
CDF: Predictably
Secure Web Documents

Peter Snyder*, Laura Watiker†, Cynthia Taylor*, Chris Kanich*

* University of Illinois at Chicago  
† Oberlin College

Overview
• The web is great! But complex!

• Complexity makes reasoning about privacy and
security difficult for consumers

• Consider giving advice to non technical users

• Knowing what we know now: 
Is there a way to improve web security and privacy,
without preventing authors from creating the types
of sites users want?

The Web Today
• Interactivity is delivered as (mostly) unrestricted

JavaScript

• Difficult to know code will be benign and “useful”: 
- form validation  
- improve user experience 
- drive user-serving widgets and page elements

• Or malicious:  
- fingerprint the user  
- exploit a vulnerability  
- from untrusted source (XSS)

Complexity vs. Benefit
Web API Standard # Sites Uses % Blocked

Gamepad 3 0.0%

Performance Timeline, Lv. 2 1,728 93.7%

WebRTC 1.0 28 29.2%

XMLHttpRequest 7,957 13.9%

Complexity vs. Benefit

AJAX

ALS

BA BE

CO

CSS−CR

CSS−FO

CSS−OM

CSS−VM

DO

DOM

DOM1

DOM2−C

DOM2−E

DOM2−H

DOM2−S

DOM2−T

DOM3−C

DOM3−X

DOM4

DOM−PS

DU

E

EC

EME

F

FA

FULL

GEO

GIM

GP

H−B

H−C

H−CM

H−HI

H−P

HRTHTML HTML5

HTML51

H−WB

H−WS

H−WW

IDB

MCD

MCS

MSE

MSR

NS

NT

PE
PL

PT

PT2

PV

RT

SD

SEL

SLC

SO

SVG

SW

TC

TPE

UIE

URL

UTL

V

WCR

WEBA

WEBGL

WEBVTT

WN
WRTC

10

100

1,000

10,000

0% 25% 50% 75% 100%

Block rate

S
ite

s
u
si

n
g
 t
h
is

 s
ta

n
d
a
rd

Figure 6: Popularity of standards versus their block rate, on a log scale.

●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

PT2

UIE
WCR

WRTC

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Ad block rate

Tr
a

ck
in

g
 b

lo
ck

 r
a

te

Sites using feature

● ● ● ●100 101 102 103

Figure 7: Comparison of block rates of standards using
advertising vs. tracking blocking extensions.

Column five of table 2 shows the number of CVEs associ-
ated with the standard’s implementation in Firefox within
the last three years. As the table shows, some implemen-
tations of web standards have been associated with a large
number of security bugs even though those standards are not
popular on the web. Other standards are associated with a
large number of security vulnerabilities despite being blocked
by advertising and tracking blocking extensions.

For example, the Web Audio API [4] standard is unpopu-
lar with website authors, and implementing it the browser
though has exposed users to a substantial number of security
vulnerabilities. We observed the Web Audio API standard
in use on fewer that 2% of sites in our collection, but its im-
plementation in Firefox is associated with at least 10 CVEs
in the last 3 years. Similarly, WebRTC [9] is used on less
than 1% of sites in the Alexa 10k, but is associated with 8
CVEs in the last 3 years.

The Scalable Vector Graphics [13] standard is an example
of a frequently blocked standard that has been associated
with a significant number of vulnerabilities. The standard is
very frequently blocked by advertising and tracking blocking
extensions; the standard is used on 1,554 sites in the Alexa
10k, but is prevented from executing in 87% of cases. At
least 14 CVE’s have been reported against Firefox’s imple-
mentation of the standard in the last 3 years.

5.7 Site Complexity
We also evaluated sites based on their complexity. We

define complexity as the number of standards used on a given
website. As Figure 8 shows, most sites use many standards:
between 14 and 32 of the 74 available in the browser. No
site used more than 41 standards, and a second mode exists
around the zero mark, showing that a small but measurable
number of sites use little to no JavaScript at all.

% of Usage blocked by Ghostery and Adblock

#

Goals

• HTTP(S)

• Decentralized / Rapid  
Deployment

• Interactivity

• Styling / Presentation

• Web Browsers

Keep Gain
• Predictability

• Security

• Privacy

• Removing arbitrary
code execution

Approach: 
Contained Document Format

1. Document Format:

• JSON format, simple to check

• Structure (like HTML)

• Declarations of interactivity (vs. implementation)

2. Client Proxy: Translates CDF -> HTML+JS

3. Trusted Libraries: Implement safe interactivity

CDF Documents
• Structure:

• Comparable to HTML tags
• Forces separation of structure and text

• Events:
• Designate when something should happen
• Taken from common DOM and framework provided events

• Behaviors:
• Designate what happens when an event triggers
• Static definition, safely converted into JavaScript by TCB
• Selected from common web idioms (element manipulation, timers,

tabs, network communication, etc)

Parser Example

CDF Flow
Browser Proxy Server

1. Client Request

2. CDF File

3. CDF → HTML+JS

4. HTML+JS

5. Trusted JS

6. “Safe” Assets

Advantages
• Limited Trusted Base  

No plugins, restricted Web API use

• Client Side Fingerprinting  
No JS means no JS based approaches (font / plugin
enumeration, canvas fingerprinting, etc.)

• Predictable Information Flow  
No iframes, no HTTP referrers, restrictions on forms,
“tracking speed bump"

• Page Defacement / XSS 
Typing in CDF documents, no script injection

Usability Tests
• Popular blog:  

http://www.vogue.com/

• Online-banking:  
https://www.bankofamerica.com/

• Social media: 
https://twitter.com/

• Collaborative web application:  
HotCRP

http://www.vogue.com/
https://www.bankofamerica.com/
https://twitter.com/

Conclusion
• Modern web provides web authors great flexibility

• This flexibility makes it difficult for consumers to reason about
security and privacy online

• With (relatively) small changes, the web could provide more
predictable privacy and security, without sacrificing expressivity.

• CDF is a design experiment to explore different privacy /
capability tradeoffs.

• Source: https://github.com/bitslab/cdf

• Thank you!

https://github.com/bitslab/cdf

