
Fashion Faux Pas: Implicit Stylistic Fingerprints
for Bypassing Browsers’ Anti-Fingerprinting Defenses

Xu Lin∗, Frederico Araujo†, Teryl Taylor†, Jiyong Jang†, Jason Polakis∗
∗University of Illinois Chicago, †IBM Research

∗{xlin48, polakis}@uic.edu, †{frederico.araujo, terylt}@ibm.com, †jjang@us.ibm.com

Abstract—Browser fingerprinting remains a topic of particular
interest for both the research community and the browser
ecosystem, and various anti-fingerprinting countermeasures
have been proposed by prior work or deployed by browsers.
While preventing fingerprinting presents a challenging task,
modern fingerprinting techniques heavily rely on JavaScript
APIs, which creates a choke point that can be targeted by
countermeasures. In this paper, we explore how browser
fingerprints can be generated without using any JavaScript
APIs. To that end we develop StylisticFP, a novel finger-
printing system that relies exclusively on CSS features and
implicitly infers system characteristics, including advanced
fingerprinting attributes like the list of supported fonts,
through carefully constructed and arranged HTML elements.
We empirically demonstrate our system’s effectiveness against
privacy-focused browsers (e.g., Safari, Firefox, Brave, Tor) and
popular privacy-preserving extensions. We also conduct a pi-
lot study in a research organization and find that our system
is comparable to a state-of-the-art JavaScript-based fingerprint-
ing library at distinguishing devices, while outperforming it
against browsers with anti-fingerprinting defenses. Our work
highlights an additional dimension of the significant chal-
lenge posed by browser fingerprinting, and reaffirms the need
for more robust detection systems and countermeasures.

1. Introduction

Online tracking is pervasive across the web ecosys-
tem and has continued to affect users for more than two
decades [1]. While many mitigations have been proposed
throughout the years [2], and major browser vendors (e.g.,
Safari, Firefox, and Brave) have become more aggressive
in deploying anti-tracking defenses [3]–[5], the underlying
economy provides a strong incentive for advertisers and other
entities to maintain their privacy-invasive practices. This
has resulted in the public discourse around online privacy
growing louder, and the U.S. Congress and Senate members
introducing drafts and legislation outlining privacy protection
measures [6]. Concerns about online tracking have also
prompted a series of legislative initiatives that aim to curb
and regulate tracking practices (e.g., GDPR [7], CCPA [8]).

Widely deployed defenses by browsers have mostly
focused on restricting third-party cookie-based tracking, and
the online tracking ecosystem has responded in a reactionary
manner by leveraging new techniques for bypassing those

restrictions (e.g., [9]). This arms race has motivated the
development of alternative cookie-less tracking techniques;
browser and device fingerprinting techniques have drawn
significant attention from the research community, resulting
in a plethora of insightful studies and new techniques [10]–
[27]. Alarmingly, research has revealed a drastic increase
in fingerprinting practices in the wild; while only 0.4% of the
top 10K sites leveraged browser fingerprinting in 2013 [28],
in 2021 that number climbed to 25% [29].

Popular browsers have recently adopted a series of
defensive countermeasures that mitigate browser finger-
printing by blocking certain API calls (e.g., Tor blocking
the Canvas API [30]), randomizing the values that certain
API calls return to websites (e.g., Brave randomizing what
is returned by the Canvas API [31]), or limiting what system
resources are made available to websites (e.g., Firefox limiting
what system fonts can be used [32]). Researchers have also
proposed strategies for detecting and blocking fingerprinting
based on the use of specific JavaScript APIs [29], [33]–[36].

In this paper we focus on how existing anti-tracking
defenses adopted by privacy-oriented browsers and tools can
be bypassed. To that end, we explore implicit stylistic browser
fingerprints (henceforth referred to as stylistic fingerprints
for simplicity), wherein we infer information about the user’s
environment using CSS features. Our work is motivated
by the following observations: (𝑖) different HTML elements
have different sizes depending on aspects of the environment
that they are rendered in, and (𝑖𝑖) elements’ dimensions can
be indirectly inferred using CSS features. Guided by our
observations, we develop a novel fingerprinting technique
that infers browser and system attributes without using any
JavaScript APIs (which constitute the cornerstone of modern
browser fingerprinting). Our system generates the user’s
stylistic fingerprint based on environmental attributes ranging
from basic properties, like the browser and the operating
system, to advanced fingerprints like the list of supported fonts.
These attributes are implicitly inferred through the dimensional
properties of carefully crafted iframe-based constructions,
while also leveraging feature grouping, element placement, and
ordering optimizations for achieving practical performance.

To explore our system’s robustness against anti-tracking
defenses, we provide an in-depth empirical analysis against
popular privacy-focused browsers (e.g., Safari, Firefox, Brave,
Tor). We also evaluate our system against six popular anti-
fingerprinting browser extensions and a state-of-the-art finger-
printing detection system [29]. Our experiments demonstrate
our technique’s effectiveness, showing that our system is able

to collect highly discriminative attributes. Critically, our sys-
tem infers device characteristics even when users are browsing
through the Tor browser, which is notoriously proactive and
aggressive in deploying anti-fingerprinting defenses by com-
pletely blocking or modifying the returned values of JavaScript
APIs that leak information about the user’s environment.

We conduct a large pilot study designed to stress test
our system and capture the true discriminating power of
our techniques, by deploying it for nine weeks within a re-
search institution that is comprised of a highly homogeneous
population of user devices. Our experiments demonstrate
the effectiveness of our approach, underscoring that our
system is comparable to FingerprintJS [37] (the state-of-the-
art fingerprinting library which is widely used across the web
ecosystem) against non privacy-oriented browsers, while out-
performing it against browsers that have anti-fingerprinting
defenses enabled by default (i.e., Safari and Brave). Due to
its unique design characteristics and capabilities, in practice,
our system can be used in conjunction with JavaScript-based
fingerprinting for collecting attributes blocked by existing
defenses in popular browsers, or as the sole fingerprinting
system in scenarios where JavaScript-based techniques are
completely ineffective (e.g., JavaScript execution is blocked).

Our research highlights the inherent privacy threat
presented by browser fingerprinting, as trackers can re-
sort to implicit techniques that are capable of inferring
system characteristics that are rich sources of entropy, while
remaining largely unaffected by available state-of-the-art
defenses. Even privacy-preserving browsers that aggressively
remove features to enhance privacy are vulnerable to more
sophisticated indirect fingerprinting techniques. We hope that
our work will further expose the challenges of preventing
browser fingerprinting and motivate additional research.

In summary, we make the following contributions:
• We propose stylistic browser fingerprints and develop

a novel fingerprinting system that implicitly infers a wide
range of browser and system characteristics using CSS
and carefully constructed and arranged HTML elements.

• We provide an in-depth empirical evaluation of our system
against popular privacy-focused browsers, and explore how
our system is effective in scenarios where JavaScript-based
fingerprinting techniques falter.

• We conduct a pilot study that demonstrates the capabilities
and effectiveness of our CSS-driven fingerprinting system.

• We have disclosed our findings to the browser vendors
and will share our system with researchers upon request. A
demonstration of our system’s capabilities is available [38].

2. System Design and Implementation
We first outline the practical limitations of traditional

browser fingerprinting techniques for device recognition,
which motivate and guide our research. We then detail our
approach for JavaScript-free device fingerprinting via stylistic
fingerprints.

2.1. Browser Fingerprinting Challenges

Despite the increasing popularity of browser finger-
printing in device recognition applications, its effectiveness

against modern, privacy-oriented browser environments
has been hampered by reliability challenges that arise from
the inherent distrust that exists between the web client
and the content provider. Fundamentally, the fingerprinting
features collected in the client environment can be easily
altered through client API hooking techniques or completely
blocked by clients that disable JavaScript. Essentially, feature
robustness is a challenge in device fingerprinting because
the client features that are typically collected by state-of-
the-art fingerprinting methods are susceptible to modification
through feature effacing and randomization techniques that
are commonly employed by privacy-enhancing defenses.

Another obstacle is fingerprinting detection, which is
facilitated by scripted fingerprinting approaches that reuse
common JavaScript APIs and libraries. Such feature reuse
patterns enable browser anti-fingerprinting mechanisms to rec-
ognize and disarm fingerprinting behavior [29], [39]. Finally,
the performance overhead incurred by any newly-proposed
fingerprinting technique or system needs to be accounted
for, as it can pose an obstacle to real-world deployment.

2.2. Implicit Stylistic Browser Fingerprints

We tackle these challenges by introducing stylistic fin-
gerprints, a novel strategy that dispenses the use of JavaScript
and provides discriminating fingerprints comparable to cur-
rent state-of-the-art approaches. Stylistic fingerprints are built
from visual attributes generated by web renderers, which
depend on a device’s configuration. Our technique bypasses
existing anti-fingerprinting defenses by relying solely on CSS
and HTML elements, without the need for JavaScript API calls
that can be blocked or manipulated. These elements are also
instrumental in the correct rendering of a webpage, making
it difficult to block them without breaking functionality.

However, there are important challenges that arise when
creating fingerprints from stylistic web elements. First, we
must be able to obtain the fingerprints dynamically without
using JavaScript once the browser renders the page. Second,
we must select HTML elements that possess discriminatory
capabilities, and those elements need to be arranged strate-
gically on the screen to maintain a stable fingerprint, and
to ensure that pages’ performance does not suffer. Moreover,
relying solely on HTML and CSS features mandates an
implicit approach to inferring device characteristics, which
can lead to an insurmountable number of network requests;
this necessitates a precise construction for achieving practical
performance. Finally, an effective approach is required to
encode usable information from the HTML elements so
that the server can actually create the fingerprints.

2.3. Fingerprinting Techniques

We observe that browsers render HTML elements dif-
ferently in diverse environments, as their dimensions are not
solely determined by the browser rendering engine but are also
affected by the operating system (OS) and other environmental
factors. For example, native HTML elements such as check-
boxes and drop-downs are rendered differently across operating
systems. Other environmental factors, such as available fonts,
user preferences, and browser settings, also have an impact on

2

Listing 1: Probe the iframe’s width in iframe.html.
1 /*Only last matched query sends out request. */
2 @media (min-width: 300px) {
3 #probe {background: url(/ iframe-width-300);}}
4 @media (min-width: 301px) {
5 #probe {background: url(/ iframe-width-301);}}
6 ...
7 @media (min-width: 600px) {
8 #probe {background: url(/ iframe-width-600);}}

the rendered dimensions of certain elements. While such ren-
dering differences may be small, dimensional data is sufficiently
distinct to differentiate devices. This key observation informs
our design: if we deploy and properly arrange HTML elements
in a web page, we can infer device characteristics by observing
their dimensions. Appendix A provides an indicative example.

We aim to obtain multiple elements’ dimensions for
inferring device information. To collect dimensions without
JavaScript, we utilize CSS media queries. A CSS media query
enables websites to test or retrieve characteristics of the
device irrespective of the webpage being rendered on the
client. CSS media features’ width and height can be used
to test the dimensions of a web page’s viewport (the section
of the page that is visible in the browser window). However,
they cannot directly query HTML elements’ dimensions, since
media queries are designed to work with devices or media
types (e.g., print, screen, speech). Width, height, and other
dimension-based media features all refer to the dimensions
of either the viewport or the device’s screen in screen-based
media—they cannot refer to a specific HTML element. As
such, we trick media queries into measuring the dimensions
of elements by introducing iframes (inline frames), which
are used to embed other web pages into the current page.

To use media queries on HTML elements, we first make
an iframe’s dimensions adapt to the elements’ dimensions. For
example, to measure a single HTML element’s dimensions,
we align the element vertically with an iframe in a container
of a fixed height, as shown in Figure 3a (Appendix B). We
set the iframe’s width and height to 100% so that it takes up
all space available in the container. We make the container’s
width fit the element’s width so that the element’s width
equals the iframe’s width. The element’s height is equal
to the container’s height minus the iframe’s height.

