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ABSTRACT
The growing popularity of location-based services (LBS) has
led to the emergence of an economy where users announce
their location to their peers, indirectly advertising certain
businesses. Venues attract customers through offers and dis-
counts for users of such services. Unfortunately, this econ-
omy can become a target of attackers with the intent of
disrupting the system for fun and, possibly, profit. This
threat has raised the attention of LBS, which have invested
efforts in preventing fake check-ins. In this paper, we cre-
ate a platform for testing the feasibility of fake-location at-
tacks, and present our case study of two popular services,
namely Foursquare and Facebook Places. We discover their
detection mechanisms and demonstrate that both services
are still vulnerable. We implement an adaptive attack algo-
rithm that takes our findings into account and uses informa-
tion from the LBS at run-time, to maximize its impact.This
strategy can effectively sustain mayorship in all Foursquare
venues and, thus, deter legitimate users from participat-
ing. Furthermore, our experimental results validate that
detection-based mechanisms are not effective against fake
check-ins, and new directions should be taken for design-
ing countermeasures. Hence, we implement a system that
employs near field communication (NFC) hardware and a
check-in protocol that is based on delegation and asymmet-
ric cryptography, to eliminate fake-location attacks.

1. INTRODUCTION
Several location-based services have emerged during the

last couple of years, Foursquare and Facebook Places being
the most famous examples. The core operation of these
social utilities is based on a large number of users that are
willing to share their true geographic location. Users of these
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systems announce their location to the rest of the community
or their on-line contacts, and can win awards depending on
how often they share their location. For example, American
Express offers discounts as an incentive for their customers
to connect their account with the Foursquare application [2].

Foursquare is currently the most successful LBS. A very
important aspect of its business model is the rewarding sys-
tem for users that frequently check into specific venues. The
user with the most check-ins for a venue in the last sixty
days is crowned the venue’s mayor. Venues attract cus-
tomers by providing special offers for their mayors. This
entails an incentive for users and, therefore, it is crucial to
prevent fake check-ins that will have a negative impact on
the system and deter users from participating [26]. As arti-
cles describing simple methods to post fake check-ins were
published (e.g., [9]), Foursquare implemented a cheating-
detection mechanism for prohibiting cheating users from be-
coming mayors. The deployment of such a feature [10, 5]
was mandatory for reassuring users that cheating was de-
terred, and preventing a major decrease of the user base.
Another important aspect of Foursquare is its recommender
system [29], built upon the suggestions and tips left by users
after checking into a venue. According to their CEO [7],
“check-ins drive the data, which drive the recommendation
engine”. Since these services base their operation on the
honest disclosure of location, it is vital for clients to trans-
mit their position accurately so as to prevent the loss of the
user base and the degradation of the recommender system.

Various methods have been used to post fake locations to
mobile social networks. The most trivial is to hijack the GPS
driver and provide applications with arbitrary coordinates.
There are research efforts for the development of Trusted
Sensors [33], including geolocation sensors. If smartphones
are equipped with a trusted computing base, tampering with
the data returned from the GPS antenna, or modifying the
system to receive the coordinates from an application, can
be harder although, arguably, still possible [35]. In this pa-
per, we do not tamper with GPS readings, but conduct a
systematic study of how the application layer of LBS can be
leveraged to transmit fake information. Thus, our method-
ology is not affected by the presence of trusted sensors.

We create a testing platform that leverages public APIs
available to application developers, and follow a black-box
approach where we perform arbitrary check-ins in various
places of the world, without changing our actual physical lo-
cation. We then systematically analyze all server-side heuris-



tics that aim to detect misbehaving clients. To ensure the
completeness of our study, we also conduct experiments where
we masquerade our actions to appear as if originating from
the official applications, to reveal potential differences of the
detection heuristics for public API calls. This is achieved us-
ing authentication tokens extracted from the official mobile
applications through low-level reverse engineering.

We reveal a series of thresholds, which, if taken into con-
sideration, allow a user to check into Foursquare, while trav-
eling around the globe with a speed of over 900 mph. We
also discover that users can check into a venue from as far as
200 meters away, and the maximum number of check-ins a
user is allowed to commit is enforced using a 24 hour sliding
window. Our technique revealed a bug in Facebook Places
which allows anyone to perform check-ins all over the world
with unlimited speed. No fix has yet been released.

Based on our findings we create an attack algorithm that
takes into account heuristic thresholds and can maintain
continuous mayorship in a set of venues across the globe. By
employing 10,000 accounts, sold in the underground market
for $150-$450, our adaptive algorithm can acquire the may-
orship of all venues, and severely impact Foursquare’s busi-
ness model. Our experiments demonstrate that anomaly de-
tection heuristics cannot secure a LBS against fake-location
attacks. Detecting malicious clients and distinguishing fake
check-ins from legitimate ones is not trivial. Even if heuris-
tics become stricter, the attacker can simply follow a stealth-
ier approach, as multiple accounts are used to carry out the
attack. Stricter heuristics will also result in the system be-
coming too restrictive for legitimate users as well, which can
have a negative impact on user participation. We argue that
new directions need to be followed for securing LBS.

We present our proof-of-concept implementation of Vali-
dated Check-in, an NFC server solution, along with a secu-
rity analysis of how it holds up against a series of attacks,
as well as an evaluation of its performance. With a total
cost of about $75 at retail price, we consider our system to
be ideal for deployment by venues that offer awards to LBS
customers. The contributions of this paper are the following:

• We create a platform for evaluating the efficiency of
server-side components employed by LBS for identify-
ing clients providing fake locations. Our findings indi-
cate that anomaly detection based heuristics are not
sufficient for capturing clients that misbehave.

