
When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild

Alberto Carboneri
University of Illinois Chicago

acarbo4@uic.edu

Mohammad Ghasemisharif
University of Illinois Chicago

mghas2@uic.edu

Soroush Karami∗
Paypal, Inc.

skarami@paypal.com

Jason Polakis
University of Illinois Chicago

polakis@uic.edu

ABSTRACT
Web push notifications are becoming an increasingly prevalent
capability of modern web apps, intended to create a direct commu-
nication pipeline with users and increase user engagement. The
seemingly straightforward functionality of push notifications ob-
scures the complexities of the underlying design and implemen-
tation, which deviates from a near-universal practice in the web
ecosystem: the ability to access an account (and the associated func-
tionality) from practically any browser or device upon successful
completion of the authentication process. Instead, push notifica-
tions create a communication endpoint for a specific browser in-
stance. As a result, the challenges of deploying push notifications
are further exacerbated due to the integration obstacles that arise
from other aspects of web apps and user browsing behaviors (e.g.,
multi-device environments, account and session management). In
this paper, we conduct an empirical analysis of push notification
implementations in the wild, and identify common deployment
pitfalls. We also demonstrate a series of attacks that target push
notification functionality, including a novel subscription-sniffing
attack, through a selection of use cases. To better understand cur-
rent practices in push notifications implementations, we present
a large-scale measurement of their deployment and also provide
the first, to our knowledge, exploration and analysis of third-party
service providers. Finally, we provide guidelines for developers and
propose an approach for correctly handling push notifications in
multi-browser, post-authentication settings.

ACM Reference Format:
Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason
Polakis. 2023. When Push Comes to Shove: Empirical Analysis of Web Push
Implementations in the Wild. In Annual Computer Security Applications
Conference (ACSAC ’23), December 4–8, 2023, Austin, TX, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3627106.3627186

1 INTRODUCTION
Web applications have rapidly grown in popularity over the last
decade, as they improve the user experience by eliminating the
need for manual software installation, and can seamlessly synchro-
nize data between mobile and desktop platforms. Even common
tasks that were previously conducted using native applications,
such as sending emails, or editing documents and spreadsheets,
are now predominantly performed through web applications (or
“web apps”). This shift has driven browser vendors to continuously

∗Work was done while at the University of Illinois Chicago.

deploy new browser functionality to enable and ease the develop-
ment of complex features and close the gap between traditional
desktop applications and web apps. However, these features and
their implementations often carry associated security and privacy
risks [10, 29, 34, 37] which, if left unchecked, can expose users to
severe threats.

For instance, Progressive Web Apps (PWAs) constitute a major
evolution in web app capabilities and have garnered significant
traction within the developer community. PWAs are powered by
the Service Worker API (released in 2015), which allows websites
to cache resources, better handle background sync operations, op-
erate offline, and manage web push notifications. Service Workers
operate by enabling websites to register an event-driven script
that remains inactive until specific events occur, even after the
originating website has been closed. Web Push notifications are
an additional powerful capability intended for increasing user en-
gagement by allowing websites to deliver custom messages to a
target user (in actuality, they target a specific browser instance).
Push notifications work differently from traditional communication
channels, such as SMS and e-mails, as the message is sent directly
to the user’s device and shown as soon as it is online, resembling
mobile and desktop notifications. This effectively reduces the time
required for users to notice messages, resulting in an increased click
rate. According to reports [39, 40], push notifications have been
shown to outperform all other commonly used communication
channels in terms of click rates. Moreover, web push notifications,
unlike e-mails and SMS, allow for anonymous opt-in, potentially
increasing the privacy of users.

The basic implementation of Web Push notification requires
complex operations and multiple interactions between different
systems. The inherent complexity of such systems creates the poten-
tial for implementation flaws that can result in security and privacy
threats, and affected QoS deterioration that leads to user dissatisfac-
tion or even revenue loss for vendors. While many websites have
developed custom implementations of Web Push notification func-
tionality, others rely on third-party providers as that allows them
to sidestep the development complexities and overhead through a
straightforward script inclusion. However, both approaches face
challenges. Custom implementations are found throughout the web
and a great number of popular websites have opted for this strategy.
While this approach allows websites to have more control over the
usage and handling of more complex scenarios, incorrect imple-
mentations pose a privacy threat to end users, especially when the
notifications’ content is sensitive (e.g., private messages). While

https://doi.org/10.1145/3627106.3627186


ACSAC ’23, December 4–8, 2023, Austin, TX, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

third-party providers offer the same basic features with fewer im-
plementation barriers to a wide range of websites, any vulnerability
in their source code will impact a larger number of websites.

Prior work on PWAs has mainly focused on examining the secu-
rity aspects of Service Workers’ caching or background synchro-
nization mechanisms [26, 38, 43], yet push notifications have re-
ceived little scrutiny from the security community. Existing works
explored the correlation betweenWeb Push notifications and phish-
ing attacks [31], the de-anonymization threat posed by web push
notifications [36], and the use of the technology to deliver mali-
cious ad campaings [44]. However, while push notifications are
conceptually straightforward, correct implementations pose vari-
ous interesting challenges that have been overlooked, including
correctly implementing third-party service providers, bounding
push notifications to users’ sessions and properly accounting for
session changes (e.g., users logging out).

To bridge this gap, in this paper we provide an in-depth empirical
analysis of potential vulnerabilities, and a large-scale measurement
of Web Push notifications in the wild. Our work first presents an
overview of challenges when incorporating push notification func-
tionality in modern web apps, while also shedding light on the
ecosystem of third-party service providers for websites that want
to avoid implementing custom push notification capabilities. To
study the current state of Web Push notification adoption and an-
alyze its prevalence we develop an automated framework built
on top of an instrumented Chromium. Our tool crawls websites
and automatically extracts information related to push notifica-
tion functionality intercepting all calls to relevant APIs, such as
PushManager and Notification and analyzing the content of in-
stalled service workers. To better understand the implications of
different attack scenarios and the current state of the web ecosys-
tem, our tool needs to differentiate between custom and third-party
push notification implementation. To that end we have created
a set of heuristics that identifies the presence of a wide-range of
third-party push notification providers.

Our empirical analysis highlights the complexities of properly
integrating push notifications into a modern website and adhering
to secure practices in regards to properly handling session-related
changes. For instance, we find two major web apps (namely, Twit-
ter and Poshmark) that, respectively, incorrectly handle multiple
browsers, leading to push notifications not being sent in some situ-
ations, or incorrectly handle user logout, possibly leaking private
data in the case, for example, of a shared computer. Accordingly,
we propose an information workflow for bypassing pitfalls when
deploying push notifications in authenticated contexts, providing a
blueprint for web app developers to correctly handle such scenarios.
Next, we introduce Subscription Sniffing, a novel variant of
a history-sniffing attack that leverages websites improperly using
of the postMessage API for inferring which websites a user has
subscribed to for push notifications. We find that four of the 40 most
prevalent third-party push notification providers are vulnerable to
our attack. We also present a more severe variant of this attack,
which also affects existing providers, that allows attackers to obtain
more sensitive information (For example previous notifications sent
to the user or notifications the user has previously clicked on) and
also forcefully unsubscribe users from a target website. Next, we
highlight an additional pitfall when deploying push notification

functionality and the importance of integrating them with existing
security mechanisms. Specifically, we present a case study of a
website where the lack of the necessary anti-CSRF tokens allows
attackers to silently hijack the victim’s push notifications.

Finally, we conduct a large-scale measurement and analysis of
web push notification in the wild. We find over 18,566 sites in
the Tranco top 500K currently employ Web Push notifications.
When taking into account that many additional websites may only
expose push functionality post-authentication, whichwill bemissed
by our crawler, it is evident that push notifications are becoming
increasingly common across the web. Notably, among those sites we
find that 7,388 (40%) utilize custom implementations and 3,117 (42%)
of those aggressively request push permissions from users. We also
found at least 1,187 websites that are potentially vulnerable to our
proposed subscription-sniffing attack, 479 of which are exposed to
the more dangerous variant that allows attackers to obtain more
sensitive information about the user or stealthily deleting the user’s
push subscription.