Next, we place the queries within the iframe. This tricks
the queries into believing the iframe is a viewport and causes
them to respond with the iframe’s dimensions, allowing us
to indirectly infer the elements’ dimensions. Listing 1 shows
the CSS syntax of a media query. The query is analogous to
an if/switch statement in programming whereby each media
block represents a different branch in an if/case statement.
A block is triggered if the condition is met in the media block.
In our example, if the iframe’s min-width is 301px, the second
block is triggered, and the client browser makes a callback
request to the server for the corresponding background image
with the crafted url, notifying the server that the iframe’s
width is 301px. If the dimension does not match any values
listed in the query, then no callback request occurs. For each
iframe deployed, we make a list of media blocks of queries
with candidate widths and heights to probe into the iframe’s

Listing 2: A simple example.html document showing a
stylistic feature using a <textarea> element.
1 <div class="container">
2 <textarea id="story" rows="5.3" cols="33.99">
3 It was a dark and stormy night...
4 </textarea>
5 <div>
6 <iframe src="iframe.html"></iframe>
7 </div>
8 </div>

dimensions, and each query requests a unique background im-
age that does not exist on the server, allowing us to obtain the
iframe’s dimension without any user interaction. In this way,
we can obtain and communicate the specific element’s dimen-
sions to the fingerprinting service without using JavaScript.

To further illustrate this, in Listing 2 we place a
<textarea> element (lines 2–4) and an <iframe> (line 6) in
a <div> container. The container’s width depends on the
<textarea> element’s width, and the height is 1000px. Sup-
pose we determine that the iframe has a width of 430px
and a height of 850px through media queries. Then, we can
learn that the <textarea> has a width of 430px and a height
of 150px. Note that an iframe’s dimensions are not always
integers, but can also be decimals, as some browsers do
not round numbers for media queries (e.g., Firefox). However,
it is obviously impractical to generate a media query with
all possible decimal numbers in a range of dimensions. There-
fore, we use minimum dimension values (min-width and
min-height) instead of the exact values (width and height).
Importantly, conditions from multiple media queries can
be satisfied as long as the minimum values are not greater
than the actual value, but only the last matched block can be
triggered; therefore, media blocks must be sorted in ascending
order. For example, assume candidate widths range from
70px to 90px, with the iframe’s actual width being 80.5px.
Then, only the min-width of 80px is returned due to sorting.

2.4. Fingerprinting Features

Our framework derives fingerprints from a diverse set of
HTML elements and CSS media features to discern different de-
vice characteristics. Table 1 details the stylistic fingerprinting
attributes and the HTML elements associated with them. Our
system has a total of 30 fingerprinting features using 25 iframes
and 339 HTML elements. These elements are grouped into four
categories, according to the types of features they fingerprint.
Table 2 summarizes these fingerprinting attributes, which
include traditional features typically detected by existing fin-
gerprinting approaches, such as browser vendor and operating
system, as well as new features, such as the system language.
Our feature selection was guided by prior work as well as an
exploratory study wherein we identified new features specific
or relevant to styles. We reference the AmIUnique [40] and Fin-
gerprintJS [37] frameworks as representative and popular state-
of-the-art fingerprinting systems. While we do not aim to com-
prehensively compare feature set support with prior art since
our novelty lies largely in our approach to feature construction

3

TABLE 1: StylisticFP features and the HTML elements associated with them.
HTML Elements HTML Elements

Feature Type Number Entropy Feature Type Number Entropy

Env-1
acronym, applet, article, aside, pre, form,
strike, tt

8 0.42 Env-2
h1, h2, h3, h4, h5, h6, picture, time,
del, details, figure, img

12 0.44

Env-3 address 1 0.39 Env-4 canvas 1 0.29
Env-5 audio, video, svg 3 0.36 Env-6 textarea 1 0.44

Env-7
bdi, bdo, bgsound, big, blink, blockqoute,
button, input-button, center, rtc, hgroup,
keygen, spacer, q, small, p

16 0.46 Env-8
cite, code, data, input-color, content, em,
image, progress, meter, portal, ins, dfn,
p, marquee, u, wbr, s, mark

18 0.43

Env-9
input-date, input-file, input-month,
input-week

4 0.48 Env-10
input-number, input-range, input-time,
select, embed

5 0.53

Env-11

input-datetime, input-datetime-local, input-
tel, input-radio, input-reset, input-submit,
input-image, input-text, input-email,
input-search, input-url, input-checkbox

12 0.46 Env-12

span elements of ISO-8859-1 characters,
ISO-8859-1 symbols, Greek letters,
Math symbols,
Miscellaneous HTML entities

5 0.46

Env-13
span elements of non-printable and
control characters, ruby, rb

4 0.50 Env-14
main, nav, menu, section, math, fieldset,
footer, hr, table

9 0.45

JS-block ext. noscript 1 0.01 JS-block config. canvas 1 0.00
Font-pref-1 span elements of test font sizes 20 0.34 Font-pref-2 span elements of system fonts 3 0.44
Font-pref-3 span elements of generic font families 3 0.46 Font-1 span elements of test font families 19 0.52
Font-2 span elements of test font families 19 0.56 Font-3 span elements of test font families 15 0.47
Shadow-font-1 span elements of test shadow font families 19 0.51 Shadow-font-2 span elements of test shadow font families 19 0.56
Shadow-font-3 span elements of test shadow font families 15 0.45 Screen res. div 1 0.38
Ad-block ad1 1 0.05 Ad-block ident. ad2, ad3, ad4, ad5, ad6 5 0.08
Media-1 div 23 0.42 Media-2 div 76 0.58

TABLE 2: Fingerprinting attributes captured by our approach.
Category Fingerprint attributes AIU FPJS

Environment

browser
browser major version
operating system
platform G# G#
operating system language
scrollbar settings
JS disabled

Fonts
font preferences
supported fonts
supported shadow fonts

Ad blocker presence of ad blocker
ad blocker identification

Media properties

screen resolution
supported media features G#
media features’ values G#

AIU: captured by AmIUnique [40] FPJS: captured by FingerprintJS [37]
G#: partial feature support : full feature support

and the ability to bypass existing anti-fingerprinting defenses,
our system incorporates both known and novel attributes.
Environment. The first category contains elements of 101
different types from the HTML elements reference guide [41].
These elements are good candidates for fingerprinting because
their sizes vary depending on the environment in which
they are rendered. For example, in macOS Monterey 12.4, the
width/height of the <input> element of type color in Chrome
v101 is 50px/27px, yet evaluates to 64px/32px and 48px/23px
in Firefox v100 and Safari v15, respectively. These values also
change with the system and browser versions. We exclude
elements that are no longer supported by major browsers,
as well as elements that can cause problems (e.g., during our

experiments we discovered that the <object> element impacts
our system’s performance in Safari). We detect if JavaScript is
disabled by wrapping an HTML element inside the <noscript>
tag, and we use the <canvas> element to determine whether
the disabling is due to browser settings. We also include nine
elements with special characters in the element’s text, due to
such characters’ rendering being affected by the computing
environment. Specifically, we place Greek letters, math symbols,
ISO-8859-1 characters and symbols, non-printing characters,
and other miscellaneous HTML entities in elements,
and place East Asian characters with annotations in the
<ruby> element, which is typically used to demonstrate the
pronunciation of East Asian characters. We provide an example
of how certain elements allow us to detect the OS language in
Appendix C. Elements in this category make use of 14 iframes,
ranging from features Env-1 to Js-block config. in Table 1.
Fonts. These are one of the most popular fingerprinting
mechanisms due to their discriminating power [42]. We utilize
two types of font features: font preferences and supported
fonts. The font preference attributes refer to a browser’s font
preferences such as font sizes (e.g., minimum font size), generic
font families, and system fonts. In total, we embed text in 26
 elements using various font configurations, and record
the element size. The next set of collected attributes provides
information about supported browser fonts. In both JavaScript
and CSS, websites assign fonts to elements using font family.
Note that fonts are not the same as font families. A font
family is a collection of related fonts. For example, the Arial
family is made up of multiple fonts, including Arial Regular,
Arial Italic, Arial Bold, Arial Bold Italic, etc. We check for
52 different font families in the browser, derived from the list
used by FingerprintJS [37]. Moreover, we define our own set of
font families that mirror the existing set of font families using
@font-face, and divide them into three shadow groups. Since

4

we use dimensional data, none of the font families need to be
written in the media queries. This category uses nine iframes,
ranging from features Font-pref-1 to Shadow-font-3 in Table 1.
Ad blocker presence. We use this set of attributes to detect
the presence of an ad blocker and identify it from a list of
popular options (e.g., AdBlock, AdGuard). To do so, we use
six elements (three elements and three <div> elements)
as ad elements, which bait the ad blocker into removing the
element if an ad blocker exists. Two of the elements request a
remote resource, thus triggering two requests. While this fea-
ture can provide useful information in certain cases, it is not as
robust as the other features (e.g., due to ad blockers changing
their heuristics, or extensions being disabled when the user is
browsing in incognito mode). This category is associated with
the features Ad-block and Ad-block ident. in Table 1. HTML
elements in this category do not use any dedicated iframes be-
cause they share the iframes with elements from other groups.
CSS media properties. We obtain the screen resolution using
the CSS media features device-width and device-height,
which do not require the device to be in full-screen mode. Our
framework further probes for 23 CSS media features. These
include: (𝑖) device features, like the number of bits per color
component and the number of device pixels used to represent
each CSS pixel, (𝑖𝑖) browser preferences, such as a light color
theme and reduced motion, and (𝑖𝑖𝑖) browser support of recent
CSS media features and their configurations. In this category,
we test 23 media features from media queries levels 3 [43] to
5 [44] using 99 media feature expressions. Each expression uses
a <div> element. Table 6 (Appendix D) summarizes these media
features. This category is associated with the features Screen
res., Media-1, and Media-2 from Table 1, and uses two iframes.

2.5. Performance Optimizations

To reduce the overhead of stylistic fingerprinting, we
implement several arrangement optimization techniques
that minimize the number of media query requests while
preserving the entropy of the data used to compute the
fingerprints, as we detail next.
HTML Element Arrangement. Numerous possible element
arrangement strategies exist. In Appendix B, we present
different strategies and discuss the information loss that
affects certain design choices. Here we present the element
arrangement strategy that guided our system’s design. We
adopt the strategy depicted in Figure 1 and arrange elements
into diagonal groups, thereby drastically reducing the number
of iframes while preserving fingerprinting entropy. Specif-
ically, we strategically divide specific types of elements into
groups and sum the dimensions together, thus avoiding the
loss of information. Overall, our system uses the dimensions
of 25 groups of HTML elements as fingerprinting attributes.

We place all elements in an 800px by 1000px iframe (here-
after, the main iframe) to ensure that the dimensions of the
elements remain consistent across different screen resolutions.
In the main iframe, we create a div container with a grid lay-
out using display: grid. We place a group of elements in each
column of the container along with an iframe, so that the num-
ber of iframes corresponds to the number of groups rather than
the number of elements. To obtain multiple elements’ widths

elemen
t 1

elem
ent 2

element 3

element 4

iframe A

iframe B

Main iframe

element 5

elem
ent 6

Column A Column B

1000px

800px

1000px

Figure 1: Example HTML element arrangement. The main
iframe is divided into two columns. Column A has four
elements, while column B has only two. Each element is
placed in a specific sub-row and sub-column within the
column. Iframe A is in the fifth row, spanning four sub-
columns in column A, and iframe B is in the third row,
spanning two sub-columns in column B.

and heights using the iframe, we further split the column into
a grid layout and arrange the HTML elements along the diago-
nal of the grid. The number of sub-columns equals the number
of elements in this group, and the number of sub-rows equals
the number of elements plus one. The first element is in the
first sub-row and first sub-column, the second element is in the
second sub-row and second sub-column, the third element goes
to the third sub-column and sub-row, and so on. The iframe in
this column is in the last sub-row and spans all sub-columns.

