normalize all w
(n)
t so that

∑N
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(n)
t = 1

Selection
19. Resample with replacement N particles {is(n),t

k , n = 1...N}

from the set b̃
tmp
k,l according to the importance weights.

20. b̃t
k,l ← {is

(n),t
k , n = 1...N}

21. return b̃t
k,l

end function

Figure 1: Interactive PF for approximating the I-POMDP belief
update. A nesting of PFs is used to update all levels of the belief.

the propagation, other agent’s action must be known. This is
obtained by solving the other agent’s model (using the algo-
rithm OPTIMALPOLICY described in the next subsection)
to get its policy, and using its belief (contained in the parti-
cle) to find a distribution over its actions (line 3 in Fig. 1).
Additionally, analogously to the exact belief update, for each
of the other agent’s possible observations, we must obtain its
next belief state (line 6). If l > 1, updating the other agent’s
belief requires invoking the interactive PF for performing
its belief update (lines 12–14). This recursion in depth of
the belief nesting terminates when the level of nesting be-
comes one, and a POMDP belief update is performed (lines
8–10). Though the propagation step generates |Ω−k|N ap-
propriately weighted particles, we resample N particles out
of these (line 19), using an unbiased resampling scheme. A
visualization of the implementation is shown in Fig. 2.

Value Iteration

Because the interactive PF represents each belief of agent
i, bi,l, using a set of N particles, b̃i,l, a value backup op-
erator which operates on samples is needed. Let H̃ denote
the required backup operator, and Ṽ the approximate value
function, then the backup operation, Ṽ t = H̃Ṽ t−1, is:
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Figure 2: An illustration of the nesting in the interactive PF. Col-
ors black and gray distinguish filtering for the two agents. Because
the propagation step involves updating the other agent’s beliefs, we
perform particle filtering on its beliefs. The filtering terminates
when it reaches the level 1 nesting, where an exact POMDP belief
update is performed for the other agent.

Ṽ t(〈̃bi,l, θ̂i〉) = max
ai∈Ai

{
1
N

∑
is(n)∈b̃i,l

ERi(is
(n), ai)+

γ
∑

oi∈Ωi

Pr(oi|ai, b̃i,l)Ṽ
t−1(〈I-PF(̃bi,l, ai, oi), θ̂i〉)

} (2)

where ERi is as defined previously, and I-PF denotes
the belief update implemented using the interactive PF.
The set of optimal actions at a given approximate belief,
OPT(〈̃bi,l, θ̂i〉), is then calculated by returning the actions
that have the maximum value.

Equation 2 is analogous to the equation 1 with exact in-
tegration replaced by Monte Carlo integration, and the ex-
act belief update replaced with the interactive particle filter.
Note that H̃ → H as N → ∞. The algorithm for comput-
ing an approximately optimal finite horizon policy tree using
value iteration when l > 0 is given in Fig. 3. When l = 0,
the algorithm reduces to the POMDP policy tree computa-
tion which is carried out exactly.

Convergence and error bounds
The use of randomizing techniques such as particle filters
means that value iteration does not necessarily converge.
This is because, unlike the exact belief update, posteriors
generated by the particle filter with finitely many particles
are not guaranteed to be identical for identical input. The
non-determinism of the approximate belief update rules out
isotonicity and contraction for H̃ as N → ∞. 3

Our inability to guarantee convergence implies that we
must approximate an infinite horizon policy with the ap-
proximately optimal finite horizon policy tree. Let V ∗ be
the value of the optimal infinite horizon policy, Ṽ t be the
value of the approximate and V t be the value of the optimal

3One may turn particle filters into deterministic belief update
operators (de-randomization) by generating several posteriors from
the same input. A representative posterior is then formed by taking
a convex combination of the different posteriors.

