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Abstract

Frequently, it is advantageous for an agent to model
other agents in order to predict their behavior during
an interaction. Modeling others as rational has a long
tradition in AI and game theory, but modeling other
agents’ departures from rationality is difficult and con-
troversial. This paper proposes that bounded rationality
be modeled as errors the agent being modeled is mak-
ing while deciding on its action. We are motivated by
the work on quantal response equilibria in behavioral
game theory which uses Nash equilibria as the solution
concept. In contrast, we use decision-theoretic maxi-
mization of expected utility. Quantal response assumes
that a decision maker is rational, i.e., is maximizing his
expected utility, but only approximately so, with an er-
ror rate characterized by a single error parameter. An-
other agent’s error rate may be unknown and needs to
be estimated during an interaction. We show that the
error rate of the quantal response can be estimated us-
ing Bayesian update of a suitable conjugate prior, and
that it has a finitely dimensional sufficient statistic under
strong simplifying assumptions. However, if the sim-
plifying assumptions are relaxed, the quantal response
does not admit a finite sufficient statistic and a more
complex update is needed. This confirms the difficulty
of using simple models of bounded rationality in gen-
eral settings.

1 Introduction

In AI, an agent’s (perfect) rationality is defined as the agent’s
ability to execute actions that, at every instant, maximize
the agent’s expected utility, given the information it has ac-
quired from the environment (Russell and Norvig 2010). Let
us note two aspects of this definition. First, the fact that the
acquired information may be limited does not preclude per-
fect rationality. In other words, an agent may have very lim-
ited information but still be perfectly rational. Second, the
above definition does not specify any particular procedure
an agent is to use to decide which action to execute. Further,
the definition is completely independent of any details of the
implementation of any such decision making procedure.

The notion of bounded rationality received a lot of at-
tention in economics and psychology. Simon (1955) coined
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the term and suggested it as an alternative to rationality.
Simon pointed out that perfectly rational decision mak-
ing is often difficult in practice due to limited cognitive
and/or computational resources. He proposed that humans
are satisficers, as opposed to perfect optimizers, and that
they use heuristics to make decisions, rather than opti-
mization rules. Gigerenzer (Gigerenzer and Goldstein 1996;
Gigerenzer 2000) argued that simple heuristics could actu-
ally lead to better decisions than theoretically optimal pro-
cedures. The use of heuristics was also studied by Kahne-
man (Kahneman and Tversky 1982), who proposed his own
alternative to perfect rationality called prospect theory. Ru-
binstein (1998) proposed that one needs to model an agent’s
decision-making procedures explicitly in order to model the
agent’s bounded rationality adequately.

This paper builds on an approach to modeling bounded ra-
tionality called quantal response (Camerer 2003; McKelvey
and Palfrey 1995; 1998). It is a simple model which uses
a single error parameter. Quantal response is simple in that
it does not attempt to model the procedures, and their pos-
sible limitations, the agent may use to decide on its action.
The great advantage of this model is that, first, there exist
a myriad of procedural mechanisms by which perfect ra-
tionality could be implemented, heuristics which could be
used, and possible ways in which any of these could have its
functionality limited by the specific computational or cog-
nitive architecture of the agent in question. Second, none
of these implementation details and architectural limitations
are observable by the external observer who is doing the
modeling. In other words, quantal response abstracts away
the unobservable parameters specific to implementation and
treats them as noise which produces non-systematic depar-
tures from perfect rationality.

To make room for bounded rationality of the other agents
we define a notion of approximately intentional agent model.
It is analogous to perfectly rational agent model but with
a noise factor inversely proportional to an error param-
eter, λ. According to quantal response (Camerer 2003;
McKelvey and Palfrey 1995; 1998), probabilities of actions
are given by the logit function of the actions’ expected utili-
ties. Thus actions that are suboptimal are possible, but their
probabilities increase with their expected utilities.

Quantal response specifies the probabilities of an agent’s
actions given their expected utilities and the agent’s error
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parameter, λ. An additional complication is that an agent’s
error parameter is not directly observable. Instead, it must
be inferred based on the agent’s observed behavior. We take
a Bayesian approach to this and propose that the modeling
agent maintain a probability distribution over possible val-
ues of λ for the modeled agent, and that this probability be
updated when new actions are observed. Intuitively, if an
agent is observed acting rationally, then over time the error
rate attributed to this agent should decrease (and, since λ
is an inverse error, larger values of λ should become more
likely). If, on the other hand, the modeled agent is frequently
observed acting in ways that depart from perfect rational-
ity, then the error rate attributed to it should increase (and
smaller values of λ should become more likely).