We obtain the iframe’s dimensions using media queries.
Within each column, the sum of elements’ widths equals
the width of the iframe, and the sum of elements’ heights
equals 1000px minus the iframe’s height. In Figure 1, the
sums of elements’ dimensions in column A and column
B define our fingerprinting attributes, which can be obtained
with four requests using two iframes . Contrast this to a total
of 12 requests for six elements had we employed a single-
element-per-container approach. In our implementation, the
number of elements in each group varies. We further discuss
this in the following section. Note that the main iframe
is set to 1000px in height, and nested iframes have a default
height of 150px. Therefore, the sum of elements’ heights
in each column cannot exceed 850px, otherwise it increases
the height of the main iframe, making it impossible to use
our schema to calculate the sum of the elements’ heights.
HTML element grouping. The HTML elements used for
fingerprinting are grouped based on the attributes they dis-
criminate. These groups of elements are arranged together in
containers aiming to maximize the entropy of that container
in discerning a specific environmental feature and meet
the height limit of the main iframe.

While we try to group elements that detect a specific
environmental attribute (e.g., JS-block, font preferences),
the elements in multiple groups can be sensitive to a single
feature (e.g., OS language), and the rendering of all groups is

5

Listing 3: CSS code that probes Media properties’ capabilities.
1 /* If the property is supported

the element has a factor of 2 width. */
2 @media(prefers-reduced-motion)
3 {# element_1{width: 1px; height: 0}}
4 @media(prefers-contrast)
5 {# element_2{width: 2px; height: 0}}
6 @media(scripting)
7 {# element_3{width: 4px; height: 0;}}
8 @media(environment-blending)
9 {# element_4 {width: 8px; height: 0;}}

based on some common characteristics (e.g., system, browser).
Moreover, the number of elements in each group varies.
For example, Env-13 (Table 1) uses four elements to render
special characters, while Media-1 feature uses 23 elements
for testing media property capabilities.
Font fingerprinting. A naı̈ve algorithm for CSS-based font
fingerprinting would check for each font family using the
@font-face rule directly, resulting in up to 52 CSS media
query requests (the number of font families checked by
our framework). To reduce this performance overhead, we
develop a novel font fingerprinting approach based on
elements’ dimensions that do not rely on @font-face requests.
Specifically, we assign a font family and two fallback fonts to
a element. We use Arial Black and Arial as the fallback
fonts, since Arial Black is typically larger than other font
families and is available on most systems. When Arial Black is
not available, it falls back to Arial, another safe font. If the test
font family is available, the element does not use the fallback
font and is rendered with a different size. This approach
prevents a large number of requests and is not affected by font
family name collision, particularly for non-system fonts. Such
collisions can occur in scenarios where users have downloaded
and installed a custom implementation of a given font family.
Media properties. We deploy two groups of elements to
test media properties. In the first group, we probe into
the browser’s support of 23 media features using 23 <div>
elements, such as @media (update) and @media (scripting).
These features are relatively new and some of them may
not be supported by a particular browser. All of the elements
are grouped with a single iframe in a container, sending two
requests to the server, of which one contains the iframe’s
width and the other contains the iframe’s height. We can learn
which media features are supported by setting each element
size to be a factor of 2 (e.g., 20, 21,...), as shown in Listing 3.
The elements have a size of 0 by default. If a media property
is not supported, the size of the corresponding element
will remain 0; otherwise, the styles will be applied, and the
element’s width or height will be some number 2𝑖 , where
𝑖 represents the position of the element within the group.
As a result, the sum of elements’ widths or heights will be:∑𝑛−1

𝑖=0 𝑏𝑖 ∗2𝑖 , where 𝑏𝑖 =0 if media property is not supported
using element 𝑖 , and 𝑏𝑖 =1 otherwise. Given that the result will
always be some summation of 2𝑖 values, we will always get a
distinct sum for any combination of elements with a non-zero
width or height, meaning that we can determine which media
properties are supported in the browser, using a single iframe.

While the first group of media features is used to determine
what media features are supported by the browser, the second
group probes the values of the supported features. There are
a total of 76 media feature values of interest, which we again
encode in <div> elements using a single iframe. The initial size
of these <div> elements is also 0. However, this time, there are
too many values (76) to encode following the same approach
as with the first group, so we have to use a different technique
to add them to our fingerprint. Values are queried using media
feature expressions. If the media feature expression is satisfied,
the element’s width and height are automatically set to a non-
zero value. The new width value of each element varies across
expressions, while the new height is always a fixed value.
When an expression is satisfied, the iframe’s height is decreased
by a fixed value while the width is increased by a variable
amount. The sum of heights tells the number of satisfied feature
expressions, while the sum of widths differentiates the set of
satisfying feature expressions. Encoding the data in this way
tells us how many expressions are satisfied, and provides some
variance in the width values. While the encoding is not as exact
as the first group, it does give our fingerprint more entropy.

We deploy four additional requests that do not use
dimensions, as supplementary features to our system using
@supports. To optimize the number of requests, we apply
multiple rules to the same element and order these feature
queries from general to specific, starting from the most general
rule, and appending conditions in the subsequent queries,
as shown in Listing 4 (Appendix E). Overall, we use four
elements to probe the browser’s support for 12 CSS features.

2.6. Fingerprinting Framework

Our fingerprinting framework is deployed as a stand-alone
web service with a database backend, and can be seamlessly
integrated into web applications. Deployment has no dependen-
cies on the target site, and is agnostic of the underlying web
framework and infrastructure. The platform requires only one
line of HTML markup, (see Listing 5 in Appendix E) to embed
its main iframe object, and all subsequent fingerprinting pay-
loads are sent directly to the backend. Additionally, many tech-
niques can be used to render the iframe invisible to users [45].
For example, the iframe can be positioned offscreen using
position: absolute; left: -9999px;, it can be rendered to a
size of 0, or it can be hidden with the visibility property. De-
vice characteristics are inferred based on the dimensional data
collected, which reveal information about the device, and are
combined into an identifier for uniquely identifying devices.

2.7. Threat Model

We consider a malicious or privacy-invasive service
that aims to fingerprint the user’s device, allowing it to
re-identify and track the user across sessions. We assume
that the attacker is able to (𝑖) trick the user into visiting the
fingerprinting website, or (𝑖𝑖) inject a single line of HTML
code into a legitimate web page (as shown in Listing 5 in
Appendix E) to include the fingerprinting payload in user
responses, or (𝑖𝑖𝑖) leverage a man-in-the-middle proxy service
to inject the fingerprinting code in proxied web responses.

6

3. Bypassing Anti-fingerprinting Defenses

Here we discuss our system’s ability to bypass defenses.
Our analysis focuses on the most popular browsers and
tools that explicitly implement privacy-preserving coun-
termeasures against fingerprinting. Since privacy-focused
browsers are actively deploying anti-fingerprinting measures
(albeit focused on JS-based techniques) and other tools are
also available, we empirically explore whether and how
existing defenses affect our techniques.
Experimental setup. For our empirical analysis, which re-
quires testing our system across a wide combination of client
environments, we use online services [46], [47] as well var-
ious physical devices from our lab. We test multiple versions
of operating systems and browsers, and also experiment with
different changes to the systems’ configurations to assess
whether our stylistic fingerprints capture the updated charac-
teristics. For instance, we change the OS language, and install
new fonts to verify the collected fingerprints. We use the latest
version of browsers and tools at the time of writing, including
Firefox v100, Brave (Nightly) 1.39.42, Tor 11.0.10, Safari v15.5,
Opera v87.0.4390.36, Ghostery Dawn v2022.4.1, and recently-
downloaded extensions. We enable the anti-fingerprinting fea-
ture in these browsers if necessary (e.g., Firefox), and use these
browsers and privacy tools to visit state-of-the-art fingerprint-
ing systems (e.g., FPJS and AmIUnique) and our StylisticFP sys-
tem to evaluate the effectiveness against the countermeasures.
Findings. Table 3 summarizes our system’s effectiveness.
It breaks down the attributes of StylisticFP and indicates
whether they are effective against anti-fingerprinting browsers,
extensions, and detection systems. Our system is able to dif-
ferentiate not only the browser engines but also differentiate
browsers that use the same engine in certain environments;
we can distinguish Edge and Opera from other Chromium
browsers running on Windows, Tor and Ghostery from Fire-
fox, and Mobile Safari from desktop Safari. The framework is
effective against both desktop and mobile devices. Note that
Safari is the only browser available on iOS devices, as other
browsers are merely skins on top of Webkit. Consequently,
browsers on the same iOS device have identical fingerprints.
Our approach also allows us to distinguish various major
browser versions based on the observation that certain el-
ements are rendered differently across versions. For instance,
in Windows 11, Firefox v100 renders several elements in dif-
ferent sizes compared to v99 (e.g., <address> and <select>).
Also, browsers are gradually adding support for media proper-
ties, especially those in the working draft (e.g., Media Queries
Level 5), which also allows differentiation. For example, Firefox
v100 supports @media (video-dynamic-range: standard) and
@media (dynamic-range: standard), while v99 does not. Our
system generates 11 fingerprints for Firefox v80-101, and ten
fingerprints for Chrome v80-101. While certain versions can be
uniquely identified, others are grouped into a subset of similar
versions. As mentioned, our system also distinguishes Opera
and Edge from other Chromium browsers in Windows, due to
elements being rendered differently, such as the <number> ele-
ment in Opera and the input field element of type time in Edge.

Our Platform attribute provides more details than the cor-
responding JavaScript API navigator.platform. For example,

we can distinguish Windows 8 from Windows 10 and Win-
dows 11, while the JavaScript API returns the value Win32 for
all of these systems. The Font Preferences row refers to the
font customization setting in browsers, which allows users
to configure the font size and default font families for Stan-
dard, Serif, Sans-serif, and fixed-width fonts. We also have
attributes for identifying if users have disabled Javascript
through browser settings or extensions. For example, users
can disable JavaScript in the site settings in Chrome and
using about:config in Firefox. Alternatively, they can use an
extension such as NoScript [48] and Disable JavaScript [49].

3.1. Brave

Brave recently added protection against language finger-
printing and font fingerprinting starting with version 1.39 [50].
Our approach can effectively collect both fingerprints.
Anti-language fingerprinting. Brave defends against
language fingerprinting by reducing and randomizing
the information available in the navigator.language and
navigator.languages APIs, as well as in the Accept-Language
header. If the fingerprinting protections are set to Strict,
Brave will always report “English.” More importantly, there is
no way to detect the OS language in modern browsers using
JavaScript (the legacy Internet Explorer can obtain it using
navigator.systemLanguage). Our system does not obtain the
browser language preferences, but determines OS languages
by observing the dimensions of the language-related iframe.
Anti-font fingerprinting. Brave defends against font fin-
gerprinting by randomly removing entries from the browser’s
font family list during each session, so that the fingerprinter
does not get a stable view of the available font families; how-
ever, the browser still allows CSS access to local font files. We
can thus check if a font is available on the user’s device by
loading the local font file, allowing us to bypass their defense.

In order to support fingerprinting for browsers that do
not block font families, we assign font families to el-
ements and divide them into three groups to reduce network
traffic. As with other attributes we collect, we use the sum of
the elements’ widths and heights to establish which font fam-
ilies are present in the browser. For Brave, we also use our
shadow font families that mirror the existing set of font fam-
ilies. These shadow font families are defined using original
font families’ local font files, which are not blocked by Brave.
For example, the Arial shadow font family contains: Arial
Regular, Arial Black, Arial bold, which we access directly
through font files. We use these two sets of font groups
to identify whether font family blocking is enabled, and to re-
trieve the proper font values for our fingerprint. We provide
a video demonstration of our system against Brave [51].