In summary, this research presents the following contributions:
• We conduct an empirical analysis of the security and privacy risks
introduced by the adoption of web push notifications, an integral
part of progressiveweb apps.We present and demonstrate a series
of attacks that target push notifications, that pose significant
privacy risks to users.

• We present a large-scale measurement of push notification adop-
tion in the wild that highlights both the prevalence of push no-
tification functionality, as well as the dependence of websites
on third-party providers. Our analysis highlights the extent of
the risks that users face, and a series of use cases that better
illuminate the real-world implications of implementation flaws
in web push notifications.

• We present a detailed workflow for personalized push notifica-
tions in multi-browser, post-authentication settings, as a blue-
print for developers to avoid the pitfalls we uncovered.

2 BACKGROUND
In this section, we provide pertinent background information about
Web Push Notifications (WPNs) that provides the necessary con-
textual information for the subsequent sections.

Push Notification. Generally, push notifications have been a
feature commonly available in native applications, which have be-
come available on the web as well in recent years. Such notifications
appear in the form of pop-up messages sent by the browser to a
user’s device and typically include a title, message, image, and URL.
Note that websites can send push notifications at any time, which
will be delivered to the user’s device even if the corresponding
website is not currently open in the browser. WPNs are permission-
based, meaning that users have to explicitly opt-in to receive them.
There are two methods for requesting users’ permission. In the first
approach, a browser-based prompt will be shown to users and ask
for permission of showing notifications. In the second approach,
which is called “soft ask”, the website will provide more informa-
tion via a custom message before showing the browser prompt.
For example, it may explain the value of receiving push notifica-
tions and if the user accepts the “soft ask”, the website will proceed
with displaying the browser prompt. Unlike other subscription and



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild ACSAC ’23, December 4–8, 2023, Austin, TX, USA

self.addEventListener('push', function(event) {
var title = event.data.notification.title;
var message = event.data.notification.message;
var icon = event.data.notification.icon;
event.waitUntil(
self.registration.showNotification(title , {

body: message ,
icon: icon

}));});

Listing 1: An example use of the push event in serviceworkers
for receiving and handling push notifications.

marketing methods, WPN provides an anonymous opt-in approach
where users do not have to share their personal information, such as
their name, email, or phone number to receive notifications. Instead,
this communication channel is bound to the specific browser in-
stance; as such, if the web service does not have information about
the user’s identity or account, this communication will essentially
be anonymous.

Service Workers. Service workers are a special type of script
installed by websites that operate independently in the background,
separate from the DOM rendering process. Web push is built on
service workers, allowing them to listen for push events and display
incoming messages as notifications. Put simply, service workers
enable websites to show notifications regardless of whether the
website is currently open or not.

Push Services.WPNs work by maintaining a persistent connec-
tion to a push service provided by browser vendors (e.g., Mozilla’s
autopush [4] service for Firefox). Upon opening the browser, it
contacts its push service and keeps the connection open via a Web-
Socket. When a user subscribes to notifications from a specific
website, the push service creates a new “mailbox” which is a secret
URL referred to as the endpoint. When a website attempts to send
a notification, its server contacts the browser’s push service by
sending an HTTP POST request to the push service of the recipi-
ent’s browser (i.e., endpoint). The push service then stores the data
and delivers the new notifications when the browser establishes a
connection. It’s important to note that a single browser can have
multiple endpoints simultaneously, each belonging to different web-
sites. Moreover, the websites do not have any control over the push
services and browsers can use any random push services. The push
service APIs are standardized [7], which means websites are not
required to know the underlying push service implementation.

Client-side implementation. There are two methods adopted
by websites for requesting notification permissions. The first ap-
proach uses the Notification interface. The returned promise
from calling Notification.requestPermission() includes the
user’s response to the permission request. Websites can check the
status of current permission via the Notification.permission
property, whose value can be default, granted, or denied.
The second approach is to use the PushManager interface. The
PushManager.subscribe() function subscribes the user to a push
service. Before obtaining the subscription, it will verify the current
notification permission status. If permission has not been granted,
it prompts the user for permission through the browser prompt.
Otherwise, it works with a push service to generate the subscrip-
tion. Ultimately, this function returns a promise that resolves to a
PushSubscription object containing all the information the appli-
cation server needs for sending a push message to the user. A new

{
"endpoint": "https: //a-push -service.com/unique -id/",
"keys": {

"p256dh": "BNcRdreALRFXTkOOUHK1E ... e8QcYP7DkM=",
"auth": "tBHItJI5svbpez7KI4CCXg =="

}
}

Listing 2: In this push subscription example, the “endpoint”
specifies the browser that will receive the notifications and
the keys are being used for the cryptographic operations.

push subscription is created if the current service worker does not
have an existing subscription. This is all done in JavaScript using
the Push API. An example using PushSubscription is provided in
Listing 2. To protect the generated endpoint, a VAPID [45] key must
be used. When the PushManager.subscribe() function is called,
the corresponding public key must be passed as an argument. The
generated subscription data is tied to that key, and can only be used
in conjunction with the private key. This ensures confidentiality
in the case the subscription data is stolen. Moreover, since service
workers can only be installed in an HTTPS context, websites must
use HTTPS to be able to successfully send push notifications (or
outsource push notifications to a third-party provider).

The service workers incorporate a push event listener to receive
notifications. When a push message is received, a push event is
triggered within the worker. This event is then directed to the push
event listener, allowing the website to process the message and dis-
play a notification. Listing 1 shows an example using the push event
listener. The self.registration.showNotification() function
calls the operating system’s notification API to show the notifica-
tion.

Server-side implementation. Push services provide APIs that
allow websites to send push notifications to their users. Using the
APIs, the website specifies the recipient of the message, the message
content and any relevant information which is then transmitted to
the push service. The push service receives the data and validates
it using the corresponding cryptographic keys. It then finds the
appropriate browser using the endpoint and delivers the push
message.

3 DEPLOYMENT & INTEGRATION PITFALLS
In this section, we first provide an overview of the basic infor-

mation workflow of WPNs. Subsequently, we discuss deployment
and integration pitfalls, based on the findings from our empirical
analysis of existing custom implementations in popular websites,
and the code and documentation of third-party push notification
service providers. Specifically, we focus on the challenges of relying
on third-party service providers for handling notification function-
ality, as well as the additional complexity of correctly integrating
push notifications into web apps’ authenticated functionality.

Basic deployment. Websites can use the Push and Notification
APIs to enable the delivery of WPNs. The Push API allows web
applications to receive messages pushed from a server, regardless
of whether the web app is currently active or loaded in the browser.
This empowers developers to deliver asynchronous notifications
and updates to their subscribers. The Notifications API also allows
web apps to control the display of system notifications to the end



ACSAC ’23, December 4–8, 2023, Austin, TX, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

Browser

Service worker's
push listener

receives data and
shows notification

1

2

6

User

websocket
connection

5

Push Service

e
n
d
p
o
i
n
t

4

Website
backend

Website stores
subscription data

Wesbsite
frontend

Request subscription
Request permission

Subscribe

Subscription data

Subscription data

Notification data

Permission given

3 Subscription data

Notification data

Figure 1: TheworkflowofWeb Push communication between
user’s browser and server. The webpage uses a JavaScript API
to get the push subscription information and send them to
the server.

user. Since these are outside of the top-level browsing context
viewport they can be displayed even when the user has switched
tabs or moved to a different page.

Figure 1 illustrates information flow in Web Push: 1 the web-
page requests Notification permission through the browser-specific
prompt and 2 if the user grants permission, the Push Service
generates a Push Subscription for the browser. After obtaining a
Push Subscription, 3 the webpage will forward it to its backend
server, which then stores the subscription in a database. This stored
subscription allows the server to send push messages to the respec-
tive user at a later time. When the server intends to send a push
message to its users, 4 it initiates an API call to a specific endpoint
of the push service. The endpoint information and the required au-
thentication keys are included in the subscription data as shown in
Listing 2. This API call includes details regarding the data to be sent,
the recipient of the message, and any specific criteria regarding the
delivery of the message.