Function OPTIMALPOLICY(θk, l > 0) returns ∆(Ak)

1. b̃0
k,l ← {is

(n)
k , n = 1...N |is

(n)
k ∼ bk,l ∈ θk}

Reachability Analysis
2. reach(0)← b̃0

k,l

3. for t← 1 to T do
4. reach(t)← φ

5. for all b̃t−1
k,l ∈ reach(t− 1), ak ∈ Ak, ok ∈ Ωk do

6. reach(t) ∪
← I-PARTICLEFILTER(̃bt−1

k,l , ak, ok, l)
Value Iteration

7. for t← T downto 0 do
8. for all b̃t

k,l ∈ reach(t) do
9. Ṽ T−t,l(〈 b̃t

k,l, θ̂k〉)← −∞, OPT(〈 b̃t
k,l, θ̂k〉)← φ

10. for all ak ∈ Ak do
11. Ṽ T−t

ak
(〈̃bt

k,l, θ̂k〉)← 0
12. for all is

(n),t
k = 〈s(n),t, θ

(n)
−k 〉 ∈ b̃t

k,l do
13. Pr(A−k|θ

(n)
−k )← OPTIMALPOLICY(θ(n)

−k , l − 1)
14. for all a−k ∈ A−k do
15. Ṽ T−t

ak
(〈̃bt

k,l, θ̂k〉)
+
← 1

N
R(s(n),t, ak, a−k)Pr(a−k|θ

(n)
−k )

16. if (t < T ) then
17. for all ok ∈ Ωk do
18. sum← 0, b̃t+1

k,l ← reach(t + 1)[|Ωk|ak + ok]

19. for all is
(n),t+1
k ∈ b̃t+1

k,l , is
(n),t
k ∈ b̃t

k,l do
20. Pr(A−k|θ

(n)
−k )← OPTIMALPOLICY(θ(n)

−k , l − 1)
21. for all a−k ∈ A−k do

22. sum +
← Ok(ok|s

(n),t+1, ak, a−k)

×Pr(is
(n),t+1
k |is

(n),t
k , ak, a−k)Pr(a−k|θ

(n)
−k )

23. Ṽ T−t,l
ak

(〈̃bt
k,l, θ̂k〉)

+
← γ

N
× sum× Ṽ T−t−1(〈̃bt+1

k,l , θ̂k〉)

24. if Ṽ T−t
ak

(〈̃bt
k,l, θ̂k〉) ≥ Ṽ T−t(〈̃bt

k,l, θ̂k〉)) then
25. if (Ṽ T−t

ak
(〈̃bt

k,l, θ̂k〉) > Ṽ T−t(〈̃bt
k,l, θ̂k〉) then

26. Ṽ T−t(〈̃bt
k,l, θ̂k〉)← Ṽ T−t

ak
(〈̃bt

k,l, θ̂k〉)
27. OPT(〈̃bt

k,l, θ̂k〉)← φ

28. OPT(〈̃bt
k,l, θ̂k〉)

∪
← ak

29. for all ak ∈ Ak do
30. if (ak ∈ OPT(〈̃bt

k,l, θ̂k〉) then
31. Pr(ak|θk)← 1

|OPT(〈b̃t
k,l

,θ̂k〉)|

32. else
33. Pr(ak|θk)← 0
34. return Pr(Ak|θk)
end function

Figure 3: Algorithm for computing an approximately optimal fi-
nite horizon policy tree given a model containing an initial sampled
belief. When l = 0, the exact POMDP policy tree is computed.

t-horizon policy tree, then the error bound (using the supre-
mum norm || · ||) is, ||V ∗− Ṽ t|| = ||V ∗−V t +V t − Ṽ t|| ≤

||V ∗−V t||+ ||V t− Ṽ t||. Note that the first term is bounded
by γt||V ∗ − V 0||. The bound for the second term is calcu-
lated below:
Et = ||Ṽ t − V t||

= ||H̃Ṽ t−1 − HV t−1||

= ||H̃Ṽ t−1 − HṼ t−1 + HṼ t−1 − HV t−1|| (add zero)
≤ ||H̃Ṽ t−1 − HṼ t−1|| + ||HṼ t−1 − HV t−1|| (∆ inequality)
≤ ||H̃Ṽ t−1 − HṼ t−1|| + γ||Ṽ t−1 − V t−1|| (contracting H)

≤ ||H̃Ṽ t−1 − HṼ t−1|| + γEt−1

We will turn our attention to ||H̃Ṽ t−1 − HṼ t−1||. In the
analysis that follows we focus on level 1 beliefs. Let V̇ t =



HṼ t−1, Ṽ t = H̃Ṽ t−1, and bi,1 be the singly-nested belief
where the worst error is made: bi,1 = argmax

bi,1∈Bi,1

|V̇ t − Ṽ t|.