3.2. Tor Browser

The Tor browser is built on a stripped-down version of
Firefox that is heavily geared towards enhancing privacy
by removing features. Tor was the first browser to tackle
fingerprinting, and also employs Javascript hooking for
spoofing certain fingerprinting APIs. Tor’s overarching strategy
is to have all Tor users expose the exact same fingerprint,

7

TABLE 3: Stylistic fingerprinting attributes and their effectiveness against popular countermeasures: ✓denotes that our
technique is effective, ✗ denotes that it is ineffective, and ⊕ denotes that it is partially effective.

Feature Brave Tor Firefox Firefox w/ FP Safari Opera Chrome w/ Anti-FP Ghostery FP-
Browser Protection Extensions Browser Inspector [29]

Browser ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Browser major version ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Platform ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OS Language ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Font Preferences ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scrollbar Settings (OS X) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Available Fonts ✓ ⊕ ✓ ⊕ ⊕ ✓ ✓ ✓ ✓

Ad blocker Use ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Javascript disabled ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Screen resolution ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Supported media features ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Media features’ values ✓ ⊕ ✓ ⊕ ✓ ✓ ✓ ✓ ✓

allowing them to blend into the anonymous crowd. When
tested on AmIUnique, Tor spoofs the User Agent and Content
Language attributes in the HTTP headers, as well as an
additional 25 attributes. Apart from the newly-introduced
attribute for detecting the presence of an adblock extension, the
remaining 33 attributes listed on AmIUnique are not spoofed
by Tor because they have relatively low entropy. Examples
include the use of IndexedDB and the visibility of the menu bar.
Media queries. Tor also forces certain media queries to report
identical values. For instance, prefers-color-scheme always
returns light, color always returns 8, and the device width
and height return generic values, e.g., 800*1000. On the other
hand, some queries (e.g., forced-colors: none) only compute
true in recent browser versions, allowing us to identify
certain versions. This makes our approach to fingerprinting
media features’ values partially effective against Tor. More
importantly, Tor does not spoof min-width and min-height
media features; as such, all of the dimensional data we obtain
are actual values. As a result, the stylistic features derived
from dimensional data are not affected by Tor’s defenses.
Fonts. To prevent font fingerprinting, Tor has introduced
a font allowlisting mechanism which only allows certain
system fonts to be used in the browser. The allowlist can be
edited in about: configure. Traditional JavaScript font fin-
gerprinting relies on including multiple elements with
the same text using different font families and baseline fonts
as the fallback option, and then comparing their dimensions
to that of the baseline fonts. If a given font family is not sup-
ported by the system, the element will use the fallback fonts
and the dimension of this element will equal the dimension
of the baseline element. If the font family is available, the ele-
ment’s size will differ for that specific font. The baseline fonts
used in fingerprinting are typically generic font families like
monospace, sans-serif, and serif. However, if the fingerprint-
ing script sets the fallback font to monospace, the code will
always detect the specific font as available because Tor never
falls back to monospace. Specifically, if a font is unavailable,
Tor skips the fallback font monospace and falls back to a dif-
ferent font. The element’s size thus always differs between the

monospace base font and the specific font with a monospace
fallback font. As a result, traditional font fingerprinting
strategies will detect that all font families are available in
the browser. In fact, both AmIUnique and FingerpintJS use
monospace and are thus ineffective against Tor.

Additionally, Tor bans the use of @font-face local files,
regardless of being allowlisted or blocklisted. Even if we
load a local font file and refer it to an allowlisted font family
(e.g., Arial), this font family will be inaccessible. As a result,
we cannot access the non-allowlisted fonts using @font-face
as we did with Brave; however, our approach can accurately
detect the available fonts on the allow list, by using the three
font family groups and the shadow groups as described in
our font discussion on the Brave browser. If the font family
is allowlisted and available, the three font family groups
will have access to it, while the shadow groups will not
because they utilize @font-face. The shadow groups will load
preselected fallback fonts instead. Consequently, the iframes
associated with the family groups and the shadow groups
will be of different sizes. While our system cannot infer all
the fonts present in the user’s system, it accurately identifies
support or the lack thereof for the set of fonts in the allowlist.

3.3. Firefox

The default version of Firefox does not prevent our system
from collecting any of the fingerprinting attributes. However,
Firefox has also incorporated Fingerprinting Protection [52],
an experimental feature that is disabled by default. Firefox has
opted to not include this option in the settings menu and, in-
stead, users can access this option by typing about:config in
the address bar. This feature includes a series of protections,
some of which affect our system while others are ineffective.

Specifically, our approach is still able to bypass spoofing
attempts in which the browser reports a specific, common ver-
sion number, and operating system. Our approach still detects
the actual operating system, browser, and major browser ver-
sions. Additionally, while the language is disguised, our system
correctly detects it. Finally, while Window.devicePixelRatio

8

always returns a value of 1, our approach infers the actual
value through @media(-webkit-device-pixel-ratio).

On the other hand, Firefox also uses a font-allowlisting
mechanism in which only certain system fonts are made
accessible to websites. This defense is more robust than
Brave’s because it blocks fonts at the local font file level. Any
font families that use font files that are not allowlisted are
blocked. Interestingly, Firefox’s font protection is not identical
to Tor’s. Even though they both block local font files they
use a different allowlist, and Tor bans the use of all local font
files while Firefox only bans the use of local files that are
not on the allowlist. Additionally, the CSS screen resolution
is spoofed, and certain media queries report misleading
information (e.g., the value of @media(color) is reset to 8).

3.4. Other Browsers

Safari. Safari only renders the default system fonts unless it is
a web font included by any website (since these do not indicate
if a local font is available). Safari also blocks the use of local
font files that are not from a system font family. Our system
is partially effective and detects fonts from the allowlist.
Ghostery. Ghostery is built on top of Firefox and provides ad-
ditional privacy features. Our system is also effective against
this browser, with the majority of fingerprinting values
being identical to Firefox. Moreover, our system distinguishes
Ghostery from Firefox due to the support of additional CSS
feature values, like grid-template-columns:masonry.

3.5. Extensions and Tools

Anti-fingerprinting tools. We use Chrome to test six anti-
fingerprinting extensions that target common fingerprinting
attributes. Table 7 (Appendix F) lists the extensions that we
study along with their number of users as provided by the
Chrome web store. None of the tested tools affects our finger-
printing process. A demonstration of our system’s capabilities
against spoofing and JS-blocking extensions is available [38].
Ad blocking. We test eight popular ad blocking options,
namely the Opera browser (which has integrated ad-blocking
functionality) and seven Chrome browser extensions. The
goal of this experiment is to explore whether our system
can identify the presence of ad blockers but also uniquely
identify each tool based on the unique combination of el-
ements it blocks. Table 8 (Appendix G) shows how the ad
blockers affect the specially-crafted ad elements included
in our system. We analyzed the source code of these popular
extensions and the DOM element styles added by Opera
browser to find differences in their blocking strategies. Based
on that, we have a general element (ad1) that probes the
presence of an ad blocker and deploys five other elements
that can only be blocked by certain ad blockers. Apart from
Adblock Plus and Adblock blocking the same subset of ad
elements, all the other ad blockers affect a distinct subset of
ad elements and are, thus, uniquely identifiable. Interestingly,
during our analysis we found a bypass against Opera’s
ad-blocking functionality, which we detail in the Appendix G.
FP-inspector. We test a state-of-the-art fingerprinting
detection system proposed recently [29]. The paper in-
cludes a list of fingerprinting API keywords that are

TABLE 4: Comparison of number of iframes and requests
between the initial and optimized design of our system.
Request Source Initial Optimized

Main iframe 1 1
CSS files 171 1
Number of sub-iframes 170 25
Requests by iframes 340 50
Requests by @font-face up to 512 0
Requests for ad blockers 2 2
Requests by other media features up to 35 4

Total Requests up to 1,231 83

frequently used in fingerprinting scripts. We also check
their OpenWPM-extending [53] script instrumentation. We
consider fingerprinting attributes that use these fingerprinting
APIs to be ineffective. None of the APIs had any effect on
our system. This is partially expected due to their classi-
fier having been trained to detect fingerprinting based on
JavaScript APIs. We emphasize that we include this experi-
ment purely for the completeness of our empirical evaluation.
We consider this proposal an important contribution towards
the development of robust anti-fingerprinting defenses.

3.6. Summary

Our empirical analysis demonstrates that StylisticFP
is effective at bypassing the protection offered by privacy-
oriented browsers, extensions, and detection tools. The
majority of our techniques work against all browsers and
extensions, and even when they are not completely effective
(e.g., supported fonts), they are still better than state-of-the-
art systems. Existing fingerprinting countermeasures typically
block or manipulate JavaScript fingerprinting APIs’ values. As
a result, these browsers and extensions impact FingerprintJS
(the most popular fingerprinting library) and AmIUnique
(a state-of-the-art academic system used in numerous studies,
e.g., [11], [18], [54]). On the other hand, our system is mostly
unaffected because our approach does not use any JavaScript
code. Overall, our empirical analysis highlights the long-term
implications of our research. Future countermeasures will
require a broader view of how fingerprinting can be achieved
and not limit their focus to JavaScript APIs. Crucially, implicit
techniques that indirectly infer system properties pose an
additional challenge that needs to be taken into account.

4. Experimental Evaluation

To further substantiate our results, this section describes ad-
ditional experimental aspects of our fingerprinting framework
and a pilot study conducted within a research organization.

4.1. Design Optimization

As outlined in §2, our system is driven by a precisely
designed construction of HTML elements and CSS features
to overcome the impractical overhead of a straightforward
CSS-based fingerprinting approach. Table 4 provides a com-
parison of key behavioral and structural aspects between our

9

0

0.2

0.4

0.6

0.8

1

 10 100 1000

C
D

F

Time (ms)

CSS DOMinteractive
JS DOMinteractive

JS+CSS DOMinteractive

CSS DOMcomplete
JS DOMcomplete

JS+CSS DOMcomplete

Figure 2: Comparative fingerprinting technique performance.

optimized design and our initial implementation that relied
on a straightforward use of the same CSS features. The most
important optimization is driven by the choice to leverage
dimensional data, avoid @font-face requests while focusing
on 52 font families for font fingerprinting, and combining
multiple media features with logical operators. As shown,
our optimized design significantly reduces the resources
needed by the system across all categories. Crucially, the
implementation can achieve a ∼15𝑥 reduction in the number
of network requests generated (depending on character-
istics of the user’s system). To further reduce the size of
transferred resources we employ server-side compression,
resulting in transferred resources of about 330 KB.
Overhead. To quantify the system’s overhead and assess its
impact on user experience, we compare our approach to Fin-
gerprintJS, and test three scenarios: a standalone deployment
of each system as well as a combined deployment of both tools.
Each experiment is executed 100 times on a 2019 MacBook Pro
i9 running Chrome. To measure the performance overhead, we
use Google’s Lighthouse [55] to capture the domInteractive
and domComplete timestamps, which mark when the DOM is
ready and when the page and all of its subresources are ready,
respectively. We ran it in a lab environment to avoid external
factors (e.g., network jitter) from affecting the measurements.
As shown in Figure 2, the impact on the page’s rendering
is negligible and the delay for user interaction is less than
100 ms. Moreover, our approach is stable and the entire page’s
loading time is less than 1 second in 98% of the runs. We
note that there is no heavy rendering on our website as the
page only renders native HTML elements, resulting in only
83 network requests. Indicatively, Amazon’s homepage issues
over 300 requests and Facebook’s feed starts with about 230
requests. Overall, our design of CSS-based fingerprinting is
practical and can also be combined with traditional JS-based
techniques to maximize the amount of collected entropy.

4.2. Pilot study

Next, we aim to assess the efficacy of stylistic fingerprint-
ing under challenging conditions in a realistic deployment

TABLE 5: Comparison of uniquely identified devices by our
system (StylisticFP) and FingerprintJS (FPJS) in a pilot study.