Below we show how the update of the error parameter
modeling bounded rationality of another agent can be per-
formed. We also show that, in simple special cases, when
the interaction is episodic, the error rate admits a sufficient
statistic. We then derive a distribution over λ that is a mem-
ber of a family of conjugate priors. That means that the up-
date of the distribution over λ is particularly simple and
that it results in another distribution in the same family of
parametrized distributions. We further show that if the sim-
plifying assumptions are relaxed then there is no sufficient
statistic of finite dimension and no conjugate prior over λ.

2 Logit Quantal Response

For simplicity, we assume that a modeling agent, called
i, is considering the behavior of one other agent, j. The
logit quantal response is defined as follows (Camerer 2003;
McKelvey and Palfrey 1995; 1998):

P (aj) =
eλuaj∑m
l=1 e

λual

, (1)

where {al : l = 1, 2, 3, ...,m} is a set of all possible actions
of the agent. P (aj) is the probability of the agent j taking
the action aj . uaj ∈ R is the expected utility of action aj
to agent j and λ ≥ 0 is the (inverse) error rate of agent
j. λ represents how rational agent j is: greater λ makes it
more likely that j takes actions which have higher utilities.
When λ → +∞, P (aj) = 1 for the action which has the
highest expected utility1 and P (aj) = 0 for all other actions.
This means agent j is perfectly rational because he always
chooses an action with the best expected utility. When λ =
0, P (aj) = 1/m, ∀j = 1, 2, 3, ...,m, which means agent j
chooses actions at random.

It is likely that the error rate λ of agent j is not directly
observable to agent i. Bayesian approach allows agent i to
learn this rate during interactions. To do this agent i needs a
prior distribution, f(λ), which represents i’s current knowl-
edge about agent j’s error rate, and to observe agent j’s ac-
tion, aj at the current step. The updated distribution is:

f(λ|aj) = P (aj |λ)f(λ)∫∞
0

P (aj |λ′)f(λ′) dλ′ . (2)

1If there are many, say h, optimal actions with the same ex-
pected utilities, then P (aj) = 1/h for each of them.

Using the above equation, agent i can maintain his knowl-
edge about agent j’s bounded rationality by repeatedly up-
dating f(λ) during interaction.

Equation (2) may not be easy to apply because after up-
dating the f(λ) several times, it becomes more and more
complicated. To overcome this it is convenient to look for a
conjugate prior family. In Bayesian probability, if the pos-
terior distribution is in the same family as the prior distri-
bution, then this prior is called a conjugate prior (DeGroot
2004; Fink 1997). Conjugate priors are convenient because
they make the updating process tractable; one just needs to
update the parameters of the conjugate prior distribution (hy-
perparameters) to realize the Bayesian update.

3 Static Episodic Environments with Perfect

Observability

In this section we consider the simplest case, when agent j’s
expected utilities ual

for all actions are known to agent i and
remain the same during the interaction. In other words, agent
j is not updating his beliefs since the environment is static
and episodic (Russell and Norvig 2010) and i is observing j
acting in the same decision-making situation repeatedly. The
derivation and proof below follow techniques in (DeGroot
2004; Fink 1997).

Consider the following family of distributions over λ:

f(λ;u, n) =
eλu/(

∑m
l=1 e

λual )n∫∞
0

eλ′u/(
∑m

l=1 e
λ′ual )n dλ′ , (3)

where n and u are hyperparameters. Here n is a natural
number including zero, and u is restricted by following:
u < nmaxl ual

. One can verify (3) is a probability den-
sity function since

∫∞
0

f(λ;u, n) dλ = 1. See Appendix A
for proof.

Proposition 1: The family of distributions f(λ;u, n) in
(3) is a conjugate family of distributions over λ in static
episodic environments with known utilities of actions.

Proof: To verify that f(λ;u, n) is a conjugate prior in
this case we use (1), (2) and (3) to get the following (denote
1/

∫∞
0

eλ
′u/(

∑m
l=1 e

λ′ual )n dλ′ = c(u, n) for simplicity,
where c(u, n) > 0 is a constant for fixed u and n, and as-
sume the new observed action of agent j is aj):

f(λ|aj) = P (aj |λ)f(λ;u, n)∫∞
0

P (aj |λ′)f(λ′;u, n) dλ′

=

e
λuaj

∑m
l=1 e

λual
· eλu

(
∑m

l=1 e
λual )n

· c(u, n)∫∞
0

e
λ′uaj

∑m
l=1 e

λ′ual
· eλ′u

(
∑m

l=1 e
λ′ual )n

· c(u, n) dλ′

=
eλ(u+uaj

)/(
∑m

l=1 e
λual )n+1∫∞

0
eλ

′(u+uaj
)/(

∑m
l=1 e

λ′ual )n+1 dλ′

= f(λ;u+ uaj
, n+ 1).

�
The proof above also established how to update the hyper-

parameters of our conjugate prior after observing that agent
j executed his action aj , with expected utility uaj

:
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f(λ;u, n)
aj−→ f(λ;u+ uaj , n+ 1). (4)

Note that the integral in the denominator of f(λ;u, n)
does not always have an analytical solution, so we have to
use numerical methods to calculate its value.