Let α̃ be the policy tree (alpha vector) that is optimal at b̃i,1

(the sampled estimate of bi,1), and α̇ be the policy tree that
is optimal at bi,1. We will use Chernoff-Hoeffding (C-H)
upper bounds (Theorem A.1.4, pg 265 in (Alon & Spencer
2000)) 4, a well-known tool for analyzing randomized algo-
rithms, to derive a confidence threshold 1 − δ at which the
observed estimate, Ṽ t

α̃, is within 2ε of the true estimate V̇ t
α̇

(= E[α̇]):

Pr(Ṽ t
α̃ > V̇ t

α̇ + ε) ≤ e−2Nε2/(α̃max−α̃min)2

Pr(Ṽ t
α̃ < V̇ t

α̇ − ε) ≤ e−2Nε2/(α̃max−α̃min)2

For a confidence probability of 1 − δ, the error bound is:

ε =

√
(α̃max − α̃min)2ln(2/δ)

2N
(3)

where α̃max − α̃min may be loosely upper bounded as
Rmax−Rmin

1−γ . Note that Eq. 3 can also be used to derive the
number of particles, N , for some given δ and ε. To get the
desired bound, we note that with probability 1 − δ our er-
ror bound is 2ε and with probability δ the worst possible
sub-optimal behavior may result: ||H̃Ṽ t−1 − HṼ t−1|| ≤
(1 − δ)2ε + δ Rmax−Rmin

1−γ . The final error bound now ob-
tains:

Et ≤ (1 − δ)2ε + δ Rmax−Rmin

1−γ + γE t−1 (geom. series)

= (1 − δ) 2ε(1−γt)
1−γ + δ (Rmax−Rmin)(1−γt)

(1−γ)2

where ε is as defined in Eq. 3.
Theorem 1 (Error Bound). For a singly-nested t-horizon
I-POMDP, the error introduced by our approximation tech-
nique is bounded and is given by:

||Ṽ t−V t|| ≤ (1−δ)
2ε(1 − γt)

1 − γ
+δ

(Rmax − Rmin)(1 − γt)

(1 − γ)2

where ε is as defined in Eq. 3.
At levels of belief nesting greater than one, j’s beliefs are

also approximately represented. Hence the error in the value
function is not only due to the sampling from i’s beliefs, but
also due to the possible incorrect prediction of j’s actions
based on its approximate beliefs. We are currently investi-
gating if it is possible to derive bounds that are useful, that is,
tighter than the usual difference between the best and worst
possible behavior, for this case.

Computational savings
Since the complexity of solving I-POMDPs is dominated by
the complexity of solving the models of other agents we look
at the reduction of the number of agent models that must be

4At horizon t, samples in b̃i,1 are i.i.d. However, at horizons <
t, the samples are generated by the interactive PF and exhibit lim-
ited statistical independence, but independent research (Schmidt,
Spiegel, & Srinivasan 1995) reveals that C-H bounds still apply.

solved. In an M+1-agent setting with the number of parti-
cles bounded by N , each particle in b̃t−1

k,l of level l contains
M models of level l − 1. Solution of each of these level
l − 1 models requires solution of the lower level models re-
cursively. The upper bound on the number of models that are
solved is O((MN)l−1). Given that there are M level l − 1
models in a particle, and N such possibly distinct particles,
we need to solve O((MN)l) models. Each of these (level
0) models is a POMDP with an initial belief, and is solved
exactly. Our upper bound on the number of models is poly-
nomial in M . This can be contrasted with O((M |Θ∗|

M )l)
models that need to be solved in the exact case, which is ex-
ponential in M . Amongst the spaces of models of all agents,
Θ∗ is the largest space. Typically, N � |Θ∗|

M , resulting in
a substantial reduction in computation.

Experiments
The goal of our experimental analysis is to demonstrate em-
pirically, (a) the reduction in error with increasing sample
complexity, and (b) savings in computation time and space
when our approximation technique is used. We use the mul-
tiagent tiger game introduced previously, and a multiagent
version of the machine maintenance (MM) problem (Small-
wood & Sondik 1973) as test problems. Because the
problems are rather simplistic (tiger: |S|=2, |Ai|=|Aj |=3,
|Ωi|=|Ωj |=6; MM: |S|=3, |Ai|=|Aj |=4, |Ωi|=|Ωj |=2), our
results should be considered preliminary.