Visits Unique Fingerprints

Browser Devices Avg Max StylisticFP FPJS
Chromium 278 4.35 43 168 180
Brave 16 3.45 8 13 11*
Edge 41 3.83 11 33 32
Firefox 379 5.18 278 248 253
Safari 152 6.16 210 72 63

Total 866 534 539
*Visits within the same session, randomized values did not change.

scenario over time (so as to also capture the effects of anti-
fingerprinting defenses). We conducted a 9-week pilot study
in which we deployed the fingerprinting system on three dif-
ferent online portals hosted in a large organization, which are
only accessible after authentication. It is important to note
that the study’s population is comprised of computer scien-
tists and may not provide a representative population in terms
of browser selection or configurations. As the pilot study
was announced, certain actions may also deviate from normal
user behavior and indicate users purposefully modifying their
environment to test the system. Nonetheless, as detailed in
§2, the true impact of our technique is evident against more
privacy-aware users. Moreover, our study captures an es-
pecially challenging environment as the device population is
heavily skewed towards more specific, homogeneous models
that are approved and managed by an institutional IT office.
Metric. First, we focus on the discriminatory power of
our novel stylistic fingerprinting system, by comparing our
system’s ability to uniquely identify devices against the
latest version (v3) of FingerprintJS (FPJS), a prevalent state-
of-the-art browser fingerprinting library. FPJS deploys various
fingerprinting attributes using JavaScript, including both basic
(e.g., colorDepth and timezone) and advanced features (e.g.,
Canvas and Fonts) and newly introduced CSS media features
(e.g., forcedColors and monochrome) and font preferences.
Setup. The deployed system sets an HTTP cookie with a
random string for distinguishing devices, which provides the
necessary ground truth for our analysis. Moreover, since cer-
tain defenses rely on randomizing values, we filter out devices
that were not observed at least twice, so as to assess each fin-
gerprinting system’s effectiveness and stability across visits. We
also filtered out 77 devices due to different system setups being
used across visits (e.g., with and without an external monitor).
Data were collected from June 1, 2022 to August 8, 2022.
Results. Table 5 breaks down our study’s results for the 866
devices that remain after filtering, grouped by browser vendor,
and shows how many devices were uniquely identified by each
system. Of those devices, 541 ran macOS, 295 ran Windows,
and 30 were Linux-based. While many users connected over a
Chromium-based browser, which is expected, more than half
of the devices used an alternative browser. Findings show that
our system and FPJS are comparably effective across the entire
dataset, uniquely identifying 534 and 539 devices respectively.
Due to the study’s homogeneous environment, where many
workers have the same physical devices, we observe lower

10

detection percentages of both systems compared to prior fin-
gerprinting studies that were conducted in the wild (i.e., in a
more heterogeneous ecosystem). Importantly, our technique is
particularly effective at uniquely identifying privacy-focused
browsers (Brave and Safari), and also correctly identified
the three devices that blocked JavaScript and evaded FPJS.

Surprisingly, FPJS was able to uniquely identify five more
Firefox devices than our system, which is due to the users not
enabling Firefox’s advanced FP Protection feature. In other
words, while Firefox has the capability to better protect users
from JS-based fingerprinting, the subjects in our pilot study had
not enabled that option. While that may be a conscious decision
for some users, it is very likely that others were not aware of it.
This highlights the dilemma that browsers face when it comes
to enabling strict privacy-enhancing features by default instead
of making them opt-in, due to potential functionality breakage.

We also identify another important detail regarding
randomization defenses. Specifically, FPJS is able to iden-
tify Brave devices in cases where randomized fingerprint
attributes were the same across visits. This happens because
the visits occurred within what Brave perceived as the same
session, so the randomized values did not change. As a
result, while the FPJS fingerprints were the same across
visits in these instances, in practice, FPJS would be unable
to identify those devices across different browsing sessions
(e.g., when the browser is closed between visits).
Collisions. Our system is more stable across visits, as
FPJS fails to identify 188 devices (by calculating different
fingerprints across visits), while our system fails against 41.
At the same time, our system exhibits more fingerprint col-
lisions with 95 device collisions, while FPJS has 55. Collisions
occur in cases where multiple devices (e.g., with identical
hardware and software configurations) are assigned the same
fingerprint value. We hypothesize that because the stylistic
fingerprints are more stable, and because the organization
devices are relatively homogeneous, this creates more colli-
sions than FPJS. Even so, our system is able to provide useful
information for devices even when it cannot uniquely identify
them. It is better to always assign a device to a set of a few
potential devices (in our experiments sets typically had two
devices, the largest had 12) instead of calculating a completely
different fingerprint each time. In practice, this can be lever-
aged by adding more stylistic features for increased entropy,
or using other features (e.g., IP addresses and geolocation).
Features. In the cases where our system outperforms FPJS,
we find a wide range of differentiating features collected
by our system, including stylistic features (e.g., browser font
preferences, special characters rendering), the OS language for
Chrome users, and the media feature values for Safari users.

Further analysis reveals that our system mainly fails
to identify devices due to ad-blocker extensions being toggled
on and off. Furthermore, the behavior of ad-blockers varies
during visits, as they may block a specific ad element in
one visit but not in another. A few users disabled JS in
some visits while enabling it in others. Surprisingly, in other
cases, users changed the browser display mode, with certain
visits exhibiting a 15px difference in height in all iframes.

On the other hand, FPJS mainly fails for the following
reasons: the screenFrame and canvas attributes are unstable

across visits. This is more problematic in Safari, while the
audio attribute is also unstable in Safari (some visits have an
abnormal value of -3). FPJS fails to identify Brave devices due
to the randomization of various fingerprinting attributes, while
blocking JS also results in FPJS’s failing to identify devices.

Overall, our pilot study demonstrates that implicit stylis-
tic fingerprints are not only a viable alternative to existing
techniques but possess sufficient discriminative power to
outperform FPJS against existing defenses. This highlights the
inherent double-edged sword of personalization: the flexibility
to alter and personalize one’s computing environment, and the
corresponding supportive functionality that browsers expose to
websites, create ample opportunity for diverse fingerprinting
techniques. While preventing browser fingerprinting remains a
challenging task, we believe that our work will provide a step-
ping stone for browser vendors and the research community
to develop more robust and comprehensive countermeasures.
Entropy. We also quantify the discriminating power of
the various fingerprinting features using the normalized
Shannon entropy proposed by AmIUnique [11]. Table 1 shows
the entropy of our stylistic fingerprinting features. We also
calculate the entropy of FPJS fingerprinting attributes in
Table 9 (Appendix I) for comparison. The entropy is computed
from 1,848 devices that were encountered during our pilot
study (including single-visit and returning devices). For our
system, the feature with the highest entropy is Media-2 (0.58),
which probes into the values of recent media properties.
Font and shadow font features also have high entropy values
ranging from 0.45 to 0.56. Using the same set of font families,
the font attribute in FPJS has a lower entropy of 0.31. The
reason for this is that we use the dimensional data rendered by
the specific font family rather than looking at the font family
name. Dimensional data detects the underlying environment
and allows us to distinguish between fonts with the same name.
The most important features in the environment category are
Env-9, Env-10, and Env-13, with entropy values ranging from
0.48 to 0.53. Env-9 and Env-10 both include different types of
<input> elements that vary depending on the system language,
region, and time format preferences, while Env-13 includes
elements that render four different types of special characters.
The environmental feature Env-6 contains information about
user scrollbar settings with an entropy of 0.44. JS-block
features have the lowest entropy because the majority of
users do not disable JavaScript for intranet portals. The FPJS
attribute with the highest entropy is canvas (0.53), however,
it is ineffective against privacy-focused browsers and tools.
Overall, we find that within a larger population of devices our
fingerprinting system is comprised of high-entropy elements
with more discriminating power than FPJS. We consider a
large-scale deployment in the wild as part of future work.

4.3. Prior CSS techniques

A few straightforward CSS-based approaches have been
previously proposed [56]–[58]. While they collect certain
media feature values, screen resolution, and available fonts,
they employ simple approaches that suffer from significant
limitations. First, these approaches simply use known media
features (e.g., any-pointer), resulting in relatively limited data
collection. In contrast, we develop a novel practical technique

11

that builds upon a carefully constructed collection of HTML
elements and observes how their dimensions differ based on the
environment. In more detail, apart from the screen resolution
and fonts, all of the media feature values collected by prior
CSS approaches are a subset of a single feature of our system
(Media-2 with an entropy of 0.58), and this feature reveals far
more discriminative information than existing media features,
such as platform, operating system, settings and preferences,
etc., highlighting the vast difference in capabilities between
our approach and prior work. Second, these approaches flood
the network with requests; for instance, [56] generates 1,347
requests while our system only needs 83. To collect media
feature values, they require a request for each media feature,
so the number of requests equals the number of media features.
Conversely, our system probes into 76 values of 23 media
features using a single iframe and only two requests. Similarly,
to fingerprint available fonts they require a request for each
unavailable font, while our system groups multiple fonts and
utilizes elements’ dimensions so each font group only needs
two requests, and the differences in dimensions further detect
the environment and eliminate font name collisions. We
employ shadow font groups to detect protection against font
fingerprinting. All these advantages stem from our deliberate
design and novel implicit fingerprinting approach.

We also note that [59] fingerprints CSS features using the
window.matchMedia() JS API, thus fundamentally differing
from our CSS-based approach while also facing the limita-
tions of all JS-based techniques. Moreover, [58] uses strategies
(e.g., for detecting the browsers and OS) that are obsolete or
blocked by privacy-oriented browsers (e.g., Tor and Firefox).

Crucially, prior approaches cannot bypass browsers’ anti-
fingerprinting defenses. For example, Tor bans the use of
@font-face local files, and prior work will incorrectly identify
all tested fonts as unavailable. Tor and Firefox force certain
media queries to report identical values. Prior work solely relies
on their return values; we identify devices using dimensional
data and are thus robust against the countermeasures. Brave’s
anti-language fingerprinting also prevents all prior techniques.

5. Discussion and Future Work

Mitigation. Our technique could be prevented by using
two straightforward strategies, both of which would have
significant negative side-effects on websites’ functionality.
Blocking iframes. One possible mitigation is to completely
block iframes, e.g., by using a browser extension like Auto
Iframes Remover [60]. However, iframes are extremely com-
mon across the web and crucial for a multitude of legitimate
use cases, and disabling iframes will break many websites’
functionality. We crawled the Tranco top 100k [61] and found
that 49.26% of the 83,476 accessible websites use iframes
on their landing pages. Indicatively, removing iframes on
Google’s account login page breaks the login functionality.
Blocking Media queries. Tor sacrifices some functionalities by
reporting fake values for a few media features. However, it is
infeasible to spoof all media features because they are a key
part of responsive web design [62]. Particularly, the width
and height features allow websites to adjust their layout
in response to the viewport of a wide variety of devices.