One can verify that once there is a valid prior, all the pos-
teriors are always valid. The question also arises as to what
is an appropriate prior agent i should choose before any ob-
servations. Often one looks for an uninformed prior. In our
case f(λ;−ε, 0), where ε > 0 is a small positive value, is
such an uninformed prior; it is almost flat over the positive
real values of λ, as we show in the example below.

3.1 Example

0 5 10 15 20
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0.06

0.08

0.10

Figure 1: Example conjugate prior: f(λ;−0.1, 0)

Let us assume that agent j chooses from among three
(m = 3) actions, with following expected utilities: ua1

=
0, ua2

= 2, ua3
= 10. As we mentioned, we assume that

the expected utilities of agent j are known to agent i, and
that they do not change. Let the prior be f(λ;−0.1, 0).
Let us first compute the expected value of the error pa-
rameter i attributes to j under this distribution: E(Λ) =∫∞
0

λf(λ) dλ = 10.0. Using the formula of total probability
for each action of j we get: P (aj) =

∫∞
0

P (aj |λ)f(λ) dλ.
Thus the prior probabilities i attributes to each of j’s ac-
tions are: P (a1) = 0.00524, P (a2) = 0.00699, P (a3) =
0.98777. Figure 1 shows the initial prior. Note that this un-
informative prior assigns relatively high probabilistic weight
to high values of λ and hence high degree of j’s rationality.

λ’s Distribution E(Λ) P (a1) P (a2) P (a3)
f(λ;−0.1, 0) 10.0000 0.00524 0.00699 0.98777
f(λ; 29.9, 3) 10.2477 0.00138 0.00229 0.99633
f(λ; 299.9, 30) 10.5309 0.00010 0.00029 0.99961
f(λ; 11.9, 3) 0.1069 0.20663 0.24147 0.55190
f(λ; 119.9, 30) 0.0328 0.28959 0.30785 0.40256

Table 1: Probabilities of agent j’s actions derived from var-
ious distributions over error parameter λ in a static episodic
environment.

Assume agent j acts rationally and always chooses his
best action, a3. Then Figure 2 and Figure 3 show the pos-
teriors after three observations (f(λ; 29.9, 3)) and after 30
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Figure 2: f(λ; 29.9, 3), updated after observing three ratio-
nal actions.
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Figure 3: f(λ; 299.9, 30), updated after observing 30 ratio-
nal actions.

observations (f(λ; 299.9, 30)) of j’s action a3. We can see
that higher values of λ become more likely if the agent al-
ways chooses the action with the best utility. We can also
compute the probabilities of the three actions under these
two posteriors, which are shown in Table 1.

Now let us assume that agent j behaves randomly. Within
the first three actions, he chooses each of his actions a1, a2
and a3 once. The updated distribution over the error param-
eter is then f(λ; 11.9, 3), which is shown in Figure 4. Fur-
ther, if within j’s 30 actions he chooses a1 for ten times,
a2 ten times, and a3 for ten times; then the posterior is
f(λ; 119.9, 30), which is shown in Figure 5. The results are
intuitive. Thus, if agent j behaves randomly, lower values of
λ, indicating stronger departure from perfect rationality, be-
come more likely. Probabilities of the 3 actions under these
two posteriors are also shown in Table 1.

4 Sequential Dynamic Environments with

Perfect Observability of Finite Types

In this section, we extend our approach to more complex
case of dynamic sequential environments. Again, we assume
that expected utilities of j’s actions are known to i, but now,
since agent j may be updating his beliefs, the expected utili-
ties of his actions do not remain constant but can take a finite
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Figure 4: f(λ; 11.9, 3), updated after observing three ran-
dom actions.
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Figure 5: f(λ; 119.9, 30), updated after observing 30 ran-
dom actions.

number of values. We refer to each of the beliefs of agent j,
together with his payoff function and other elements of his
POMDP (Russell and Norvig 2010), as j’s type, θj . Thus,
the set of possible types of agent j, Θj , has K possible ele-
ments 1, 2, ...,K. We denote U(aj |θj = k) = uaj ,k, where
k = 1, 2, ...,K, and assume that index k is observable (or
computable) by agent i. Then the logit quantal response (1)
for the probability of agent j taking action aj given his kth
type is:

P (aj |k, λ) = eλuaj,k∑m
l=1 e

λual,k
. (5)

Now Bayesian update, analogous to equation (2), be-
comes:

f(λ|aj , k) = P (aj |k, λ)f(λ)∫∞
0

P (aj |k, λ′)f(λ′) dλ′ . (6)

We now have a proposition analogous to Proposition 1 in
Section 3. Consider following family of distributions:

f(λ;u, n1, n2, ..., nK)

=
eλu/

∏K
k=1(

∑m
l=1 e

λual,k)nk∫∞
0

eλ′u/
∏K

k=1(
∑m

l=1 e
λ′ual,k)nk dλ′ ,

(7)

where nk = 0, 1, 2, ..., ∀k = 1, 2, ...,K; and u <∑K
k=1(nk maxl ual,k). One can verify that (7) is a valid

probability density function since integral of the denomina-
tor converges if and only if u <

∑K
k=1(nk maxl ual,k). We

skip the proof of this fact, which is similar to that in Ap-
pendix A.