When a push service receives a network request, 5 it verifies its
authenticity and delivers a push message to the intended browser.
If the browser is offline, the message is stored in a queue until the
user’s device becomes online and the push service can deliver the
messages. When a message is successfully delivered, the browser
receives and decrypts the data, triggering a push event in the service
worker. Finally, 6 the service worker uses the Notification API to
display the notification to the user.

3.1 Integrating Third-Party Push Providers
WPNs were initially introduced for sending first-party messages.
However, to facilitate adoption, WPNs can be deployed by inte-
grating third-parties that provide this feature as a service. Service

Providers facilitate the process of integrating web push to the web-
site by providing a simple script to be served by the websites. Af-
ter including the script, the website owners can use the service
provider’s dashboard to compose messages (including title, mes-
sage, image, and URL) and send notifications. There are two main
approaches for integrating this service. In the first approach, ser-
vice providers create service worker scripts for their customers
and instruct them to host these scripts. Additionally, they request
website owners to include a script tag that registers the service
worker and manages user subscriptions.

However, there are some caveats associated with this approach
that can pose challenges for customers. First, if the website currently
uses service workers, it may create a conflict with the provider’s
script. However, this can be managed by registering the service
worker on a different scope. Second, the websites’ contents must be
served via HTTPS to be able to use such services. To expand their
customer base, service providers employ an alternative approach
that circumvents these limitations. For each customer, they create
a third-party domain that is served via an HTTPS protocol. They
use this page to request permission and subscribe to notifications.
Since the origins are different, there will be no conflicts for service
workers. Under this approach, when a user decides to subscribe to
push notifications, a pop-up window will be launched to install a
service worker, use the Push API and manage the push subscription.
Next, the service providers create a unique URL for a script, which is
hosted on their servers, and instruct the website’s owner to include
it. This script verifies the user’s notification subscription status, and
if not subscribed, it will display a subscribe button which opens the
above-mentioned pop-up window to ask for permission.

As the subscription is completed on a third-party domain, no
cookie can be saved on the customer’s website to mark a successful
subscription. The script thereby loads a specific page of the third-
party domain into an iFrame, which uses the postMessage API
to return the current subscription status. In the following section,
we examine the potential security risks that may arise from these
design decisions and their corresponding implementations.

3.2 Implementing Personalized WPNs
Push notifications serve as a direct communication channel between
web applications and users. Web applications use push notifications
to inform users about a set of events that users may find important,
and certain notifications may contain sensitive information which
is tailored to individual users. For instance, email users (e.g., Gmail)
may receive notification messages containing the sender’s name
and email title when they receive an email. In these scenarios,
the implementation of WPNs requires careful consideration, as
compositionality issues can arise when other security mechanisms
need to be integrated into the WPN pipeline.

Session management. As discussed earlier, when a user logs
into a website, a session ID is assigned to the user. The session
ID has a limited lifespan and gets revoked when the user logs out
from the web application or expires after a certain duration. In
either case, the server must stop sending notifications to the user.
However, if the server does not verify the validity of the session
for each endpoint, or does not correctly invalidate sessions on the
server side, it will send notifications to users that are already logged



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild ACSAC ’23, December 4–8, 2023, Austin, TX, USA

out. In a correct design, only the users with a valid session who
have subscribed should receive the notifications. To test the correct-
ness of an implementation, we consider the following rules, which
capture pitfalls that can occur when implementing personalized
WPNs :
(1) Having multiple active sessions should not impact correctly

receiving notifications.
(2) Even after logging out and logging back in, the user should

continue to receive notifications.
(3) The notifications should be received correctly on active sessions

when there are both active and inactive sessions.

4 EXPLOITING IMPLEMENTATION PITFALLS
As discussed in Section 3, developers have various options for im-
plementing push notifications, and we highlighted various flaws
that can occur during the integration and deployment process. In
this section, we continue our empirical analysis and further explore
the security and privacy risks posed by this technology. To that
end, we first detail the threat model that will guide our analysis.
Next, we present two different attacks that target WPNs. Initially,
we introduce a novel history-sniffing attack, and then provide an
in-depth analysis of the security implications of CSRF in WPN
deployments.

Threat model. For our empirical analysis, we consider two dif-
ferent attacker scenarios. First, we employ the web attacker threat
model, which is typical for studies exploring web technologies.
Specifically, we assume that the victim visits a website under the
control of the attacker, who is then able to execute JavaScript code
in the user’s browser. Nonetheless, several of the attacks explored
in this work could be executed at a larger scale through other at-
tack vectors (e.g., ads). Additionally, in recent years the security
community has increasingly studied intimate partner violence and
highlighted how abusers exploit technology [20]. As such, due to
the idiosyncrasies of WPNs (which use specific browser instances
as communication endpoints) we also consider a malicious individ-
ual that can obtain physical access to the victim’s browser when
studying push notifications in conjunction with session manage-
ment.

Subscription sniffing. History sniffing attacks, in which attack-
ers cross-check a list of target websites against the user’s browser
to (partially) infer the user’s browsing history, pose a severe privacy
threat as they can reveal a plethora of sensitive user information
(e.g., age, gender, sexual orientation, medical issues, and political
affiliation). While websites cannot directly access the browsing
history, prior research has demonstrated a wide variety of tech-
niques for inferring visited websites via side-channel attacks [48]
or abusing certain browser features [26, 42].

Here we present subscription sniffing, a novel variant of history-
sniffing attacks that targets third-party push notification providers.
To illustrate the attack, Figure 2 outlines the information flow of a
push notification service when it is “outsourced” to a third-party
provider. In this example, the website uses an iFrame to load the
third-party page 2 and check whether the user is subscribed. This
information is saved into a cookie on the third-party domain. The
iFrame then checks the presence of the cookie 3 and sends back
the information using the postMessagemethod 4 . The first-party

User browser

example.com
1

sbdomain.provider.com/check.html

iF
ra

m
e

2

Subscription
check

3

N
ot

subscribed

4

sbdomain.provider.com/subscribe.html

Po
pu

p

5

Request
permission 

6

Browser
vendor

Generate
subscription

7

Provider

Store
sub
data

8

Provider
dashboard

Website
owner

Notification

1
Noti

fic
ati

on

2

No
tifi

ca
tio

n

3

evil.com

10

iFrame

11 12

Subscription

status

13

Subscribed

9

Figure 2: Subscription-sniffing attack against third-party
WPN providers.

then registers an event listener to receive the information and if
the user is not subscribed yet, it opens the third-party domain as a
pop-up to ask for the necessary permission 5 - 9 .

In this method, each website has a unique domain for providing
the third-party notification service. A common mistake in using the
postMessage method is not restricting the target origin of the sent
messages. Specifically, as an iFrame may not be able to correctly
identify the including origin, the postMessage API requires a sec-
ond parameter that specifies which origins should be allowed to
receive the sent message. The browser will then deliver the message
only to the correct destination. However, a value of “*” is allowed,
mainly for development, which allows any origin to receive the
sent message. If this is the case, an attacker can also use the same
iFrame 11 to check whether the user has subscribed to notifica-
tions of a specific website by listening to the sent messages 13 . By
finding the list of websites that a user has subscribed to, the attacker
can perform a subscription-sniffing attack and infer sensitive user
information.