Additional mitigations could include dynamically mon-
itoring requests for server-side resources or adding noise by
applying random CSS properties to fingerprinting elements.
However, sites can correspondingly disguise requests to bypass
detection, and leverage CSS precedence to prevent additional
CSS properties from being applied to fingerprinting elements.
Alternatively, static analysis could potentially be used to
detect our technique by examining chained media queries.
Fingerprinting detection. Preventing our browser fingerprint-
ing technique presents a major challenge due to its inherent
reliance on HTML elements and CSS features that have legiti-
mate uses and are crucial for a website’s appearance and func-
tionality. Unlike many traditional fingerprinting approaches
that capture static meta properties of the environment through
programmatic APIs, stylistic fingerprints rely on more dynamic,
intrinsic attributes that are generated by the browser and that
are parametric on environment characteristics. While blocking
or modifying certain features may be feasible, interfering with
other features will require a case-by-case strategy. This moti-
vates the use of machine learning classifiers to differentiate fin-
gerprinting from legitimate functionality (e.g., [29]). However,
the fact that our approach is based on pure CSS and HTML
(and also implicitly infers system characteristics) further com-
plicates machine learning-based detection and mitigation strate-
gies, due to their prevalent use of these features for legitimate
non-fingerprinting functionality. Nonetheless, we consider this
a promising direction for developing more robust defenses.
Entropy reduction. The elements or media queries used
by our system may yield reduced fingerprinting entropy
over time. To counteract such a potential degradation, new
HTML elements as well as novel W3C and WHATWG
feature suggestions can be incorporated into StylistcFP.
Non-tracking use cases. Our study focuses on the privacy
threat presented by stylistic fingerprints. Nonetheless, browser
fingerprinting can also be used in security applications, such
as user account protection [36], [63] and bot detection [64].
For instance, attackers can replay session cookies and block
JS fingerprinting, whereas our system can still generate a reli-
able fingerprint. We consider the exploration of our system’s
suitability for these scenarios interesting future directions.
Ethics. Prior to our pilot study, we consulted with internal
review boards regarding our research methodology and data
collection. Our study was exempted from IRB oversight as
we do not derive any insights from human subjects’ behavior.
Though we do not collect sensitive personal information
and cannot identify individuals from the collected data, we
went through a rigorous formal internal privacy review
process which ensured that our empirical methods comply
with the institutional and human resources privacy policies.
We provide more details in Appendix H.
Disclosure. Our research demonstrates how trackers can
effectively bypass the anti-fingerprinting defenses deployed
by popular privacy-focused browsers. The techniques have
privacy implications for the design of future countermeasures
and, thus, necessitate the responsible disclosure of our findings.
We have disclosed our findings to the browsers included in our
experiments, and provided them with a detailed description
of our techniques in order to facilitate their remediation
efforts. Chrome responded that our system could be used as

12

a benchmark in their Privacy Sandbox project [65] to combat
fingerprinting. Firefox and Tor expressed interest and requested
access to our source code and a paper draft, respectively, for
further investigation. Brave awarded a bounty for finding the
bug in their font fingerprinting protection and recently fixed
the bug in version 1.44.x - Nightly. Safari is also investigating
this issue. We have opted against publicly sharing our code due
to the obvious privacy risk that our techniques pose to users.

6. Related Work

Our work presents a novel browser fingerprinting system
that is precisely constructed using only HTML and CSS fea-
tures, thus overcoming the limitations of JS-based approaches.
In this section we discuss pertinent prior research in browser
and system fingerprinting, and proposed mitigations.
Browser and device fingerprinting. Since the seminal paper
by Eckersley [10], which demonstrated that fingerprints could
be used to uniquely identify a user’s device using JavaScript
APIs, fingerprinting has garnered significant attention by the
research community. Mowery and Shacham [15] demonstrated
how the Canvas API can be misused for fingerprinting, while
Fifield and Egelman [42] explored the discriminatory power
of fonts supported by users’ systems. Mulazzani et al. [16]
demonstrated how websites can infer a user’s actual browser
despite the presence of modified User Agent strings. Cao
et al. [14] explored the possibility of cross-browser tracking
through fingerprinting, and proposed a technique that iden-
tifies OS and hardware features through a series of rendering
tasks. More recently, Laor et al. [66] proposed a novel timing-
based technique that targets GPUs and identifies devices
based on unique properties of their GPU stacks. In a more
holistic exploration, Laperdrix et al. [11] deployed AmIUnique
for collecting user fingerprints, and subsequently provided an
in-depth examination of the discriminatory power of different
fingerprinting attributes across both mobile and desktop plat-
forms. Vastel et al. [18] focused on the longitudinal evolution
of devices’ fingerprinting attributes and identified a subset
of robust features that remain relatively stable for longer pe-
riods of time. Akhavani et al. [67] demonstrated how browser
versions are uniquely identifiable based on the unique set
of JavaScript functionalities they support. In contrast to the
studies above, our work introduces a novel, robust finger-
printing technique that uses pure CSS and HTML features
in lieu of JavaScript features that are detected, blocked, or
impacted by existing anti-fingerprinting defenses.

In a complementary line of research, studies have shown
how browser fingerprints can be augmented by identifying
installed extensions [23], [24], [68]–[72]. Interestingly, Laper-
drix et al. [73] demonstrated how the presence of specific
browser extensions could be inferred from the modifications
that occur from style sheets they inject into pages.
Fingerprinting measurements. Prior work has also shed
light on fingerprinting in the wild. Yen et al. [74] and Niki-
forakis et al. [28] discussed the effectiveness of tracking
techniques used in existing fingerprinting tools and measured
their adoption across the web. Acar et al. [12] presented
FPDetective, a framework for detecting fingerprinting, and
conducted a large-scale study. Many subsequent studies

have explored detection methods and quantified various
aspects of browser fingerprinting [13], [17], [75]–[77].
Fingerprinting mitigations. Prior work has also proposed
anti-fingerprinting countermeasures that aim to protect users.
PriVaricator [35] and FPRandom [78] add randomness to the
values returned by certain JavaScript APIs while also focusing
on minimizing functionality breakage. FPGuard [79] presents
a runtime fingerprinting detection and prevention approach
based on predefined metrics. These academic proposals have
motivated subsequent defenses deployed by privacy-oriented
browsers (e.g., in Brave [31]). Datta et al. [80] provide an
experimental comparison across various privacy-enhancing
technologies and suggest that Brave and Tor outperform other
privacy tools in defending against browser fingerprinting.
Importantly, our empirical analysis (§3) shows that our fin-
gerprinting strategy is highly effective against deployed coun-
termeasures. The core characteristic of our approach is that it
does not rely on JavaScript, which has been the driving force
behind modern browser fingerprinting, and is thus not affected
by existing fingerprinting detection and prevention techniques.
Scriptless Attacks. Heiderich et al. [81] discussed XSS
payloads that do not rely on JavaScript and demonstrated
attacks that exfiltrate sensitive data via the injection of
HTML and CSS. While these attacks and our technique
both leverage CSS, they are unrelated attacks with different
attack vectors. Importantly, our novelty lies in the meticulous
design and construction of an attack that relies on the
inference of dimensional data, and many underlying features
are different across the two attacks (e.g., we do not use
CSS-based Animations, CSS content property, scrollbars,
while making heavy use of native HTML elements).

7. Conclusions

This paper highlights and empirically demonstrates that
the magnitude of the privacy challenge browser vendors
face due to the fact that fingerprinting is more formidable
than previously perceived. Specifically, we detail how modern
fingerprinting attributes can be implicitly inferred in a
purely JavaScript-less approach. Our findings pose significant
complications for potential countermeasures, as they will
need to also take into account HTML and CSS features when
trying to curtail fingerprinting attempts. When taking into
consideration the already strenuous task of differentiating
between legitimate and fingerprinting functionality, these
implications are further exacerbated. Overall, we hope that
our work will motivate and inform new anti-fingerprinting
techniques against implicit non-JavaScript-based fingerprint-
ing and will, ultimately, lead to more comprehensive and
robust defenses being deployed by browsers.
Acknowledgements: We would like to thank the anonymous
reviewers for their valuable feedback. We would also like
to thank Mike Sava for his instrumental support in our pilot
study. This work was supported by the National Science Foun-
dation under grants CNS-1934597, CNS-2211574, CNS-2143363,
and the U.S. Army Research Laboratory under Cooperative
Agreement Number W911NF-13-2-0045. Any opinions, find-
ings, conclusions, or recommendations expressed herein are
those of the authors, and do not necessarily reflect those of
the NSF, the Department of Defense, or the U.S. Government.

13

References

[1] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet jones
and the raiders of the lost trackers: An archaeological study of web
tracking from 1996 to 2016,” in Proc. USENIX Security Sym., 2016.

[2] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq, “Ad-
graph: A graph-based approach to ad and tracker blocking,” in Proc.
IEEE Sym. Security and Privacy, 2020.

[3] “WebKit - Full Third-Party Cookie Blocking and More,” https://webkit.
org/blog/10218/full-third-party-cookie-blocking-and-more/.

[4] S. Englehardt and A. Edelstein, “Firefox 85 Cracks Down on Super-
cookies,” https://blog.mozilla.org/security/2021/01/26/supercookie-
protections/, 2021.

[5] P. Snyder, “Partitioning Network-State for Privacy,”
https://brave.com/privacy-updates/14-partitioning-network-state/, 2021.

[6] R. Boucher, “Realclearpolicy - congress is finally listening to consumers
on internet privacy,” 2020, https://www.realclearpolicy.com/articles/
2020/01/15/congress is finally listening to consumers on
internet privacy 111354.html.

[7] P. Voigt and A. Von dem Bussche, “The eu general data protection reg-
ulation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, 2017.

[8] “California consumer privacy act (ccpa) website policy,”
https://oag.ca.gov/privacy/ccpa.

[9] Y. Dimova, G. Acar, L. Olejnik, W. Joosen, and T. Van Goethem, “The
CNAME of the Game: Large-scale Analysis of DNS-based Tracking
Evasion,” in Proc. Privacy Enhancing Technologies, 2021.

[10] P. Eckersley, “How unique is your web browser?” in Proc. Privacy
Enhancing Technologies, 2010.

[11] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in Proc. IEEE Sym. Security and Privacy, 2016.

[12] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel, “Fpdetective: dusting the web for fingerprinters,” in
Proc. ACM Conf. Computer and Communications Security, 2013.

[13] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-
site measurement and analysis,” in Proc. ACM Conf. Computer and
Communications Security, 2016.

[14] Y. Cao, S. Li, and E. Wijmans, “((cross))-browser fingerprinting via
os and hardware level features.” in Proc. Sym. Network and Distributed
System Security, 2017.

[15] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas
in html5,” in Proc. IEEE Work. Web 2.0 Security and Privacy, 2012.

[16] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser,
E. Weippl, and F. Wien, “Fast and reliable browser identification
with javascript engine fingerprinting,” in Proc. IEEE Work. Web 2.0
Security and Privacy, 2013.

[17] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd:
an analysis of the effectiveness of browser fingerprinting at large
scale,” in Proc. World Wide Web Conf., 2018.

[18] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-stalker:
Tracking browser fingerprint evolutions,” in Proc. IEEE Sym. Security
and Privacy, 2018.

[19] I. Agadakos, N. Agadakos, J. Polakis, and M. R. Amer, “Chameleons’
oblivion: Complex-valued deep neural networks for protocol-agnostic
rf device fingerprinting,” in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2020, pp. 322–338.

[20] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The web’s sixth sense:
A study of scripts accessing smartphone sensors,” in Proc. ACM Conf.
Computer and Communications Security, 2018.

[21] V. Mishra, P. Laperdrix, A. Vastel, W. Rudametkin, R. Rouvoy, and
M. Lopatka, “Don’t count me out: On the relevance of ip address
in the tracking ecosystem,” in Proc. World Wide Web Conf., 2020.

[22] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser
fingerprinting: A survey,” ACM Trans. the Web, vol. 14, no. 2, 2020.

[23] O. Starov and N. Nikiforakis, “Xhound: Quantifying the fingerprintability
of browser extensions,” in Proc. IEEE Sym. Security and Privacy, 2017.

[24] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: Exploring
the privacy threats of browser extension fingerprinting,” in Proc. Sym.
Network and Distributed System Security, 2020.

[25] K. Solomos, P. Ilia, N. Nikiforakis, and J. Polakis, “Escaping the confines
of time: Continuous browser extension fingerprinting through ephemeral
modifications,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp. 2675–2688.

[26] K. Solomos, P. Ilia, S. Karami, N. Nikiforakis, and J. Polakis, “The dangers
of human touch: Fingerprinting browser extensions through user actions,”
in 31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 717–733. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity22/presentation/solomos

[27] S. Karami, F. Kalantari, M. Zaeifi, X. J. Maso, E. Trickel, P. Ilia, Y. Shoshi-
taishvili, A. Doupé, and J. Polakis, “Unleash the simulacrum: Shifting
browser realities for robust Extension-Fingerprinting prevention,”
in 31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 735–752. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/karami

[28] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in Proc. IEEE Sym. Security and Privacy, 2013.