• To stress our experimental findings, we develop an
adaptive attack algorithm that maximizes the impact
of fake-location attacks, while remaining undetected.
We show how an attacker can deploy a system-wide at-
tack, that will have a significant impact on Foursquare’s
business model, with less than $1,000.

• We implement Validated Check-in, a system designed
to be deployed at LBS venues and ensure user presence
during the check-in process. Based on commodity NFC
hardware, it can protect against fake-location attacks.
We design a check-in protocol for eliminating a range
of attacks, and evaluate our system’s performance.

2. LOCATION-BASED SERVICES
With smartphones, users can use networking services on

the go. This introduces the aspect of location, which has
led to the blooming of LBS, that allow users to inform their
contacts of their current location.

Foursquare has over 30 million users and 1 million regis-
tered businesses, with users conducting millions of check-ins
per day. The concept of achievements for users based on
their check-in behavior was integral to its success. Achieve-
ments belong to three different categories: points, badges,
and mayorships. Users earn points for every activity such
as adding a new venue, while badges require combinations
of activities. The mayorship is awarded to the user with
the most check-ins for that venue in the last 60 days, and
only one check-in per venue is allowed each day. As a result
Foursquare is perceived as a game and, thus, cheating users
discourage honest users from further participation.

Facebook Places follows a similar approach, where users
can check into places and share that information with their
friends. It does not present an award system to create a
“gaming” experience. Nonetheless, it also provides venue
owners with the ability to create offers for users that check
into their place. Recently, Facebook merged this service into
its system and discontinued it as a separate service. For
the remainder of the paper, we will refer to this component
as Places. Furthermore, venues are referred to as pages,
however we will retain Foursquare’s naming convention.

Check-in economy. The opportunity for venues to use
LBS for advertising and attracting customers has led to the
creation of a new business model that relies on users’ activi-
ties combined with their geographical location. When users
check into venues and post that information on their profiles,
they are actually advertising the venues. As a result, an in-
creasing number of venues are attracting Foursquare users
by offering awards, ranging from discount prices to free prod-
ucts. This is similar to the Like economy [15], associated
with users liking particular resources in Facebook, evolving
with check-ins stemming from Foursquare’s activity. Ensur-
ing the produced economy is stable, requires that check-ins
reflect clients announcing their true geographical location.
However, this stability seems very fragile. A logical con-
sequence of venues using Foursquare’s achievement system
for offering awards is the appearance of users cheating the
system for fun or profit. This is done through fake-location
attacks, where users check into venues without being there.

Fake-location attacks have a major impact on the credi-
bility of LBS. They pose a great threat as competitive users
will leave the system if fairness is not ensured and, thus,
break all economics associated with these services. To make
matters worse, as smartphones become widely used and the
popularity of such services greatly increases, these attacks
are bound to transit from sporadic incidents to organized
fraud. We argue that LBS share certain properties that ren-
der them vulnerable. Thus, it is important to explore such
attacks in detail and design effective countermeasures. We
identify the following fundamental properties:

1. User location is sent from the client (user’s device).

2. LBS has no definitive way of verifying the location.

3. Heuristics are used to detect behavior that exceeds ac-
ceptable limits, using the following information: (a)
venue location, (b) user location, (c) timestamp of
check-in, (d) history of previous user check-ins.

4. With such limited information, heuristics can only be
applied on the following: (a) user’s distance from venue,
(b) user’s speed between successive check-ins, (c) dis-
tance traveled in certain time windows, (d) number of
check-ins in certain time windows.



As long as (2) stands true, LBS will remain vulnerable
to fake-location attacks. The limited nature of information
available (3), dictates the types of heuristics that can be
deployed (4). We have designed our system to be fully con-
figurable in regards to such heuristics. Thus, it can be used
to identify the heuristic thresholds of any LBS that follows
(1, 2) and demonstrate the extent of potential attacks. Our
testing infrastructure can also assist LBS providers in detect-
ing implementation bugs (as we demonstrate with Places).

User location. We expect user location to play a piv-
otal role in future services with functionality that will de-
viate from a simple check-in approach. Foursquare is also
expanding by utilizing user data to build a reliable recom-
mender system.By implementing an effective mechanism for
validating the location reported by users, we can create a
stable foundation for other novel services to be built upon.

3. METHODOLOGY
Our initial goal is to create an infrastructure that is able to

perform arbitrary check-ins in LBS. Even though our current
implementation supports Foursquare and Places, our testing
approach is applicable to any LBS.

Use of Public APIs. Both Foursquare and Places pro-
vide public APIs that allow the development of custom ap-
plications. They include a set of HTTP requests, which
cover the complete functionality of the service. The Places
API is provided as part of the Facebook Graph API. For de-
veloping applications one only needs to register and obtain
API credentials. Application code is not reviewed and, thus,
anybody can create applications that post fake check-ins.

Mimic Official Applications. For one experiment we
want to masquerade all calls made by our custom applica-
tion to seem as if originating from the official one. Our goal
is to explore whether the official app includes further infor-
mation (i.e., custom headers) that makes it receive different
“treatment” from the service. To do this, we must format
all API calls like the official ones, and use the corresponding
authorization token for each user1. Revealing the original
protocol is challenging, since communication is sent over an
encrypted channel using HTTPS. We extract the required
information by modifying the application to provide us with
the actual communication. If the requests are sent in cleart-
ext, decompiling the application is not necessary. However,
sending requests over SSL/TLS is considered safe practice
and we expect that most LBS will do so.

Black-box testing. To reveal the detection mechanisms
deployed by LBS, we follow a black-box testing approach and
use test profiles that post arbitrary check-ins. We design our
system to allow the configuration of several parameters of
user behavior. By modifying the behavior, we are able to
trigger the heuristics and identify their thresholds.