CSRF. Cross-Site Request Forgery [28] attacks remain a severe
threat that can manifests in different contexts of web app func-
tionality [11, 13, 16, 27, 50]. Here we explore the implications of
such an attack in the context of push notifications. As discussed
previously, after obtaining the PushSubscription the website will
send the necessary information to the server. Since the request



ACSAC ’23, December 4–8, 2023, Austin, TX, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

 0

 0.2

 0.4

 0.6

 0.8

 1

1-100k 100k-200k 200k-300k 300k-400k 400k-500k

%
 o

f 
w

e
b

s
it
e

s

Rank

Figure 3: Percentage of sites requesting direct permission to
send WPNs.

sent to the server carries the user’s cookies, the server will be able
to match it to the corresponding user and store the subscription
information. For simplicity we assume that the web app does not
employ any form of CSRF protection [12]; nonetheless, prior work
has demonstrated methods for bypassing CSRF protections [50].
Once the user visits a website controlled by the attacker, the at-
tacker’s page can “force” the victim’s browser into generating a
request with the attacker’s PushSubscription, which carries all
the necessary cookies for the server to consider this a valid request
actually issued by the user. This will result in the server storing the
attacker’s PushSubscription instead of the victim’s, and the web
app sending all subsequent notifications intended for the user to
the attacker. It is important to emphasize that this attack is com-
pletely “silent” and the victim does not even need to grant the
notification permission. In essence, the server receives a seemingly
valid PushSubscription from the request and will store the at-
tacker’s associated endpoint for sending notifications. The result
of the attack in the situation when the user is already subscribed
depends on the underlying web application. The legitimate user
subscription may get overwritten, especially in the case when the
attack is executed on the same browser where the subscription was
made from, or it may simply be added into a list.

5 EXPERIMENTS AND MEASUREMENTS
In this section, we present our large-scale measurement study on
the prevalence and state of WPNs in the wild. We also present a
series of case studies that highlight the pitfalls of deploying push
notification functionality and demonstrate the impact of our attacks.

5.1 Large-Scale Measurement
Collection methodology. To collect the data related to push
notifications, we instrumented Chromium to capture all calls
to ServiceWorkerContainer, ServiceWorkerGlobalScope,
ServiceWorkerRegistrationPush, Notification, and
PushManager APIs alongside all events dispatched inside a
service worker such as register, install, sync, and fetch. The
instrumentation was made at the browser level by patching the
chromium source code to log relevant data during calls to the above
APIs. Moreover, to enable the automatic detection of websites
requesting notification permission directly, we also introduced
a Chromium patch to automatically accept notification requests
after a short amount of time. This was achieved by editing the

flow used to trigger the permission popup. We use dynamic and
static approaches for detecting custom implementation of push
notifications. By analyzing API call logs, particularly by examining
the occurrence of Notification.requestPermission() or
pushManager.subscribe() function calls, which are necessary
for obtaining user permission for notifications, we can dynamically
identify websites that invoke these functions to acquire notification
permission and send notifications. However, there are cases where
the dynamic approach cannot capture the APIs, particularly when
these APIs require user interaction to be invoked. For instance, a
user has to visit the website’s settings and explicitly ask the website
to send them notifications. This action triggers the notifications
permission and invokes the APIs. Therefore, we also developed
an approach to statically analyze the service worker scripts and
determine whether a website uses the push API. Typically, websites
have only one main service worker script that may include multiple
scripts. In our static approach, we use the list of APIs to recursively
download all scripts and analyze them. We use a straightforward
keyword-matching technique on the source code of the service
workers to identify relevant APIs. To construct the list of keywords,
we performed a smaller experiment using the dynamic approach
until we obtained a list of 500 websites using WPN, examined
their service workers and manually extracted relevant keywords
from the source code to minimize the occurrence of false negatives
to zero. The list of obtained keywords contains common strings
such as ‘Notificationclick’, ‘handlePushEvent’, and ‘push’ events
registration in ‘addEventListener’.

Data collection.We used Puppeteer [6] and the instrumented
browser to visit the top 500k Tranco websites and utilized the afore-
mentioned approaches to obtain information about the website’s
push notifications. For each website, we open a new browser in-
stance waiting for the page to load (we wait a maximum of 60
seconds or until no network requests occur for at least 500ms);
after that we wait for an additional 30 seconds to ensure that ev-
erything has been fetched and loaded. To quantify the prevalence
of third-party providers, and the associated flaws, we took the top
40 providers (according to builtWith [8]) and built a tool for deter-
mining whether a website utilizes a particular provider. The tool
loads the website, as aforementioned, and then detects the use of
providers through custom-tailored heuristics, such as by examin-
ing the DOM content for domains and tags present in the scripts
distributed by the providers or verifying the existence of a specific
service worker in a specific path which is required in order for that
provider to function.

Our findings are reported in Table 1. The table differentiates
between websites detected by our dynamic, static, and third-party
detection approaches. We note that the total number of websites
reported is greater than the total as some websites were flagged by
more than one approach. In total, both our scripts successfully run
on 396,154 websites. We discovered 18,566 (4.68%) unique websites
that use push notifications. Among them, 3,117 (0.78%) were found
to request permission immediately upon a user visiting the page.
A breakdown of those websites, where each bucket is normalized
based on the number of sites analyzed within the given bucked so
as to avoid bias, is shown in Figure 3. While we find such invasive
practices slightly more often in popular websites, their prevalence
is comparable across all ranks. Next, we explore the prevalence of



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild ACSAC ’23, December 4–8, 2023, Austin, TX, USA

 0

 1

 2

 3

 4

 5

1-100k 100k-200k 200k-300k 300k-400k 400k-500k

%
 o

f 
w

e
b

s
it
e

s

Rank

Custom implementation
Third-party implementation

Figure 4: Custom and third-party implementation usage,
grouped by global rank.

custom implementations, as shown in Figure 4. Surprisingly, we find
that relying on third-party WPN service providers is common prac-
tice regardless of a website’s popularity as, overall, 11,178 (2.82%)
websites employed a third-party provider while 7,388 (1.86%) had
a custom implementation. As discussed in §3, the complexity of
implementing WPNs may incentivize websites to employ a service
provider. Despite the obvious benefits, however, any flaws in the
third-party’s implementation will result in widespread vulnerabili-
ties across the web ecosystem. Overall, our script failed to run on
103,846 websites mainly due to missing DNS records or anti-bot
features detecting and blocking our automated framework..

Manual validation. Next, we conduct a manual analysis on a
subset of the websites, to verify the accuracy of our heuristics. The
dynamic approach does not have any false positives (websites not
using WPN but being flagged as so), but it may have false negatives
(websites using WPN but not being flagged). We note that even
though the static approach helps reduce false negatives, it may still
fail to detect websites with a heavily obfuscated service worker code.
Both approaches are unable to detect websites that install a service
worker only after a user interaction has occurred as both relies on
API calls made during or after the service worker installation. To
verify our third-party detection approach, we collected at most 10
websites per provider from builtWith which we manually classified
and checked to be loading correctly.We note that for some providers
wewere unable to find 10 different valid websites and for this reason
the total number of analyzed websites is lower. We also randomly
selected 20 websites from the Tranco top 500k where our system
did not detect push notifications. In total, we manually classified
343 websites and compared our findings with the ones obtained
from our system. For our third-party detection approach we found
5 (1.4%) false positives, all due to leftover code in the website, and
16 (4.7%) false negatives, which can be attributed to factors such
as code obfuscation, websites blocking our automated framework,
or situations where user interaction is necessary. The number of
websites affected per issue are reported in Table 2. Overall, our
system reported a 5.6% FPR and a 5.8% FNR.

5.2 Case Studies
To check a website in an automated manner, we should be able to
log in and properly evaluate the efficacy of the notification system.
However, we have opted for a manual process due to the vari-
ous challenges of automating the testing pipeline. Apart from the
difficulty of automating the account-creation and authentication

Table 1: Breakdown of WPN detection per technique.

Technique Websites

Dynamic approach 3,117
Static approach 8,750
Third-party detection 11,178

Table 2: False negatives in third-party provider detection.

Issue Websites

User action required 12
Cloudflare anti-bot detection 3
Code obfuscation 1

process, enablingWPNsmay be hiddenwithin an account’s settings.
More importantly, even if those challenges are overcome, actually
triggering push notifications can require site-specific actions (e.g.,
another account sending a message) or only occur periodically
when triggered by the server. As such, here we present a series
of use cases that detail vulnerabilities and flaws that we uncov-
ered during our empirical analysis, highlighting the challenging
nature of deploying WPNs and the threat posed by the threats we
present in our work. A summary of the findings of our case study
and vulnerable websites and service providers is provided in Ta-
ble 3. Note that in this table the entry ‘Session Mismanagement’
includes informations about both ‘Session termination’ and ‘Session
management’ issues.