[29] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors,” in Proc. IEEE
Sym. Security and Privacy, 2021.

[30] “Browser Fingerprinting: An Introduction and the Challenges Ahead,”
https://blog.torproject.org/browser-fingerprinting-introduction-and-
challenges-ahead/.

[31] “Brave Fingerprint Randomization,” https://brave.com/privacy-updates/3-
fingerprint-randomization/.

[32] “Firefox’s protection against fingerprinting,” https://support.mozilla.
org/en-US/kb/firefox-protection-against-fingerprinting.

[33] S. Bird, V. Mishra, S. Englehardt, R. Willoughby, D. Zeber,
W. Rudametkin, and M. Lopatka, “Actions speak louder than words:
Semi-supervised learning for browser fingerprinting detection,” arXiv
preprint arXiv:2003.04463, 2020.

[34] C. F. Torres, H. Jonker, and S. Mauw, “Fp-block: usable web privacy
by controlling browser fingerprinting,” in Proc. European Sym. Research
in Computer Security, 2015.

[35] N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving
fingerprinters with little white lies,” in Proc. World Wide Web Conf., 2015.

[36] X. Lin, P. Ilia, S. Solanki, and J. Polakis, “Phish in sheep’s clothing:
Exploring the authentication pitfalls of browser fingerprinting,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 1651–1668.

[37] “FingerprintJS,” https://github.com/fingerprintjs/fingerprintjs.

[38] “Demonstration of our StylisticFP approach against anti-fingerprinting
extensions,” https://vimeo.com/737723235/c2b4c00b9f.

[39] P. N. Bahrami, U. Iqbal, and Z. Shafiq, “Fp-radar: Longitudinal mea-
surement and early detection of browser fingerprinting,” arXiv preprint
arXiv:2112.01662, 2021.

[40] “AmIUnique,” https://amiunique.org/.

[41] “HTML elements reference,” https://developer.mozilla.org/en-
US/docs/Web/HTML/Element.

[42] D. Fifield and S. Egelman, “Fingerprinting web users through font met-
rics,” in Proc. Int. Conf. Financial Cryptography and Data Security, 2015.

[43] “Media Queries Level 3,” https://www.w3.org/TR/mediaqueries-3/, 2022.

[44] “Media Queries Level 5,” https://www.w3.org/TR/mediaqueries-5/, 2022.

14

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://brave.com/privacy-updates/14-partitioning-network-state/
https://www.realclearpolicy.com/articles/2020/01/15/congress_is_finally_listening_to_consumers_on_internet_privacy_111354.html
https://www.realclearpolicy.com/articles/2020/01/15/congress_is_finally_listening_to_consumers_on_internet_privacy_111354.html
https://www.realclearpolicy.com/articles/2020/01/15/congress_is_finally_listening_to_consumers_on_internet_privacy_111354.html
https://oag.ca.gov/privacy/ccpa
https://www.usenix.org/conference/usenixsecurity22/presentation/solomos
https://www.usenix.org/conference/usenixsecurity22/presentation/solomos
https://www.usenix.org/conference/usenixsecurity22/presentation/karami
https://www.usenix.org/conference/usenixsecurity22/presentation/karami
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead/
https://blog.torproject.org/browser-fingerprinting-introduction-and-challenges-ahead/
https://brave.com/privacy-updates/3-fingerprint-randomization/
https://brave.com/privacy-updates/3-fingerprint-randomization/
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://github.com/fingerprintjs/fingerprintjs
https://vimeo.com/737723235/c2b4c00b9f
https://amiunique.org/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://www.w3.org/TR/mediaqueries-3/
https://www.w3.org/TR/mediaqueries-5/

[45] X. Lin, P. Ilia, and J. Polakis, “Fill in the blanks: Empirical analysis
of the privacy threats of browser form autofill,” in Proc. ACM Conf.
Computer and Communications Security, 2020.

[46] “BrowserStack,” https://www.browserstack.com/.
[47] “CrossBrowserTesting,” https://crossbrowsertesting.com/.
[48] “NoScript,” https://noscript.net/.
[49] “Disable JavaScript,” https://github.com/dpacassi/disable-javascript.
[50] Brave, “Protecting against browser-language fingerprinting,”

https://brave.com/privacy-updates/17-language-fingerprinting.
[51] “Demonstration of our StylisticFP approach against Brave,”

https://vimeo.com/739534811/c6f294458d.
[52] Firefox, “Firefox’s protection against fingerprinting,” https://support.

mozilla.org/en-US/kb/firefox-protection-against-fingerprinting.
[53] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site

measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016, pp. 1388–1401.

[54] K. Solomos, J. Kristoff, C. Kanich, and J. Polakis, “Tales of favicons
and caches: Persistent tracking in modern browsers,” in Proc. Sym.
Network and Distributed System Security. The Internet Society, 2021.

[55] “WebDev - Measuring the Critical Rendering Path,”
https://web.dev/critical-rendering-path-measure-crp/.

[56] “Css fingerprint,” https://csstracking.dev/.
[57] “No-JS fingerprinting,” https://noscriptfingerprint.com/.
[58] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web browser fingerprint-

ing using only cascading style sheets,” in Proc. IEEE Int. Conf. Broadband
and Wireless Computing, Communication and Applications, 2015.

[59] “Fingerprinting CSS,” https://privacycheck.sec.lrz.de/active/fp css/
fp css.html.

[60] “Auto Iframes Remover,” https://chrome.google.com/webstore/detail/auto-
iframes-remover/fhenkighldilmobhdgopkhejbaainnfm.

[61] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in Proc. Sym. Network and Distributed System
Security, 2019.

[62] “Beginner’s guide to media queries,” https://developer.mozilla.org/en-
US/docs/Learn/CSS/CSS layout/Media queries.

[63] N. Andriamilanto, T. Allard, and G. Le Guelvouit, “FPSelect: Low-
Cost Browser Fingerprints for Mitigating Dictionary Attacks against
Web Authentication Mechanisms,” in Proc. Annual Computer Security
Applications Conf., 2020.

[64] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, “Web
runner 2049: Evaluating third-party anti-bot services,” in Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, 2020.

[65] “Digging into the Privacy Sandbox - Combat Fingerprinting,” https://
web.dev/digging-into-the-privacy-sandbox/#combat-fingerprinting.

[66] T. Laor, N. Mehanna, A. Durey, V. Dyadyuk, P. Laperdrix, C. Maurice,
Y. Oren, R. Rouvoy, W. Rudametkin, and Y. Yarom, “Drawnapart:
A device identification technique based on remote gpu fingerprinting,”
in Proc. Sym. Network and Distributed System Security, 2022.

[67] S. A. Akhavani, J. Jueckstock, J. Su, A. Kapravelos, E. Kirda, and L. Lu,
“Browserprint: An analysis of the impact of browser features on finger-
printability and web privacy,” in Proc. Int. Conf. Information Security, 2021.

[68] A. Sjösten, S. Van Acker, and A. Sabelfeld, “Discovering browser
extensions via web accessible resources,” in Proc. ACM Conf. Data
and Application Security and Privacy, 2017.

[69] G. G. Gulyas, D. F. Somé, N. Bielova, and C. Castelluccia, “To extend
or not to extend: on the uniqueness of browser extensions and web
logins,” in Proc. ACM Conf. Privacy in the Electronic Society, 2018.

[70] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Extension Breakdown:
Security Analysis of Browsers Extension Resources Control Policies,”
in Proc. USENIX Security Sym., 2017.

[71] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis, “Unnec-
essarily identifiable: Quantifying the fingerprintability of browser
extensions due to bloat,” in Proc. World Wide Web Conf., 2019.

[72] T. Van Goethem and W. Joosen, “One side-channel to bring them
all and in the darkness bind them: Associating isolated browsing
sessions,” in USENIX Work. Offensive Technologies, 2017.

[73] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis,
“Fingerprinting in style: Detecting browser extensions via injected
style sheets,” in Proc. USENIX Security Sym., 2021.

[74] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host fingerprinting
and tracking on the web: Privacy and security implications.” in Proc.
Sym. Network and Distributed System Security, 2012.

[75] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in the
wild,” in Proc. ACM Conf. Computer and Communications Security, 2014.

[76] A. Das, N. Borisov, and E. Chou, “Every move you make: Exploring
practical issues in smartphone motion sensor fingerprinting and
countermeasures.” in Proc. Privacy Enhancing Technologies, 2018.

[77] V. Rizzo, S. Traverso, and M. Mellia, “Unveiling web fingerprinting
in the wild via code mining and machine learning,” in Proc. Privacy
Enhancing Technologies, 2021.

[78] P. Laperdrix, B. Baudry, and V. Mishra, “Fprandom: Randomizing core
browser objects to break advanced device fingerprinting techniques,”
in Int. Sym. Engineering Secure Software and Systems, 2017.

[79] A. FaizKhademi, M. Zulkernine, and K. Weldemariam, “Fpguard:
Detection and prevention of browser fingerprinting,” in Proc. IFIP
Conf. Data and Applications Security and Privacy, 2015.

[80] A. Datta, J. Lu, and M. C. Tschantz, “Evaluating anti-fingerprinting
privacy enhancing technologies,” in Proc. World Wide Web Conf., 2019.

[81] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk,
“Scriptless attacks: stealing the pie without touching the sill,” in Proc.
ACM Conf. Computer and Communications Security, 2012.

Appendix A.
Element Example

The <textarea> element in our system is rendered in
Chrome v99 with a width/height of 430px/150px on macOS
Monterey 12.2.1, while having a width/height of 432px/162px
on Windows 11, and 348px/145px on Ubuntu 18.04. These
dimensions may also be different when the browser version
changes (e.g., v93). When multiple stylistic elements are
employed, the dimensions of certain elements will vary
according to the characteristics of the environment, making
the device more identifiable.

Appendix B.
Element Arrangement Strategy

Figure 3 outlines the different element arrangement strate-
gies, and the information loss avoided by the arrangement
employed by our system. A naı̈ve implementation of stylistic
fingerprints would deploy an iframe for each HTML element,
as illustrated in Figure 3a, resulting in over 100 iframes. Since
each iframe needs to send out two requests for dimensional
data (width and height), that would incur over 200 query re-
quests in addition to the 100 initial iframe requests. This has
a negative effect on page load times. To reduce the number of
iframes, we deploy multiple elements with a single iframe. Sub-
optimal improvements are shown in Figure 3b and Figure 3c,

15

https://www.browserstack.com/
https://crossbrowsertesting.com/
https://noscript.net/
https://github.com/dpacassi/disable-javascript
https://brave.com/privacy-updates/17-language-fingerprinting
https://vimeo.com/739534811/c6f294458d
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://web.dev/critical-rendering-path-measure-crp/
https://csstracking.dev/
https://noscriptfingerprint.com/
https://privacycheck.sec.lrz.de/active/fp_css/fp_css.html
https://privacycheck.sec.lrz.de/active/fp_css/fp_css.html
https://chrome.google.com/webstore/detail/auto-iframes-remover/fhenkighldilmobhdgopkhejbaainnfm
https://chrome.google.com/webstore/detail/auto-iframes-remover/fhenkighldilmobhdgopkhejbaainnfm
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Media_queries
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Media_queries
https://web.dev/digging-into-the-privacy-sandbox/#combat-fingerprinting
https://web.dev/digging-into-the-privacy-sandbox/#combat-fingerprinting

LIUDPH

HOHPHQW �� ��
��

LIUDPH

/RVH����DQG����KHLJKWV(a) Dimension Calculation

LIUDPH

HOHPHQW �� ��
��

LIUDPH

/RVH����DQG����KHLJKWV

��

��

��

LIUDPH

��

��

��

�����������������
LIUDPH

/RVH����DQG����ZLGWKV(b) Row Arrangement

LIUDPH

HOHPHQW �� ��
��

LIUDPH

/RVH����DQG����KHLJKWV

��

��

��

LIUDPH

��

��

��

�����������������
LIUDPH

/RVH����DQG����ZLGWKV(c) Column Arrangement

LIUDPH

HOHPHQW �� ��
��

LIUDPH

/RVH����DQG����KHLJKWV

��

��

��

LIUDPH

��

��

��

�����������������
LIUDPH

/RVH����DQG����ZLGWKV(d) Diagonal Arrangement
Figure 3: HTML element arrangement. Figure 3a obtains element dimensions with iframe dimensions. Figure 3b arranges
elements in the same row, losing heights of #1 and #2. Figure 3c arranges elements in the same column, losing widths
of #2 and #3. Figure 3d arranges the elements diagonally to obtain the sums of the dimensions of all three elements.

which illustrate row and column arrangements, respectively.
While these arrangements result in better performance, they
suffer from a significant loss of information, namely losing the
heights or widths of the arranged elements. Our approach is
shown in Figure 3d, whereby we arrange the elements diago-
nally to obtain the sums of the dimensions of all three elements.