Ethical considerations. To minimize the impact of our
experiments, and analyze the detection mechanisms with-
out affecting other users, we took two precautionary mea-
sures. First, when exploring the heuristic thresholds, we
modified our accounts so as not to acquire mayorships in
venues which already had mayors. Specifically, mayorships
are not awarded to accounts without a profile photo. Second,
when experimenting with our adaptive attack algorithm, we
targeted small venues with no mayors and used multiple ac-
counts to serve as other customers. We were able to explore

1Each (user, application) pair has a unique access token.

the heuristics in depth and demonstrate our automated at-
tack, without having a negative impact on legitimate users.

4. SYSTEM IMPLEMENTATION
Our system has been implemented in Python as a collec-

tion of components, and can run on any computer.
Venue Crawler. Foursquare and Places have API func-

tions that search for venues based on certain parameters.
Given a set of coordinates, and a category description (e.g.,
bar), both services return a list of relevant venues nearby.
The Venue Crawler takes as input a set of coordinates and
searches for different categories of venues. For every venue
we collect the name, venue ID, and location coordinates.
We submit the venue’s coordinates as our user’s coordinates
(unless we want our user to appear as being at a distance).

User Authentication. This part of our central compo-
nent is responsible for authenticating the user to the LBS.
It takes as input the user’s access token used for authenti-
cating with the service. We can select to authenticate with
the access token that was created for use by our custom ap-
plication, or the one extracted from the official application.
Based on which one we select, we can appear to be sending
the check-ins from the custom application or the official one.

Check-in Manager. This implements the core func-
tionality of our system as it simulates a user checking into
venues. It takes as input a list of venues that will be used
for the arbitrary check-ins, and a set of values that configure
the user’s behavior. Several aspects of user behavior can be
configured to explore the heuristics deployed by a LBS.

5. MEASUREMENTS - FOURSQUARE
Foursquare has implemented a system, which they refer to

as “cheater code”, for detecting users that post fake check-
ins. While the mechanism has not been disclosed, according
to Foursquare [8] detection is based on information from:
(i) the user’s phone, (ii) the official application, and (iii) an
advanced detection algorithm. A check-in is accepted even
if it triggers one of the heuristics, however, it is not taken
into consideration for mayorships. In Table 1 we provide a
short description of the heuristics we discovered, along with
the threshold values after which check-ins are flagged.

5.1 Service Responses
All check-ins posted by our system through the API, re-

ceive a response message. If a check-in is considered legiti-
mate, Foursquare returns a message verifying the check-in,
while ones that are considered cheating receive an error mes-
sage. By configuring our users to perform specific actions
with precise timing, we can model various types of behavior.
Based on the response messages, we know when a specific
heuristic was triggered, and based on the user actions we
discover the conditions under which it happened.

GPS distance: the user’s location exceeds the maximum
acceptable distance from the venue. The distance is calcu-
lated based on the user’s coordinates sent by the application,
and the venue’s coordinates in the Foursquare database.

High speed: the user’s speed exceeds the maximum
threshold. Speed is calculated based on the time elapsed
between the current check-in and the previous legitimate
check-in, and the distance of the respective venues.

Rapid fire: the user exceeds the maximum number of
acceptable check-ins for a certain time window.



Heuristic Description Threshold Range IT | IN

Maximum check-ins

5 check-ins time ≤ 1 minute

-
Number of check-ins 8 check-ins time ≤ 15 minutes

in specific time window. 49 check-ins time ≤ 24 hours
90 check-ins time ≤ 72 hours

User speed
Elapsed time and distance 4 km/min dst < 100 km 0.2% | 49%
traveled between check-ins. 25 km/min dst ≥ 100 km 3.0% | 37%

GPS distance
Distance between coordinates

200 meters - 1.1% | 5.5%
of user and venue.

Table 1: Detection heuristics and the respective thresholds after which check-ins are flagged as cheating.

5.2 Device-based heuristics
The official application queries the device for the GPS

coordinates, which are correlated with those of the venue.
However, in large venues, a user may be present but not
at the exact coordinates the system has registered. Addi-
tionally, cell phone GPS readings cannot always identify the
location with high accuracy, and include an “accuracy” pa-
rameter as an indication of a margin of error. Applications
can query the device if such information is needed. The
API check-in function has an optional field for this informa-
tion. To compensate for low accuracy readings, heuristics
allow check-ins from a certain distance. While a reasonable
threshold will facilitate legitimate users, high-distance toler-
ance enables users to cheat without spoofing the GPS data.
To detect the threshold we conduct Experiment A:

• The system takes as input a predefined list of venues
and their coordinates. After each check-in, it waits
for a specific amount of time, before the next check-in.
The amount of time is large enough, to avoid triggering
heuristics that enforce constraints on user speed. It
calculates a set of coordinates for the user that are X
meters away from the venue, and increases X by Y
meters after every check-in. We repeat for multiple
values of X,Y .

Results were consistent across all experiments conducted
over a period of 6 months. The results from a represen-
tative experiment can be seen in Figure 1. Check-ins are
accepted from up to 200m away. Once the distance between
a user’s reported position and that of the venue exceed that
threshold, the check-in is flagged as cheating and receives
the “GPS distance” error. A high threshold makes it trivial
for users to check into venues without being near them. We
discuss the accepted check-ins for over 200m in Section 5.4.

5.3 User-behavior heuristics
A series of variables, based solely on the user’s behavior,

are evaluated before a check-in is deemed legitimate.
Maximum check-ins. Foursquare sets a limit on the

number of check-ins in a given time window. To estimate
the threshold of this heuristic we setup Experiment B :

• Our system takes as input a predefined list of venues
and their coordinates. It places the user at the venue’s
exact coordinates, and after each check-in, waits for X
seconds, before the next check-in.