Session termination. As mentioned in Section 4, if websites
do not verify session validity, personalized notifications can be
received even when the user is logged out. During our empirical
analysis we manual inspected poshmark.com, a popular social com-
merce marketplace for clothing and accessories (Ranked 1,703 on
Tranco). While Poshmark has incorporatedWPNs into their authen-
ticated workflow and send account-specific notifications, they do
not correctly handle session changes. Specifically, they continue to
send personalized notifications even after the user has logged out.
This can reveal sensitive information to other individuals that gain
or have access to that browser. We further discuss the conceptual
disconnect that exists between typical account-functionality and
WPNs in §6.

SessionManagement.Upon comprehensive testing of Twitter’s
behavior, we discovered that there are certain scenarios where
their push notification service does not function as intended due
to flaws in integrating WPNs into their authentication workflow
and correctly handling session changes. First, if users log out and
subsequently log in again, they will no longer receive notifications.
In fact, users need to repeat their push subscription to be able to
get notifications, indicating that session terminations in Twitter
lead to WPN push subscription termination. Second, If a user logs
in from two separate machines that have the same OS (regardless
of its version) and use the same browser vendor (regardless of its
version), Twitter will send notifications only to the most recent
browser that logged in. To better illustrate this, suppose that a user
has two valid sessions on two devices: DeviceA running macOS
v12 and using Chrome v109, and DeviceB running macOS v13 and



ACSAC ’23, December 4–8, 2023, Austin, TX, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

Table 3: Example of push notification vulnerabilities discov-
ered in various websites.

Flaws Service

Session Mismanagement Twitter, Poshmark
Subscription Sniffing Webpushr, LetReach, Cleverpush, Pushalert, VWO
CSRF gama.ir

Chrome v114. The user has also subscribed to Twitter notifications
from both devices, and DeviceA was the last to subscribe to Twitter.
In that case, the user will only receive notifications on DeviceA.

Upon further experimentation with Twitter’s notification sys-
tem, we deduced that it likely stores subscriptions in a custom
table, alongside a sessionID, browser vendor, and OS. When a user
subscribes to notifications, the system checks if the user’s OS and
browser combination already exists in the table. If it does not, a
new record is inserted. However, if the OS and browser combina-
tion matches an existing record, the system updates the session
and subscription fields of that record with the new information. In
other words, Twitter infers the endpoint based on sessionID, OS
and browser fields. As a result, if the user uses a similar OS and
browser on another system, Twitter will lose track of the previ-
ous subscription information and just push the notifications to the
latest.

A correct design must validate sessions before sending notifica-
tions, which would prevent sending them to endpoints with invalid
sessions. Additionally, Twitter does not update the corresponding
sessionIDs when users get a new one (e.g., logging out and logging
in). As a result, users are compelled to resubscribe to notifications
after each login. Overall, the issues that we have uncovered in
Twitter highlight the true complexity of incorporating WPNs in au-
thenticated environments where session management needs to be
incorporated into the life cycle of notification management. More-
over, the presence of such issues on a site as popular as Twitter,
is a good indication that such flaws may also affect many other
services.

Subscription sniffing. LetReach [3] is a push notification
provider that uses the aforementioned iFramemethod for subscrib-
ing users. The iFrame uses the postMessage method to inform
the first-party website whether the user is subscribed for receiv-
ing notifications. Since the iFrame should only be loaded by the
original website, the messages should only be sent to that specific
origin. However, LetReach incorrectly sets the targetOrigin of
the postMessage to “*”, thereby enabling any website to receive
these messages. Consequently, an adversary can exploit the absence
of proper destination validation and obtain the list of websites to
which the user has subscribed by including the iFrames into a
website they are in control of and registering an event listener for
messages sent by the third-party domain. This attack can also target
a specific customer (i.e., website) since each website that uses this
functionality has a custom subdomain generated by the provider
(Section 3).

Additionally, these messages contain a unique identifier for the
user’s subscription if the user has accepted receiving notifications
on the target website, which can potentially reveal additional infor-
mation about the victim to the attacker. Our in-depth analysis of the

 0

 50

 100

 150

 200

 250

 300

 350

1-100k 100k-200k 200k-300k 300k-400k 400k-500k

C
o

u
n

t

Rank

Generic iFrame inclusion
Cleverpush

Figure 5: Rank breakdown of websites affected by the iFrame
inclusion vulnerability and the Cleverpush flaw.

JavaScript included in the iFrames revealed numerous endpoints
for managing the user’s subscription. There is also an unsubscribe
endpoint that accepts unique identifiers sent by the iFrame to the
original page as a parameter, potentially allowing an attacker to un-
subscribe users. However, at the time of writing, that endpoint does
not work correctly even for legitimate uses. Several other providers,
including Webpushr [9] (the third most commonly used according
to BuiltWith), have the same flaw in their implementation. However,
unlike LetReach, most providers only offer subscriptions through
a subdomain upon explicit request, resulting in potentially fewer
websites being vulnerable to this issue.

Cleverpush [2], another notification provider, is also vulner-
able to this issue and includes an iFrame for all websites, even
when HTTPS is directly supported on the customer’s domain.
Moreover, the JavaScript code loaded within the iFrame exposes
a postMessage API that lacks the necessary origin checks. An at-
tacker can include an iFrame in their website and gain access to
information such as whether the user has visited and accepted noti-
fications, the internal subscription ID, a list of notifications the user
has interacted with, and even forcibly unsubscribe the user from
push notifications. Most importantly, the unsubscribing process
is never revealed to the target website, which will not prompt the
user again for permission to send push notifications unless the
browser data associated with both the target and the iFrame origin
is deleted. In total, we identified 1,187 websites that could poten-
tially be vulnerable to this history-sniffing attack and we discovered
479 websites affected by the vulnerability present in Cleverpush.

An analysis of third-party providers affected by this vulnerabil-
ity, whose results are shown in Figure 5, revealed that, while the
generic issue is almost equally distributed between websites’ ranks,
Cleverpush is mostly used by high-ranking websites, leading to
more users being affected. All those websites are mainly categorized
as “General News”, “Blogs/Wiki”, “Entertainment”, and “Business”,
and more than 30 websites classified as “Finance/Banking”.

CSRF. During our manual analysis, we found that gama.ir does
not include protection against CSRF attacks on the subscription
endpoint. Gama is an Iranian website for teachers to share and
publish educational content, including exam questions. When a
user subscribes to the push notifications of Gama, no protection
against CSRF is implemented. An attacker can deceive the victim
into visiting their website, where they can add their subscription
to the victim’s account and gain access to their notifications.



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild ACSAC ’23, December 4–8, 2023, Austin, TX, USA

6 AUTHENTICATEDWORKFLOW DESIGN
Conceptually, WPNs constitute a straightforward communication
mechanism between two endpoints, i.e., the web server and the
user’s browser. However, as discussed and demonstrated in the
previous sections, various flaws can occur during implementation,
as well as during the integration of third-party service providers.
Our empirical analysis revealed that the most complex aspect is
correctly handling WPNs in conjunction with session management.
Web applications use push notifications to inform users about a
set of events that users may find important or interesting, and
some may contain sensitive information tailored to the individual
user. For instance, email providers may push notification messages
containing the sender’s name and email title. In these scenarios, the
implementation of WPNs requires careful consideration. To that
end, this section explores various strategies and possible approaches
for designing a custom push notification system for settings where
authentications is required.

Prior research has shown that developers struggle with integrat-
ing additional mechanisms into their authentication workflows and
correctly handling session changes [21]. Similarly, incorporating
push notification functionality into a web app’s post-authentication
workflow introduces considerable complexity as it combines two
different communication abstractions: that of a user’s account and
that of a user’s browser. To put it differently, account-specific func-
tionality and data are not tied to a specific device and are available
to any browser running on any device once the authentication
process completes successfully (i.e., the user is able to log into their
account). On the other hand, push notification functionality is tied
to the specific browser instance from which the user subscribed,
and is not available to any other browsers or devices from which
the user may log in. As such, the workflow of push notifications in
a post-authentication setting is significantly more complicated. To
that end, here we present a workflow for handling notifications for
authenticated users, and also provide additional implementation-
related details that will allow developers to sidestep deployment
pitfalls and correctly incorporate push notifications into their apps.