Appendix C.
OS Language Detection

Here we provide more details about how our system
can detect the OS language. The feature Env-9 in Table 1 is
associated with <input> elements of the types of file, date,
month, and week. These elements can be used to detect the
operating system language because the OS language defines
the browser display language, which in turn determines
how these elements are rendered. Note that the browser
display language is different from the browser language,
which is the language to display website content and is
accessible using navigator.language. These elements are
rendered based on the browser display language rather than
the browser language. For instance, the <input> element
with type=“file” displays “choose file” when the OS language
is English. When the OS language is Italian and the browser
displays in that language, the element shows “Scegli file”
instead, and its size differs. The Font-pref-2 element also
detects some OS languages because its size depends on the
default font and Chromium browsers assign different default
font families for some specific languages (e.g., “Hiragino Kaku
Gothic ProN” for Japanese and “PingFang SC” for Chinese).

Appendix D.
Media Queries

Table 6 summarizes the media features used by our
system for features Media-1 and Media-2.

Appendix E.
Code Samples

Supplementary to the stylistic fingerprinting features that
use dimensional data, we test the browser’s support for 12

TABLE 6: Media features used in our framework.
Media Queries Media features

Level 3 color, monochrome, orientation

Level 4
any-hover, any-pointer, color-gamut, hover,
overflow-block, overflow-inline, pointer,
resolution, update

Level 5

dynamic-range, environment-blending,
forced-colors, inverted-colors,
prefers-color-scheme, prefers-contrast,
prefers-reduced-motion,
prefers-reduced-transparency, scripting,
video-color-gamut, video-dynamic-range

Listing 4: A Basic Example of CSS Features Combination.
1 /* identify Firefox browser */
2 @supports(-moz-box-align:inherit){
3 #probe { background: url(/ Firefox); } }
4 /* distinguish Tor browser from Firefox */
5 @supports(-moz-box-align:inherit

) and (not (hyphenate-character:auto)){
6 #probe { background: url(/ Firefox-Tor); } } }
7 /* identify Tor browser running on macOS */
8 @supports(-moz-appearance:inherit

) and (not (hyphenate-character:auto
)) and (-moz-osx-font-smoothing:inherit)){

9 #probe {
background: url(/ Firefox-Tor-macOS); } }

CSS features directly with requests. To reduce the number of
requests, we apply multiple rules to the same element and order
these feature queries from general to specific. Listing 4 employs
a single request to test three CSS features. If the client browser
is Tor, running on a macOS platform, it will skip the first two
matched queries and send the /Firefox-Tor-macOS request.

Our system can be seamlessly integrated into web ap-
plications with one line of HTML markup, as shown in
Listing 5. The invisible <iframe> element requests the re-
source from the fingerprinting service and all the subsequent
fingerprinting payloads are sent directly to the backend.

16

Listing 5: Single HTML markup to enable our system.
<iframe src="fp.url" style="visibility:hidden;"/>

Appendix F.
Extensions

TABLE 7: Fingerprint spoofing and blocking extensions.
Extension Users

User-Agent Switcher and Manager 200K
Fingerprint Spoofing 50K
Canvas Fingerprint Defender 60K
Font Fingerprint Defender 30K
Trace - Online Tracking Protection 20K
AudioContext Fingerprint Defender 10K

Table 7 details the list of fingerprinting spoofing or block-
ing extensions that we tested during our experimental analysis.

Appendix G.
Ad blocking

Table 8 shows eight ad blockers and their behavior in
blocking our crafted ad elements and requests. The differ-
ences in blocking behaviors allow our system to discern
the tested ad blocker.

Our analysis also finds a bypass against Opera’s ad-
blocking functionality. Specifically, Opera has a built-in ad
blocker that users can easily enable from the right side of the
address bar. Opera appends a <style> element to the end of
the <head> element, and it locates ad elements in the <style>
tag with CSS selectors applying display:none !important
to remove them from the page. However, ad elements can
bypass this protection by taking advantage of precedence
in CSS, which defines that inline rules take precedence over
those in the <style> tag. Thus, we use inline rules to over-
ride Opera’s rules and render ad elements visible. Although
Opera applies the !important rule to the display property,
which overrides all other rules for this specific property
on that element, ad elements can also make use of this rule
by appending it to display:block that renders an element
visible. For example, if we add the inline CSS display:block
!important to an ad element, this rule will have higher
priority than Opera’s rules in the <style> tag, and the ad
element will not be blocked and will appear in the page.

Appendix H.
Ethics: Pilot Study and Privacy Statement

Prior to our study, we sought advice from various orga-
nizational entities to comply with our privacy policies despite
getting IRB exemption. This included Human Resources for in-
volving organizational employees, Global privacy review to as-
sess what data is being collected, the security & access control
measures in place, and data storage and retention, and Regional
privacy review to comply with region-specific regulations (e.g.,

TABLE 8: Ad blockers’ behavior against our system. ✗
denotes that the element or request is blocked.
Ad blocker ad1 ad2 ad3 ad4 ad5 ad6 req1 req2

AdLock ✗ ✗ ✗ ✗

AdGuard ✗ ✗ ✗ ✗ ✗ ✗

Adblock Plus ✗ ✗ ✗ ✗ ✗

AdBlock ✗ ✗ ✗ ✗ ✗

AdBlocker Ultimate ✗ ✗ ✗ ✗ ✗

Ghostery ✗ ✗ ✗ ✗ ✗

Opera Browser ✗ ✗ ✗

uBlock Origin ✗ ✗ ✗ ✗ ✗ ✗ ✗

Europe). Based on their guidance, we provided a privacy state-
ment to inform end users of our data collection (see below).

During our pilot study, we only collected browser fin-
gerprints, including browser fingerprints collected by Fin-
gerprintJS and elements’ dimensional data collected by our
StylisticFP tool. We also set an HTTP cookie with a unique
24-bit random string to distinguish devices for ground truth.
We stored all collected data in an encrypted Postgres database,
which would only respond to requests from the web service
and queries from a set host on our network. Finally, all network
traffic was encrypted, with ingress rules for access control.

The privacy disclaimer stated, “The <redacted> is col-
lecting anonymized device and browser fingerprinting
information for a security research study. The collected data
includes web stylistic measurements and device characteristics.
The <redacted> does not collect sensitive personal infor-
mation as part of this study. Data will be securely retained
until <redacted>.” The site has additional privacy disclaimers
(including data erasure rights) that cannot be shared without
revealing institutional sensitive information. We sought
and obtained approvals and counsel for this deployment
following our institution’s strict policies and controls on data
acquisition and processing, including region-specific policies.

Appendix I.
Entropy and Effectiveness

In Table 9 we detail the entropy of the various FPJS
fingerprinting and header attributes, and whether they are
effective against six countermeasures.

17

TABLE 9: FPJS and header fingerprinting attributes’ entropy and effectiveness against popular countermeasures: ✓denotes
that the technique is effective, ✗ denotes that it is ineffective, and ⊖ denotes that the feature is not supported by the browser.

Feature Entropy Brave Tor Firefox
w/FP Protection

Chrome
w/Anti-FP Extensions FP Inspector [29] JS-

Blocked

fonts 0.31 ✗ ✗ ✗ ✗ ✗ ✗

domBlockers 0.06 ✓ ✓ ✓ ✓ ✓ ✗

fontPreferences 0.34 ✓ ✓ ✓ ✗ ✗ ✗

audio 0.23 ✗ ✗ ✗ ✗ ✗ ✗

screenFrame 0.48 ✓ ✗ ✗ ✗ ✗ ✗

osCpu 0.14 ⊖ ✓ ✓ ✗ ✗ ✗

languages 0.23 ✗ ✗ ✗ ✗ ✗ ✗

colorDepth 0.09 ✓ ✗ ✗ ✗ ✗ ✗

deviceMemory 0.10 ✗ ⊖ ⊖ ✗ ✗ ✗

screenResolution 0.38 ✓ ✗ ✗ ✗ ✗ ✗

hardwareConcurrency 0.21 ✗ ✗ ✗ ✗ ✗ ✗

timezone 0.26 ✓ ✗ ✗ ✗ ✗ ✗

sessionStorage 0.00 ✓ ✓ ✓ ✗ ✗ ✗

localStorage 0.00 ✓ ✓ ✓ ✗ ✗ ✗

indexedDB 0.00 ✓ ✓ ✓ ✗ ✗ ✗

openDatabase 0.05 ✓ ✓ ✓ ✗ ✗ ✗

cpuClass 0.00 ⊖ ⊖ ⊖ ✗ ✗ ✗

platform 0.10 ✓ ✓ ✓ ✗ ✗ ✗

plugins 0.12 ✗ ✗ ✗ ✗ ✗ ✗

canvas 0.53 ✗ ✗ ✗ ✗ ✗ ✗

touchSupport 0.07 ✓ ✓ ✓ ✗ ✗ ✗

vendor 0.13 ✓ ✗ ✗ ✗ ✗ ✗

vendorFlavors 0.09 ✓ ✗ ✗ ✗ ✗ ✗

cookiesEnabled 0.00 ✓ ✓ ✓ ✗ ✗ ✗

colorGamut 0.17 ✓ ⊖ ⊖ ✓ ✓ ✗

invertedColors 0.05 ⊖ ⊖ ⊖ ✓ ✓ ✗

forcedColors 0.05 ✓ ✓ ✓ ✓ ✓ ✗

monochrome 0.00 ✓ ✓ ✓ ✓ ✓ ✗

contrast 0.04 ✓ ⊖ ⊖ ✓ ✓ ✗

reducedMotion 0.02 ✓ ✓ ✓ ✓ ✓ ✗

hdr 0.10 ✓ ⊖ ⊖ ✓ ✓ ✗

math 0.20 ✓ ✓ ✓ ✗ ✗ ✗

Header user agent 0.41 ✓ ✗ ✗ ✗ ✓ ✓

Header accept language 0.35 ✗ ✗ ✓ ✗ ✓ ✓

18

	Introduction
	System Design and Implementation
	Browser Fingerprinting Challenges
	Implicit Stylistic Browser Fingerprints
	Fingerprinting Techniques
	Fingerprinting Features
	Performance Optimizations
	Fingerprinting Framework
	Threat Model

	Bypassing Anti-fingerprinting Defenses
	Brave
	Tor Browser
	Firefox
	Other Browsers
	Extensions and Tools
	Summary

	Experimental Evaluation
	Design Optimization
	Pilot study
	Prior CSS techniques

	Discussion and Future Work
	Related Work
	Conclusions
	References
	Appendix A: Element Example
	Appendix B: Element Arrangement Strategy
	Appendix C: OS Language Detection
	Appendix D: Media Queries
	Appendix E: Code Samples
	Appendix F: Extensions
	Appendix G: Ad blocking
	Appendix H: Ethics: Pilot Study and Privacy Statement
	Appendix I: Entropy and Effectiveness