• If a check-in receives the “rapid fire” error message we
follow one of three different strategies. Constant : fol-
low the same pattern, and sleep for X seconds after
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Figure 1: The distance between the GPS coordi-
nates of the user and the venue.

each check-in. 24h Mute: sleep for 24 hours before
attempting another check-in. Exponential Back-off :
whenever an error message is received, X is doubled.
In all 3 cases, whenever the user successfully checks-in
again, X is reset to its original value. We repeat this
procedure with different values of X.

Table 1 summarizes our results. Different thresholds apply
for the number of check-ins users are permitted to make in
certain time windows. Specifically, constraints are set for
prohibiting bursts of check-ins by allowing a small number
of check-ins to be posted within a time window of 15 min-
utes. Foursquare also sets a limit on the number of check-ins
a user can commit in a 24 hour period. Figure 2 shows the
results for the three approaches (marked with FS), with the
bold sections indicating successful check-ins. We can see
that all users receive errors after 49 check-ins. Foursquare
does not reset the number of check-ins for a day at a specific
moment in time, but checks them within a 24-hour sliding
window. The user that never stops bombarding the service
with check-ins can escape the ban period only for very short
time windows (the short lines in the Constant FS bar), be-
cause even check-ins that receive error messages count as
part of the 49 allowed. The user that pauses for 24h after
the first error, escapes the ban period faster than the other
two. Foursquare also examines the check-ins committed in
a 72-hour window, and allows only 90 check-ins. Even if a
user commits 49 check-ins in the first 24 hours, he cannot
exceed the threshold of 90 in a given 72 hour window. The 3
timing strategies used are not the most efficient in regards to
attacking an LBS, but aim at revealing the detection mech-
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We depict three strategies. They all simulate a user
that checks in with a constant rate, until it is prohib-
ited by the service, upon which the strategy changes.
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anism deployed by the system. In Section 7 we describe our
adaptive attack that uses a more efficient timing strategy.

User speed. This heuristic measures the geographic dis-
tance traveled and the time elapsed between two consecutive
check-ins. The “high speed” error is returned when the ac-
ceptable thresholds are exceeded. This is the main heuristic
for detecting fake-location check-ins, as it is impossible to
post legitimate check-ins that exceed the thresholds set by
Foursquare. We conduct experiment C :

• Our system takes as input a predefined list of venues
and a user velocity V . After each check-in, it calculates
the exact distance X to the next venue and how many
seconds T it must wait before checking into the next
venue, so the user will appear to be traveling at a speed
V . We repeat this for different values of X and V .

We model our users to appear as traveling at any speed
we want. Depending on the value of X, Foursquare allows
different speeds. For distances up to 100 kilometers users
are allowed to travel at 4 kilometers per minute (approxi-
mately 150 miles per hour). For any distance longer than 100

km, users can travel at any speed below 25 kpm (approx-
imately 932 mph) which is much faster than commercial
airplanes (that average 600 mph). Figure 3 shows the re-
sults from a representative set of experiments for distances
longer than 100 km. When conducting experiments with
user speeds over the threshold, several interspersed check-
ins are accepted. This is because Foursquare uses the last
accepted (i.e., not flagged as cheating) check-in as the user’s
last location when calculating the elapsed time and traveled
distance. Thus, it perceives that it took a longer time than
it actually did to travel the distance. This results in calcu-
lating a speed that is below the threshold, and accepting the
check-in. When the speed is slightly over the thresholds, the
number of accepted and flagged check-ins are almost equal.

Traveling distance constraints. We explore if any con-
straints apply for the distance users can travel. We conduct
Experiment D, which is the same as Experiment C except
that we use a list of venues, located in different countries.
We model our user to travel right below the speed thresh-
old, at 24 kilometers per minute. At that speed, all check-ins
posted by our system were accepted, and our user covered a
distance of 36,120 kilometers (which is 90% of the circum-
ference of Earth) in 25 hours. As our user traveled steadily
for over a day, we conclude that there are no heuristics for
imposing constraints on the distance a user can cover.

History heuristics. We compare the thresholds for three
accounts with varying behavior: an account with no check-
in history, one with many legitimate check-ins and a few
that exceeded the maximum number allowed, and one that
greatly exceeded all thresholds. We repeat our previous ex-
periments with all accounts running simultaneously with the
exact same variables. Results showed that thresholds are the
same regardless of the user’s cheating history.

Cheating penalties. We also found that Foursquare
does not impose any penalties on users that have triggered
the heuristics, and no “ban” periods are enforced.

5.4 Heuristic inconsistencies
During our experiments, we detected inconsistent behav-

ior of the heuristics. In the first case heuristics are triggered
while we remain beneath the thresholds (inconsistent trig-
gering), and in the second case their mechanisms are not
triggered by behavior that exceeds the thresholds (inconsis-
tent non-triggering). While they may not be errors of the
detection mechanism in all cases, they do present an incon-
sistent behavior in regards to the thresholds calculated based
on the extensive number of experiments.Nonetheless, we re-
frain from the standard terms of false positives and false
negatives used for evaluating detection mechanisms. The
last column of Table 1 shows the percentage of these cases.
In the user speed experiments, the ratio of inconsistently
accepted check-ins is high due to the way Foursquare cal-
culates user speed, as explained in experiment C. Here, we
omit these and present some other incidents as examples.

Inconsistent triggering (IT). In experiments with a
speed beneath the threshold (e.g., 0.26 kpm), some check-ins
received the “high speed” error. In several cases we received
the “GPS distance” error even though the user had the exact
coordinates Foursquare returns for the venue. If we imme-
diately repeated the check-in, it was deemed legitimate.