To demonstrate the reduction in error, we construct per-
formance profiles showing an increase in performance as
more computational resources – in this case particles – are
allocated to the approximation algorithm. In Figs. 4(a) and
(c) we show the performance profile curves when agent i’s
prior belief is the level 1 belief described previously in ex-
ample 1, and suitably modified for the MM problem. As
expected the average rewards for both, horizon 2 and 3 ap-
proach the exact expected reward as the number of particles
increases. We show the analogous plots for the level 2 belief
in Figs. 4(b) and (d). In each of these cases the average of
the rewards accumulated by i over a 2 and 3 horizon policy
tree (computed using the algorithm in Fig. 3) while playing
against agent j were plotted. To compensate for the random-
ness in sampling, we generated i’s policy tree 10 times, and
performed 100 runs each time. Within each run, the location
of the tiger and j’s prior beliefs were sampled according to
i’s prior belief.

In Table 1, we compare the worst observed error – differ-
ence between the exact expected reward and the observed
expected reward – with the worst case theoretical error
bound (δ=0.1,γ=0.9) from the previous section, for horizons
2 and 3. The difference between the best and the worst pos-
sible behavior for the tiger game for t = 2 is 209.00, and for
t = 3 is 298.1. For the multiagent MM problem, the differ-
ences are 8.84 and 12.61, respectively. The theoretical error
bounds appear loose due to the worst-case nature of our anal-
ysis but (expectedly) are tighter than the worst bounds, and
reduce as the number of particles increases. Table 2 com-
pares the average run times of our sample-based approach
(SB) with the exact approach, for computing policy trees of
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Multiagent Machine Maintenance Problem
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Figure 4: Performance profiles: The multiagent tiger game using the (a) level 1, and (b) level 2 belief as the prior for agent i. The multiagent
MM using the (c) level 1, and (d) level 2 belief as i’s prior.

different horizons starting from the level 1 belief. The val-
ues of the policy trees generated by the two approaches were
similar. The run times demonstrate the dominant impact of
the curse of dimensionality on the exact method as shown by
the higher run times for the MM in comparison to the tiger
game. Our sample based implementation is immune to this
curse, but is affected by the curse of history, as illustrated by
the higher run times for the tiger game (branching factor =
18) compared to the MM problem (branching factor = 8).

Problem Error t = 2 t = 3

N=102 N=103 N=102 N=103

Multiagent Obs. 5.61 0 4.39 2.76
tiger Et 108.38 48.56 207.78 86.09

Multiagent Obs. 0.28 0.23 0.46 0.40
MM Et 4.58 2.05 8.79 3.64

Table 1: Comparison of the observed errors and the theoretical
error bounds.

Problem Method Run times
t = 2 t = 3 t = 4 t = 5

Multiagent Exact 37.84s 11m 22.25s * *
tiger ± 0.6s ± 1.34s

SB 1.44s 1m 44.29s 19m 16.88s 146m 54.35s
± 0.05s ± 0.6s ± 17.5s ± 39.0s

Multiagent Exact 5m 26.57s 20m 45.69s * *
MM ± 0.07s ± 0.29s

SB 5.75s 34.52.06s 3m 24.9s 17m 58.39s
± 0.01s ± 0.01s ± 0.04s ± 0.57s

Table 2: Run times on a P-IV 2.0 GHz, 2.0GB RAM and Linux.
* = program ran out of memory.

Conclusion
This paper described a randomized method for obtaining ap-
proximate solutions to I-POMDPs based on an extension of
particle filtering to multiagent settings. The extension is not
straightforward because we are confronted with an interac-
tive belief hierarchy when dealing with multiagent settings.
We used the interactive particle filter which descends the
levels of interactive belief hierarchies and samples and prop-
agates beliefs at each level. The interactive particle filter is
able to deal with the belief space dimensionality, but it does

not address the policy space complexity. We provided per-
formance profiles for the multiagent tiger and the machine
maintenance problems. They show that our approach saves
on computation over the space of models but it does not scale
(usefully) to large values of time horizons and needs to be
combined with methods that deal with the curse of history.
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