Figure 1 provides a detailed overview of the workflow for an
authenticated notification system. The server has to store the infor-
mation representing the relationship between the Push Subscription
and the user account which can be a table in the database. This
enables the server to find the recipient of the notification once an
event is triggered. It may appear straightforward to assume that we
can simply store this information by creating a table where each
row of the table stores the user_id and the PushSubscription. How-
ever, a user can have multiple active sessions at the same time on
the same or even different devices. In this case, we may need to have
multiple rows for the same user_id to store different PushSubscrip-
tions. Once there is an event for this user, the server has to locate
the information for that specific user and send the notification to
all of them.

While this approach may seem correct, it does not factor in a
case in which a user logs out from only one session or when only
one session expires while another sessions remain active. The dis-
cussed design does not have any mechanism to consider such cases
which will result in sending notification messages to all sessions
even when they are inactive. An alternative approach is to store

DB

Log-in

Flow for
browser 1

Flow for
browser 2

1 1
Browser

https://example.com

sw.js2 2

3 3
sw install

Browser Vendor

Subscription
request

4

4

5

6

Subscription
data

Subscription
data, session

cookies, browser
fingerprint

6

7
7

Subscription
data, session

cookies,browser
fingerprint

5

DB

Browser

Browser's vendor Notification sender

8

External
 notification trigger

9Get user
 subscription data

10 User subscription
 data

11 11

Notification
delivery

Notification
delivery

12 12

13

Log-out

14

Session
 invalidated

15

16
17

18

19

Subscription Phase

Session Invalidation

Figure 6: Server stores the push subscription data in a table,
along with the cookie and a browser identifier. Once an event
is dispatched, this data is used to determine the endpoints
with valid sessions to which the notification should be sent.

the session IDs, which are unique identifiers assigned to each ses-
sion, in addition to the notification information. Once a push event
is triggered, the server will query the table and only sends the
notifications to the endpoints that have a valid session ID. How-
ever, including session IDs adds more complexity to the process
where the servers must update the table every time the session ID
is renewed. For example, if a user logs in and out of her account
from the same browser, the session ID will change whereas the
PushSubscription will remain intact. Therefore, the server needs
to know what specific row belongs to this specific browser and
update the row by replacing the previous session ID with the new
one.

Figure 6 depicts the correct workflow for managing personalized
WPNs in the event of a logout or session expiration. In the top
section 1 → 7 , the same user subscribes to the push service
on two different browsers. The notification server 2 sends back
the new endpoint that is generated for the website. When the
website receives this information, 6 it will send it back to its
server along with the cookies and a proper browser fingerprint.



ACSAC ’23, December 4–8, 2023, Austin, TX, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

The server utilizes the session ID cookies to find the user_id and
then 7 stores them in a database next to the PushSubscription
information. In the bottom section, the workflow demonstrates
8 the initial triggering of an event. The server 9 10 locates
the valid endpoints from the database and 11 12 sends the
message to those endpoints through the browser’s vendor servers.
The endpoints, which are managed by the browser vendor, will
contact the browser and send the notification to the user. Then 13
the user logs out from the first browser. The session invalidation
14 must be correctly updated in the database so that a 15 future
notification 16 → 18 will only be sent to the still logged-in
browsers.

We note that the workflow proposed here is a guideline for imple-
menting subscription management in multi-browser authenticated
environments, highlighting the nuances and pitfalls that can occur.
Designing such a system is not a straightforward task, and develop-
ers may need to adapt their design to better match the intricacies
of their web app architecture and information workflow.

7 DISCUSSION AND LIMITATIONS
In section we further discuss our research, outline the limitations
of our work and detail possible future directions.

Realistic crawling. Recent studies have studied the counter-
measures deployed by web services for mitigating bot traffic, and
explored strategies for automated crawlers to more realistically
resemble actual user traffic [25, 49]. As such, while our measure-
ments rely on the processing of a large number of websites, in
practice certain websites may behave differently when being vis-
ited by our tool. First, running Chromium in headless mode may
affect code execution and page rendering in certain websites, po-
tentially causing some websites being inadvertently excluded or
overlooked. This also includes websites that detect and respond
differently to automated browsers. Furthermore, our approach sets
a finite time limit for the website to load, so as to reduce overhead
in our large-scale measurement study, which although sufficient for
most websites, may not be adequate for others (particularly slower
websites). Since our system only visits home pages on websites, it
may overlook cases where websites install service workers only
on internal pages rather than the home page. Additionally, our
framework does not emulate any user actions and thus if the tested
features require user interaction, our framework cannot capture its
presence on those websites. Based on our experimental observation
and previous research [26], the number of websites that require
either visiting additional pages or requires user action to install a
service worker is relatively small, and therefore, does not signif-
icantly affect our studies findings; nonetheless, we consider our
numbers to be a lower bound. An interesting future direction would
be a measurement study that employs a more realistic browsing
environment and user interactions.

Post-authentication measurements.We note that websites
may require account creation for enabling push notifications, es-
pecially for personalized notifications. However, our system does
not automate account creation or login. While we found a large
number of websites that only allow subscribing to notifications
after logging in, we observed that in almost all of those cases the
website installed the required service worker on the landing page,

thus enabling our static approach detecting them. Additionally, our
empirical analysis also relies on extensive manual experiments.
Nonetheless, future work could leverage an automated account cre-
ation and authentication framework (e.g., [14, 17]) for conducting
a more comprehensive post-authentication analysis.

Automated vulnerability discovery.Our tool cannot automat-
ically assess whether websites suffer from some of the flaws that we
discovered manually (i.e., on Twitter and Poshmark). This is primar-
ily due to the multitude of distinct behaviors that would need to be
tested and the complexity involved in developing a system that can
automatically trigger a notification on an unknown website. We
also note that detecting websites that are vulnerable to CSRF attacks
on their subscription endpoint is outside the scope of this work.
Nonetheless, multiple vulnerability scanners already exist for such
tasks (e.g., ZAP [5], w3af [1]), and recent academic studies have
also proposed systems for detecting CSRF vulnerabilities [13, 27].

Ethics and disclosure. All of the experiments with web apps
and third-party service providers that required a user account, were
completed using test accounts. We did not interact, target, or affect
any actual users. Additionally, due to the significant implications of
our findings, we have disclosed them to all of the affected websites
and third-party providers via dedicated channels when present or
customer support, and are currently waiting for a response. Specifi-
cally, we disclosed the discovered subscription sniffing vulnerability
to Webpushr, LetReach, Cleverpush, Pushalert, and VWO and noti-
fied Twitter, Poshmark, and gama.ir regarding the issues we found
on their respective websites. At the time of writing, only VWO and
Cleverpush have acknowledged the issues and have informed us
that they are actively working on a fix. Moreover, we note that
the issue that we uncovered in Twitter regarding the mishandling
of session changes was fixed prior to our disclosure; the second
reported issue, which allows for breaking the notification system
by enabling it on two computers with the same OS and browser
vendor, is still present at the time of this writing.

8 RELATEDWORK
Service Workers. Service workers are quite a novel functional-
ity in modern browsers, and while their security has been tested,
further research is required to fully understand the related issues.
Papadopoulos et al. [38] analyzed their usage for stealthy cryp-
tomining on client-side applications. Franken et al. [19] revealed
how requests initiated by service workers are almost never checked
and blocked by browser privacy extensions when carrying third-
party cookies, possibly allowing tracing of the user even in such
conditions. An novel, persistent, MITM attack was proposed by
Watanabe et al. [46]. This attack abuses the fetch event listener
in the context of a rehosting website and can manipulate requests
and responses to such website. Squarcina et al. [43] analyzed their
implications in escalating XSS attacks and found an attack vector
through the Cache API which allow for performing a MITM attack.