Inconsistent non-triggering (IN). In several cases our
system was able to check in our users from as far as 900m
away. While a velocity of (right below) 25 kpm was the max-
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imum speed our user could exhibit without any check-ins
being flagged, in the experiments with higher speeds some
check-ins were considered legitimate. We had a check-in
accepted with a speed of 107 kpm, without an intermediate
flagged check-in to alter the speed calculation by Foursquare.

6. MEASUREMENTS - PLACES
Service Responses. Places also returns error messages:

significant distance from previous check-in when the user
travels too fast, and too many places in a short amount of
time when the user exceeds a number of allowed check-ins.

Device-based heuristics. We replicate Experiment A,
as outlined in Section 5, to reveal the maximum distance
from which users can check into venues. For a series of
venues, we gradually increase the user’s distance from the
venue’s location. For each check-in attempt, we send the
venue’s ID and the user’s location coordinates. We did not
receive an error message for any of the distances we tried.
As distances increased even more, we were able to check our
users into places with coordinates located on different con-
tinents. Our experiments show that the user’s coordinates
are never compared to those of the venue when a user checks
in, and any coordinates are accepted. We setup Experiment
E, to demonstrate how this can be exploited by an attacker:

• Our system takes as input a list of venues from around
the world, and a set of user coordinates. For every
venue, the user checks-in with the same location coor-
dinates, regardless of the venue’s location. The user
waits for 1 minute between check-ins.

With this experiment, we are able to check our user into
venues around the globe in just a few minutes. As the user
always sends the same coordinates for his location, when
the system compares his new position to that of his previ-
ous check-in, it detects no change and the speed heuristic
is never triggered. Thus, an attacker can completely bypass
the traveling speed constraints and check into venues around
the globe with unlimited speed. After further investigation,
we found a bug report [4] submitted to Facebook two weeks
prior, for the Graph API. The bug report was acknowledged
and received an “assigned” status, but was closed one year
after its submission, without any fix being released. This
can be attributed to the fact that the report describes the
problem in the check-in mechanism without pointing out the

Algorithm 7.1: Attack(N)

L← ListOfVenues(N)
c← 0
while

do



p← L.Dequeue()
n←MayorCheckinsAtVenue(p)
m← OurCheckinsAtVenue(p)
if m ≤ n

then



checkin← Checkin(p)
CList.Enqueue(checkin) (1)
c← c + 1
t← AdjustSleep(CList, c) (2)
if c = MAX

then
{
c← c− 1

Sleep(t)
L.Enqueue(p)

Figure 5: Pseudo-code of the actual attack.

security implications of this bug, and how it can be exploited
to bypass the other detection mechanisms.

User-behavior heuristics. As we can completely by-
pass the speed heuristic, we repeat Experiment B to identify
the limit of acceptable check-ins. The results reveal that if
this threshold is exceeded, an exact 24 hour ban is applied.
Figure 2 compares the check-ins allowed by Foursquare and
Places for a time window between check-ins of 180 seconds.
We also identify that the threshold is not constant for differ-
ent intervals between check-ins. We repeat the experiment
with different time intervals T for 24 hours each. Subse-
quently, we calculate the expected check-ins, which are the
ideal number of check-ins that should be successful if no
heuristic is applied, versus the actual successful ones. As
shown in Figure 4, prior to approximately T < 300 seconds,
the actual check-ins are less than the expected ones, since
the heuristic is triggered and a 24 hour ban is applied.

7. ATTACKING LBS
An adversary with the knowledge of the detection mecha-

nisms can create an adaptive attack that maximizes its im-
pact while remaining undetected. In the case of Foursquare
a potential attacker would try to acquire the mayorship in
top venues around the world, discouraging other users from
competing. We focus on Foursquare, because there is clear
notion of game incentives. However, it is quite generic and,
with minor modifications, can be adapted to other LBS. The
following aspects led to the design of our strategy.

Timing between check-ins. Foursquare restricts the num-
ber of check-ins allowed, based on a 24 hour sliding window.
If a check-in receives a “rapid-fire” error, it is not eligible for
points but still counts as one of the check-ins allowed. The
attacker must keep account of the timestamps of his check-
ins to calculate their number in the last 24 hours. As long as
the count of check-ins of the last 24 hours is 30 (since 90 are
allowed in 72 hours), no check-ins must be attempted. Once
the number reaches 29 he can check in once again. This way,
one can commit 1,800 check-ins in a 60 day period.

Minimizing necessary check-ins. Checking into venues af-
ter having been crowned the mayor, results in unnecessary



check-ins that should be used for other venues. The adver-
sary can stop checking into a venue once he has acquired the
mayorship, and only resume if he temporarily loses it.

Only check-ins that do not trigger one of the heuristics are
considered valid and can result in mayorships. We design a
strategy to use the limited number of check-ins effectively.
Its pseudo-code is presented in Figure 5. The system takes
as input a list of N arbitrary venues. A counter c holds
the number of check-ins made in the last 24 hours. After
selecting the next venue from the list, we retrieve the number
of check-ins n the mayor of that venue has. If we are mayors
of the venue, we do not check-in and add the venue to the end
of our list. If we are not, we check-in and save the relevant
information (line 1). We increase the number of check-ins
and then run the function to adjust the waiting time (line
2): If we haven’t reached the MAX allowed check-ins for the
last 24 hours, we set t to our normal small sleep interval. If
we have reached MAX check-ins, we retrieve the info of the
check-in which is located MAX − 1 positions from the end.
We calculate how much time t our system has to sleep so
it “wakes up” 24 hours from that check-in. We decrease our
counter, sleep for t, and add the venue to the end of the list.

An adversary with the goal of disrupting the system and
deterring legitimate users from participating, will target the
most popular venues as this will impact the largest number
of users. While obeying the thresholds, in the worst case
scenario where each mayorship requires 60 check-ins, the
attacker can acquire the mayorship of 30 venues with a single
account. We collected the number of check-ins of the mayors
of 2,420 of the most popular venues in New York through
the API function that returns the most popular venues for
a given location. 90% of the venues had a mayor with 36
or less check-ins, and only 2.2% had over 50 check-ins. The
average number of check-ins required for mayorship was 17.
While it might be higher than the average across all venues,
since it reflects activity for popular venues in a metropolitan
area, it provides a rough estimation of the average number
needed to acquire a mayorship. Thus, an attacker following
our attack algorithm can use the 1,800 available check-ins
to sustain mayorship in 105 venues, on average, with one
account. Based on that, an attacker can maintain constant
mayorship in all venues with less than 10,000 accounts.

Verisign released a report about a cybercriminal selling 1.5
million Facebook2 accounts [1],and the cost of 1,000 accounts
without any contacts was $15. For compromised accounts
with friends the price ranged from $25 - $45. Assuming
such prices are representative, an attacker can acquire the
needed number of accounts to sustain mayorship across all
Foursquare venues with as little as $150 - $450. Further-
more, Trend Micro released a report [12] about the Russian
underground where 2,000 bots can be bought for $200. That
number of bots is more than enough for deploying the 10,000
accounts. Overall, an attacker with the knowledge of the de-
tection heuristics and their respective thresholds, can acquire
mayorships across all venues and have a significant impact
on Foursquare with less than $1,000. Similarly, any LBS can
be severely damaged with minimal resources.

As the attack is carried out by multiple accounts with le-
gitimate behavior, each targeting a small subset of venues,
Foursquare will not be able to distinguish them from other
accounts. Even if the heuristics are made more restrictive,

2Foursquare allows to sign-up with a Facebook account.

the attack variables can easily be modified to remain be-
neath the new thresholds. Making the heuristics too strict,
will have a negative impact as legitimate users will be greatly
inconvenienced. Thus, it is evident that detection heuristics
are not effective against large-scale fake-location attacks and
other types of countermeasures must be implemented.

8. COUNTERMEASURES
Fake-location attacks are possible because clients can com-

municate an arbitrary geographical position to the service.
First, we propose three countermeasures that can hinder at-
tacks by validating the user’s location. Next, we discuss the
inefficiency of detection mechanisms.Finally, we present our
proof-of-concept implementation of Validated Check-in.

8.1 Validating user location
Ensuring user presence. One approach is to enforce

verification based on information provided only at a geo-
graphical position. By requiring users to also submit infor-
mation that is only available at a location, the service can
validate the user’s presence. One can take advantage of the
NFC capabilities of smartphones, which enable communica-
tion between devices within a very short range (i.e., a few
centimeters). By deploying a NFC device at venues, the LBS
can validate user check-ins. Interestingly, Foursquare re-
cently introduced unpowered NFC tags to identify the venue
and prompt the user to check-in [6]. This minimizes inter-
action as users need only swap their device over the tag. By
building upon this idea, we can hinder fake-location attacks.

Temporary codes. The service can generate a tempo-
rary code for venues that are valid for certain time (e.g., one
day), and are only obtainable at the venues. This can be a
string, a QR code,or even a NFC tag. While this method
has the advantage of not requiring dedicated hardware,it is
susceptible to wormhole attacks [23] where users share the
code with other individuals that will be able to check-in
without actually visiting the location. Another drawback is
that it can only be used in commercial venues and not public
places. Alternatively, a location proof scheme that uses ex-
isting access points can be implemented [27, 32]. However,
such solutions can be bypassed from users that are within
the range of the access point, but not at the actual venue.

Third party verification. Currently, a client’s location
can be verified by telecommunication providers (they know
the cell the device is connected to), and large IT vendors,
such as Google, that have constructed extensive maps of
wireless access points around the globe. However, the loca-
tion information is not accurate enough to verify the user’s
presence within a venue, but only within a larger area.

8.2 Adapt existing detection mechanisms
As we demonstrated, existing heuristic implementations

are either too relaxed (Foursquare) or can be bypassed (Places).
However, even with more restrictive thresholds, such mech-
anisms cannot prohibit cheating. Furthermore, they cannot
defend against system-wide threats carried out by multiple
accounts that are indistinguishable from legitimate ones. On
the contrary, our NFC countermeasure can effectively hinder
such attacks and provides an affordable solution for sustain-
ing the viability of the emerging business model of LBS.

Penalties for cheating. This is an efficient mechanism
for discouraging legitimate users from cheating, but is inef-
fective against system-wide threats. Due to false positives,
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Figure 6: Data exchanged during the check-in.

penalties should be imposed when users repeatedly trigger
the heuristics, in which case they should face timeout peri-
ods where no check-ins are accepted.If the cheating persists,
the user should be permanently banned from the service.

Revocation. As a measure of preventing users from ac-
quiring mayorships through fake-location attacks, Foursquare
has introduced a feature that allows venue owners to re-
voke the mayorship of users which may have cheated. This
mechanism does not assist in identifying or preventing fake-
location attacks, but in discouraging potential cheaters. This
feature might be effective in certain cases, yet there are many
conditions where it is not applicable, like in venues with
many simultaneous customers (e.g., clubs, shopping malls).