Web push notifications. Research in this field, as previously
mentioned in this paper, is currently lacking. However, a few no-
table mentions do exist. Lee et al. [31] analyzed the connection
between web push notifications and phishing attacks, and found
multiple websites abusing the notification icon by using the logo of
a well-known website such as WhatsApp or YouTube to increase



When Push Comes to Shove:
Empirical Analysis of Web Push Implementations in the Wild ACSAC ’23, December 4–8, 2023, Austin, TX, USA

the click rate. Moreover they found how, at the time, Firefox desktop
and mobile in certain environments, and Samsung Internet browser
in all cases, didn’t show the origin of the notification, potentially
allowing attackers to mount an even more realistic phishing attack.
Finally, they found how third-party providers making use of subdo-
mains to send notifications make the problem worse by confusing
the user. Unrelated to push notifications, they also showed how to
exploit the offline browsing feature in PWAs using a cache to infer
the victim’s history of visited PWAs. Loreti et al. [36] researched
the privacy issues related to mobile push applications and found
that an attacker, if able to trigger a notification to a device, can
successfully detect whether such device is currently located on the
same network. Finally, Subramani at al. [44] developed a crawler
and instrumented Chromium to analyze WPN notifications and
discover malicious ad campaigns. While their patching strategy is
similar to the system we developed, there are differences in the
API calls collected. Moreover, their research is focused on the con-
tent of sent notifications and their use for malicious advertisement,
while our work aims at identifying pitfalls that occur during the
implementation and deployment of push notifications and, thus,
focuses more on the service workers’ source code.

Mobile push notifications.While the underlying technology
and implementation of push notifications in mobile platforms differ
significantly to those of web push notifications due to the inherent
differences between web app and mobile app capabilities, and we,
prior work has explored various aspects of Android push notifica-
tions. One of the first such security studies was by Li et al. [33],
who conducted a security analysis of popular mobile push messag-
ing services, under the assumption that the attacker was able to
install a malicious app on the user’s device. Liu et al. [35] explored
aggressive push notification practices, and proposed a system for
automatically exercising Android apps and detecting aggressive
push notification behaviors. Prior work by Hyun et al. [24] and Lee
et al. [30] explored how botnets could leverage push notifications
for establishing stealthy C&C channels.

History sniffing. Many attacks on CSS properties have been
proposed during the years [15, 22, 23, 42, 47] which enabled attack-
ers to know the browser’s history of a visiting user. Felten and
Schneider [18] analyzed web timing attacks with the objective of
compromising user data, in particular their browsing history. By
measuring the time needed to access a resource the attacker could
detect whether it was previously cached. Side-channel attacks, as
demonstrated by Wu et al. [48] in the specific case of browser ren-
dering, and service workers, as shown by Karami et al. [26], are
another vector which an attacker may use to obtain information
about users’ browsing history. Finally, Lee et al. [32] demonstrated
how AppCache, a novel functionality of HTML5 could allow an
attacker to detect the status of a target URL and infer previous
logins on such websites.

CSRF. CSRF vulnerabilities have been extensively investigated
by the security community and numerous prior studies have ex-
plored the threat that they pose [11, 13, 16, 27, 28, 50]. Semastin
et al. [41] analyzed existing measures and proposed a combined
solution, Barth et al. [12] proposed new techniques, while Zheng
et al. [50] analyzed methods to bypass existing protections. How-
ever, detecting such flaws remains a complex task and is an active
research topic. Calzavara et al. [13] proposed an approach based on

machine learning for detecting CSRF vulnerabilities in a black-box
scenario, while Khodayari et al. [27] focused on client-side CSRF
and released a tool to test for its presence.

9 CONCLUSIONS
Web push notifications present a departure from the multitude of
web technologies of the past, as they obviate users’ ability to access
account functionality regardless of the device or browser being
used. Instead, push notification create a notification channel whose
client-side endpoint is attached to a specific browser instance. By
deviating from the de-facto user abstraction of an account to that of
a browser, push notifications create an incompatibility that signifi-
cantly complicates deployment and integration with other web app
functionality (e.g., session management). In this paper we presented
an in-depth empirical analysis of push notifications in the wild, and
highlighted a series of implementation pitfalls. We also demon-
strated a series of attacks, including a novel history-sniffing attack,
that affect popular web services and push notification providers. To
that end we provided a series of guidelines for developers, including
a detailed workflow for correctly handling push notifications when
users need to authenticate and use multiple devices to access their
account. Overall, push notifications constitute a uniquely interest-
ing web technology that can expose users to significant threats,
and should be further scrutinized by the security community.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and Shepherd for their help-
ful feedback. This project was supported by the National Science
Foundation (CNS-2211574, CNS-2143363). The views in this paper
are only those of the authors and may not reflect those of the US
Government or the NSF.

REFERENCES
[1] 2013. w3af. http://w3af.org/.
[2] 2023. Cleverpush. https://cleverpush.com/
[3] 2023. LetReach. https://www.letreach.com/
[4] 2023. Mozilla autopush. https://autopush.readthedocs.io/
[5] 2023. OWASP ZAP. https://www.zaproxy.org/.
[6] 2023. Puppeteer. https://pptr.dev/
[7] 2023. Push API. https://www.w3.org/TR/push-api/
[8] 2023. Push Notifications Usage Distribution in the Top 1 Million Sites. https:

//trends.builtwith.com/widgets/push-notifications
[9] 2023. Webpushr. https://www.webpushr.com/
[10] Mir Masood Ali, Binoy Chitale, Mohammad Ghasemisharif, Chris Kanich, Nick

Nikiforakis, and Jason Polakis. 2023. Navigating Murky Waters: Automated
Browser Feature Testing for Uncovering Tracking Vectors.. In NDSS.

[11] Elham Arshad, Michele Benolli, and Bruno Crispo. 2022. Practical attacks on
Login CSRF in OAuth. Computers & Security 121 (2022), 102859.

[12] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security. 75–88.

[13] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele
Tolomei. 2019. Mitch: A machine learning approach to the black-box detection of
CSRF vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 528–543.

[14] Stefano Calzavara, Hugo Jonker, Benjamin Krumnow, and Alvise Rabitti. 2021.
Measuring web session security at scale. Computers & Security 111 (2021), 102472.

[15] Andrew Clover. 2002. CSS visited pages disclosure. https://lists.w3.org/Archives/
Public/www-style/2002Feb/0039.html

[16] Luca Compagna, Hugo Jonker, Johannes Krochewski, Benjamin Krumnow, and
Merve Sahin. 2021. A preliminary study on the adoption and effectiveness of
SameSite cookies as a CSRF defence. In 2021 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE, 49–59.

[17] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The cookie hunter:
Automated black-box auditing for web authentication and authorization flaws. In

http://w3af.org/
https://cleverpush.com/
https://www.letreach.com/
https://autopush.readthedocs.io/
https://www.zaproxy.org/
https://pptr.dev/
https://www.w3.org/TR/push-api/
https://trends.builtwith.com/widgets/push-notifications
https://trends.builtwith.com/widgets/push-notifications
https://www.webpushr.com/
https://lists.w3.org/Archives/Public/www-style/2002Feb/0039.html
https://lists.w3.org/Archives/Public/www-style/2002Feb/0039.html


ACSAC ’23, December 4–8, 2023, Austin, TX, USA Alberto Carboneri, Mohammad Ghasemisharif, Soroush Karami, and Jason Polakis

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1953–1970.

[18] E.W. Felten andM. A. Schneider. 2000. Timing attacks onweb privacy. Proceedings
of the ACM Conference on Computer and Communications Security. https://doi.
org/10.1145/352600.352606

[19] Gertjan Franken, Tom Van Goethem, andWouter Joosen. 2018. Who left open the
cookie jar? A comprehensive evaluation of third-party cookie policies. Proceedings
of the 27th USENIX Security Symposium.

[20] Diana Freed, Jackeline Palmer, Diana Minchala, Karen Levy, Thomas Ristenpart,
and Nicola Dell. 2018. “A Stalker’s Paradise” How Intimate Partner Abusers
Exploit Technology. In Proceedings of the 2018 CHI conference on human factors
in computing systems. 1–13.

[21] Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis. 2022. Towards
automated auditing for account and session management flaws in single sign-
on deployments. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
1774–1790.

[22] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. 2012. Scriptless attacks - Stealing the pie without touching the sill.
Proceedings of the ACM Conference on Computer and Communications Security.
https://doi.org/10.1145/2382196.2382276

[23] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk. 2014. Scriptless
attacks: Stealing more pie without touching the sill. Journal of Computer Security
22 (2014). Issue 4. https://doi.org/10.3233/JCS-130494

[24] Sangwon Hyun, Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. 2018.
Design and analysis of push notification-based malware on android. Security and
Communication Networks 2018 (2018).

[25] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis Pa-
padopoulos, Matteo Varvello, Ben Livshits, and Alexandros Kapravelos. 2021.
Towards Realistic and Reproducible Web Crawl Measurements. In Proceedings of
The Web Conference (WWW).

[26] Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening the Web’s
Sleeper Agents: Misusing Service Workers for Privacy Leakage. In NDSS.

[27] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying client-side
CSRF with hybrid property graphs and declarative traversals. In USENIX Security
Symposium.

[28] KirstenS. 2021. Cross Site Request Forgery (CSRF) | OWASP Foundation.
[29] Brian Kondracki, Assel Aliyeva, Manuel Egele, Jason Polakis, and Nick Nikiforakis.

2020. Meddling middlemen: Empirical analysis of the risks of data-saving mobile
browsers. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 810–824.

[30] Hayoung Lee, Taeho Kang, Sangho Lee, Jong Kim, and Yoonho Kim. 2014.
Punobot: Mobile botnet using push notification service in android. In Infor-
mation Security Applications: 14th International Workshop, WISA 2013, Jeju Island,
Korea, August 19-21, 2013, Revised Selected Papers 14. Springer, 124–137.

[31] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. Pride
and prejudice in progressive web apps: Abusing native app-like features in Web
applications. Proceedings of the ACMConference on Computer and Communications
Security. https://doi.org/10.1145/3243734.3243867

[32] Sangho Lee, Hyungsub Kim, and Jong Kim. 2015. Identifying Cross-origin Re-
source Status Using Application Cache. https://doi.org/10.14722/ndss.2015.23027

[33] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed, Xi-
aoFengWang, and Xinhui Han. 2014. Mayhem in the push clouds: Understanding
andmitigating security hazards inmobile push-messaging services. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
978–989.

[34] Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the blanks: Empirical
analysis of the privacy threats of browser form autofill. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 507–519.

[35] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019.
Dapanda: Detecting aggressive push notifications in android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 66–78.

[36] Pierpaolo Loreti, Lorenzo Bracciale, and Alberto Caponi. 2018. Push attack:
Binding virtual and real identities using mobile push notifications. Future Internet
10 (2018). Issue 2. https://doi.org/10.3390/fi10020013

[37] Francesco Marcantoni, Michalis Diamantaris, Sotiris Ioannidis, and Jason Polakis.
2019. A large-scale study on the risks of the html5 webapi for mobile sensor-based
attacks. In The World Wide Web Conference. 3063–3071.

[38] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web Puppets:
Abusing Web Browsers for Persistent and Stealthy Computation. https://doi.
org/10.14722/ndss.2019.23070

[39] pushcrew. 2016. The State of Web Push Notifications. https:
//gallery.mailchimp.com/fccee8d27b3a55c46b81ce8ae/files/The_State_of_
Web_Push_Notifications_2016.pdf.

[40] PushEngage. 2021. Email vs Push Notifications: Statistics & Expert Strategies.
https://www.pushengage.com/email-vs-push-notifications-statistics.

[41] Emil Semastin, Sami Azam, Bharanidharan Shanmugam, Krishnan Kannoor-
patti, Mirjam Jonokman, Ganthan Narayana Samy, and Sundresan Perumal. 2018.

Preventive measures for cross site request forgery attacks on Web-based Appli-
cations. International Journal of Engineering and Technology(UAE) 7 (2018). Issue
4. https://doi.org/10.14419/ijet.v7i4.15.21434

[42] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and Deian
Stefan. 2018. Browser history re:visited. In 12th USENIX Workshop on Offensive
Technologies (WOOT 18). USENIX Association, Baltimore, MD. https://www.
usenix.org/conference/woot18/presentation/smith

[43] Marco Squarcina, Stefano Calzavara, and Matteo Maffei. 2021. The Remote on
the Local: Exacerbating Web Attacks Via Service Workers Caches. Proceedings
- 2021 IEEE Symposium on Security and Privacy Workshops, SPW 2021, 432–443.
https://doi.org/10.1109/SPW53761.2021.00062

[44] Karthika Subramani, Xingzi Yuan, Omid Setayeshfar, Phani Vadrevu, Kyu Hyung
Lee, and Roberto Perdisci. 2020. When Push Comes to Ads: Measuring the Rise
of (Malicious) Push Advertising. Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC. https://doi.org/10.1145/3419394.3423631

[45] M Thomson and P Beverloo. 2017. Voluntary Application Server Identification
for Web Push. IETF Tools (2017).

[46] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. 2020.
Melting Pot of Origins: Compromising the IntermediaryWeb Services that Rehost
Websites. https://doi.org/10.14722/ndss.2020.24140

[47] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. 2010.
A practical attack to de-anonymize social network users. Proceedings - IEEE
Symposium on Security and Privacy. https://doi.org/10.1109/SP.2010.21

[48] Shujiang Wu, Jianjia Yu, Min Yang, and Yinzhi Cao. 2022. Rendering Contention
Channel Made Practical in Web Browsers. In 31st USENIX Security Symposium
(USENIX Security 22). 3183–3199.

[49] David Zeber, Sarah Bird, Camila Oliveira,Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, and Martin Lopatka. 2020. The representativeness of automated web
crawls as a surrogate for human browsing. In Proceedings of The Web Conference
2020. 167–178.

[50] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao Wan, and
Nicholas Weaver. 2015. Cookies Lack Integrity: Real-World Implications. In 24th
USENIX Security Symposium (USENIX Security 15).

https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/2382196.2382276
https://doi.org/10.3233/JCS-130494
https://doi.org/10.1145/3243734.3243867
https://doi.org/10.14722/ndss.2015.23027
https://doi.org/10.3390/fi10020013
https://doi.org/10.14722/ndss.2019.23070
https://doi.org/10.14722/ndss.2019.23070
https://gallery.mailchimp.com/fccee8d27b3a55c46b81ce8ae/files/The_State_of_Web_Push_Notifications_2016.pdf
https://gallery.mailchimp.com/fccee8d27b3a55c46b81ce8ae/files/The_State_of_Web_Push_Notifications_2016.pdf
https://gallery.mailchimp.com/fccee8d27b3a55c46b81ce8ae/files/The_State_of_Web_Push_Notifications_2016.pdf
https://www.pushengage.com/email-vs-push-notifications-statistics
https://doi.org/10.14419/ijet.v7i4.15.21434
https://www.usenix.org/conference/woot18/presentation/smith
https://www.usenix.org/conference/woot18/presentation/smith
https://doi.org/10.1109/SPW53761.2021.00062
https://doi.org/10.1145/3419394.3423631
https://doi.org/10.14722/ndss.2020.24140
https://doi.org/10.1109/SP.2010.21

	Abstract
	1 Introduction
	2 Background
	3 Deployment & Integration Pitfalls
	3.1 Integrating Third-Party Push Providers
	3.2 Implementing Personalized WPNs

	4 Exploiting Implementation Pitfalls
	5 Experiments and measurements
	5.1 Large-Scale Measurement
	5.2 Case Studies

	6 Authenticated Workflow Design
	7 Discussion and Limitations
	8 Related Work
	9 Conclusions
	References