8.3 Implementation of Validated Check-in
We present the details of Validated Check-in, our proof-

of-concept implementation of the NFC server countermea-
sure. Affordable electronics frameworks are a rapidly grow-
ing market, and we selected two of the most popular de-
vices. First, the Arduino board, an open source electronics
prototyping platform, which can be extended through var-
ious modules that provide specific functionality. We used
Arduino Uno and the Seeedstudio NFC Shield with a to-
tal cost of about $50 at retail price. Second, the Model B
Raspberry-Pi, an ARM GNU/Linux box, using the Adafruit
NFC breakout board with a total cost of $75. To eval-
uate our testbeds, we developed an Android application
which implements the user functionality. The application
communicates with the NFC Server, using classes from the
android.nfc package. Arduino was programmed with the
LLCP-SNEP protocol implementation for P2P communica-
tion. For the Raspberry-Pi we used the libnfc and openssl

libraries. Our user device was a Samsung Galaxy S3.
Our solution relies on cryptographic primitives for secur-

ing communication between the NFC server and user de-
vice and prevents different types of attacks. Upon activa-
tion of the mobile application, venues and users calculate
a set of asymmetric keys. Foursquare must receive a copy
of the public keys, and all venues and users save a copy
of Foursquare’s public key. After setting up the venue ac-
count, copying the keys on the NFC server and synchroniz-
ing the internal clock through NTP, no Internet connectiv-
ity is required.The UserID and VenueID are already used by
Foursquare, as parameters in the API calls.
Validated Check-in: the protocol is shown in Figure 6.

1. The NFC server sends a random nonce to the user.

2. The device encrypts the nonce using the user’s private
key KUR, and the UserID using Foursquare’s public
key KFU , and sends them both to the NFC server. If

they are not received by the server in an acceptable
time window, it terminates the process.

3. Using the venue’s private key KV R, the NFC server re-
encrypts the encrypted UserID and nonce along with
the nonce in cleartext and a timestamp. These, as well
as the VenueID in cleartext, are sent to the user device.

4. The device sends the data to Foursquare, that uses
the VenueID to retrieve the venue’s public key KV P

and decrypt the ciphertext. If the timestamp is valid,
Foursquare uses its private key to decrypt the UserID
and verifies it is that of the user that sent the check-in.
Then it uses the user’s public key to decrypt the nonce
value. If it matches the one sent by the venue, the user
is checked-in.

Security Analysis of the Validated Check-in protocol.
Fake-location attacks: the attacker creates a bogus check-

in request for a venue, while being at a different location.
However, during the normal check-in process the informa-
tion sent to Foursquare contains a timestamp encrypted us-
ing the venue’s private key. Thus, the user cannot create a
valid check-in (even with information from old check-ins).

Wormhole attacks: an attacker located at a venue ex-
changes information with an accomplice, so he can perform
a check-in as well. The NFC server completes the protocol
only if the user sends the response within the acceptable
time window. However, the nonce cannot be predicted and
the challenge can’t be relayed in time. The attacker can also
use a device that mimics an NFC server and try to check the
user into a venue X other than the one he is at. Again, the
NFC server at venue X will not receive the challenge in time.

Eavesdropping attacks: an eavesdropper passively mon-
itors the communication between the users and the NFC
server to discover the users’ identity. However, he is only
able to acquire the VenueID which is publicly known, since
the UserID is encrypted with Foursquare’s public key.

System-wide Sybil Attacks: the attacker aims to disrupt
the whole system and drive legitimate users away by ac-
quiring the mayorship of all (or most) venues using multiple
accounts [20]. As shown in Section 7, with the existing de-
fense mechanisms, this can be done with minimal resources.
With our countermeasure this attack can be deterred, as
our NFC server imposes physical constraints on the check-
in process. The attackers will have to physically visit each
venue (practically impossible) to perform the check-ins.

Targeted Sybil Attacks: the attacker targets a few venues
that might offer deals to all customers after a certain number
of check-ins. The attacker can utilize several accounts to col-
lect multiple offers. Even with our countermeasure deployed,
one can still perform this attack. This can be done with a
smartphone that contains the passwords and keys of all the
attacker’s accounts (or those of accomplices). Nonetheless,
our countermeasure will be able to greatly mitigate such an
attack, as it imposes physical and time constraints on the
check-in process. Due to the NFC technology, the attacker
will have to stay next to the server for a unnatural amount
of time to check-in a large number of accounts.

Performance analysis of our implementations.
Encryption: an important factor that affects the applica-

bility of our solution is the time needed for the data encryp-
tion. Table 2 presents the average times (over 100 runs) for
applying RSA encryption to a buffer using keys of various
sizes. The Arduino presents the worst performance due to



Keysize 512 1,024 2,048 4,096
Arduino 25,056 224,279 1,587,550 NA
Rasp.Pi 2.745 3.228 5.130 12.150
Galaxy 2.265 2.834 5.042 12.501

Table 2: Average encryption time (ms) for different
RSA key sizes (bits).

its limited computational capabilities and RAM size, with
similar times to those reported in [13]. Even for small keys,
the time required for the user device and NFC server to stay
in range is not acceptable in realistic scenarios. For a 512-
bit key (which is very weak), the encryption process takes 25
seconds. Thus, the Arduino board is not a suitable solution.
On the other hand, the Raspberry-Pi server is very efficient
and even with 2,048-bit keys encryption takes merely 5 ms.

Check-in process: Currently, Android requires the user
to tap the screen for authorization before data is sent over
NFC, and multiple messages can only be sent in batches.
As the NFC server has to enforce a strict time window for
the challenge-response step, no user interaction should be
needed between steps (1) and (2), as that would result in a
window large enough for a wormhole attack. However, the
data sent in step (2) of our protocol is based on the data
received in step (1) and can’t be sent in a batch. Thus,
the user is required to tap the screen a second time. This
is very restrictive for building NFC apps, as it does not al-
low multiple steps of communication between devices. This
has been reported by developers [3], was acknowledged by
Google, and is awaiting a fix. To overcome this limitation,
we also implemented a version that uses NFC to pair the
devices, and sends the protocol data over Bluetooth. This
version only requires one tap to initiate the pairing and ev-
erything else is done automatically. Nonetheless, we expect
this to be fixed soon, enabling our NFC-only approach.

In the Bluetooth version, using 2,048-bit keys and a 32-
byte nonce, the entire check-in process lasts 105 ms (average
over 100 runs). Based on the encryption times and the time
needed to send the data (28.7 ms per message), we set the
time window for the challenge-response step to 45 ms. After
sending the nonce, the NFC server terminates the process if
the response is not received within 45 ms. We plan on con-
ducting a study using a variety of smartphones to calculate
the time needed for the encryption, to select a value suit-
able for real-world deployment. Overall, the performance of
Validated Check-in renders it an ideal solution for LBS.

LBS workload: public-key cryptography is considered com-
putationally expensive. Foursquare must validate thousands
of check-ins per minute, as users conduct a few million per
day. Fortunately, hardware acceleration for cryptographic
operations has evolved. Consider that 7 years ago [11] Sun’s
UltraSPARC T1, equipped with a Modular Arithmetic Unit
for RSA, performed 20,425 signature verifications per second
with a 2,048-bit key utilizing all 32 cores. Decryption can be
further sped up by using GPUs [24] or modern x86 CPUs,
with operations needed by cryptographic algorithms imple-
mented in the hardware, and encryption can be handled at
line speeds [25]. Others [14] also argue that cryptographic
operations at line speeds are no longer an issue.

Cost: components to build our system cost $75 at retail
prices. While this might seem high, a LBS can purchase bulk
quantities of the components at much lower prices. Thus,

they can provide Validated Check-in to collaborating venues
for a very low price, with the ultimate benefit of imposing
fairness which will ensure a robust check-in economy.

9. RELATED WORK
Joining LBS. Researchers have tried to understand the

motives of users that join systems like Foursquare. Their
findings suggest that there is a significant portion of users
that participate for the discounts and special offers [26].
This is also supported by [30], where nearly 20% of the test-
subjects reported that offers were an important reason for
participating. Cramer et al. conduct a user survey [18, 19],
and find that both the “gaming” aspect and venue offers are
significant incentives for user participation.

Attacking LBS. One of the first to raise awareness about
the implications of fake-location attacks against LBS was [22].
Even though part of this paper focuses on the same prob-
lem, our work presents several characteristics that differen-
tiates it. While He et al. refer to certain heuristics used by
Foursquare, they have not explored them in depth so as to
identify their thresholds. We follow a systematic black-box
testing approach that accurately identifies the thresholds for
each heuristic. Furthermore, they develop a semi-automatic
tool that demonstrates that fake check-ins are feasible, but
due to the lack of knowledge of thresholds, cannot demon-
strate the true extent of potential attacks. Our automated
tool systematically explores the detection mechanisms, re-
veals the extent to which attacks are feasible and highlights
their true impact. Finally, our adaptive attack uses infor-
mation at runtime to avoid redundant check-ins.

Validating User Location. Carbunar et al. [17] present
a mechanism that allows users of LBS to communicate with
the service in a private manner. However, their solution
for validating the user’s location, is susceptible to worm-
hole attacks. In their follow-up paper [16] they propose
two extensions for detecting wormhole attacks. While the
first approach called NES is somewhat similar to our NFC
countermeasure, it presents disadvantages. First, the LBS
is required to keep state regarding each check-in attempt
by a user, as it has to store the nonce values sent to each
user (apart from the keys of all venues and users as we do).
It also requires the venue to be able to communicate with
the service, while our approach works even without Internet
connectivity. The second countermeasure, WES, relies on a
WiFi router present at the location that periodically changes
its SSID to a value that the user will forward to the LBS.
However, there is no description of the process by which the
LBS will predict the SSID values of each venue’s router at a
given time, or the extra state the service will have to store.
Finally, neither solution has actually been implemented.

The Echo protocol [34] is for securely verifying location
claims, using a time-of-flight approach. This protocol does
not require a setup or registration step, which excludes cryp-
tographic operations, and can be deployed for various appli-
cations. However, this solution requires devices that can
emit both radio and ultrasound frequencies, while we take
advantage of the NFC capabilities present in many modern
smartphones. Furthermore, for large or non-circular areas,
multiple nodes are required. On the other hand, we tar-
get a specific deployment scenario, for LBS to ensure user
presence at a specific venue during the check-in process.

[28] presents secure protocols for private proximity test-
ing, where two friends can be notified when within a spe-



cific distance of each other, while their location remains se-
cret. Extensive work has been published regarding distance
bounding protocols (e.g., [31]), for verifying a user’s posi-
tion. In [21], the RFID distance bounding protocol assumes
that the prover does not collude with a third party closer to
the verifier and is, thus, vulnerable to wormhole attacks.

10. CONCLUSION
Using a black-box testing approach we revealed the server-

side heuristics employed by Foursquare and Places for de-
tecting fake-location attacks and discovered their thresholds.
Our technique, without prior knowledge, revealed a bug that
allows one to bypass speed constraints set by Places. We also
presented an algorithm that leverages all discovered thresh-
olds of Foursquare for maintaining mayorship in venues. Fi-
nally, we implemented Validated Check-in, an NFC server
that can eliminate system-wide threats, analyzed its security
properties and evaluated its performance. We believe that
user coordinates will become a prominent feature of Inter-
net usage in general and, quite possibly, of critical services.
Thus, our research goals were twofold. First, to demonstrate
the extent to which LBS are vulnerable and the true impact
of fake-location attacks, so as to draw the attention of the
research community. Second, to expose the inefficiency of
anomaly detection mechanisms and utilize our findings for
designing and implementing an effective countermeasure.
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