Proposition 2: The family of distributions in (7),
f(λ;u, n1, n2, ..., nK) is a conjugate family of distributions
over λ in a sequential dynamic environment with perfect ob-
servability of finite number of types.

Proof: Analogous to that of Proposition 1.
Similarly to the simpler case of Proposition 1, the proof of

Proposition 2 establishes the update of the hyperparameters
of the conjugate prior based on the observed action, aj , with
expected utility uaj ,k :

f(λ;u, n1, n2, ..., nK)
aj ,k−→

f(λ;u+ uaj ,k, n1, n2, ..., nk−1, nk + 1, nk+1, ..., nK).
(8)

Similarly to Section 3, once there is a valid prior, e.g.
f(λ;u, n1, n2, ..., nK), all the posteriors are always valid.
An uninformative prior agent i can choose before observ-
ing any of j’s actions can be f(λ;−ε, 0, 0, ..., 0). Then after
any number of observations the current u is the accumulated
utility of all actions the agent has taken minus ε, and current
nk is the counter of occurrence of the kth type.

4.1 Example
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Figure 6: Example conjugate prior: f(λ;−0.1, 0, 0)

Similarly to Section 3.1, assume that agent j chooses from
among three (m = 3) actions, and has two types θj =
1, 2, with following expected utilities: ua1,1 = 0, ua2,1 =
2, ua3,1 = 10, ua1,2 = 5, ua2,2 = 15, ua3,2 = 0. We as-
sume that the expected utilities and current type of agent
j are known to agent i. Let the prior be f(λ;−0.1, 0, 0).
The expected value of the error parameter i attributes to
j under this distribution and the prior probabilities i at-
tributes to each of j’s actions given his type (calculated by
P (aj |k) =

∫∞
0

P (aj |k, λ)f(λ) dλ) are shown in Table 2.
Figure 6 shows the initial prior.

Assume agent j acts rationally and always chooses his
best action, a3 in type 1 and a2 in type 2. Then Figure
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λ’s Distribution E(Λ) P (a1|θj = 1) P (a2|θj = 1) P (a3|θj = 1) P (a1|θj = 2) P (a2|θj = 2) P (a3|θj = 2)
f(λ;−0.1, 0, 0) 10.0000 0.005237 0.006986 0.987776 0.005754 0.990838 0.003409
f(λ; 74.9, 3, 3) 10.2988 0.000823 0.001540 0.997637 0.000893 0.998853 0.000254
f(λ; 749.9, 30, 30) 10.5597 0.000073 0.000222 0.999705 0.000074 0.999920 0.000006
f(λ; 31.9, 3, 3) 0.0605 0.254935 0.282766 0.462299 0.275487 0.507722 0.216791
f(λ; 319.9, 30, 30) 0.0189 0.308014 0.319443 0.372543 0.319654 0.388056 0.292290

Table 2: Probabilities of agent j’s actions derived from various distributions over error parameter λ in a sequential dynamic
environment with two types.
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Figure 7: f(λ; 74.9, 3, 3), updated after observing three ra-
tional actions under type 1 and three rational actions under
type 2.

7 shows the posterior after three observations of action a3
under type 1 and three observations of a2 under type 2
(f(λ; 74.9, 3, 3)); and Figure 8 shows the posterior after 30
observations of action a3 under type 1 and 30 observations
of a2 under type 2 (f(λ; 749.9, 30, 30)) . Again higher val-
ues of λ become more likely if the agent always chooses the
action with the best utility. The probabilities of the actions
under the two different types with these two posteriors are
shown in Table 2.

Assume that agent j behaves randomly. Within the first
six actions, he chooses each of his actions a1, a2 and a3
once under type 1 and each of the possible actions once
under type 2 respectively. The updated distribution over i’s
error parameter is then f(λ; 31.9, 3, 3), which is shown in
Figure 9. Further, if within j’s 60 actions he chooses a1 for
ten times, a2 ten times, and a3 for ten times under type 1
and each of the possible actions ten times under type 2 re-
spectively; then the posterior is f(λ; 319.9, 30, 30), which is
shown in Figure 10. Again we see if agent j behaves ran-
domly, lower values of λ become more likely. Probabilities
of the three actions under the two different types with these
two posteriors are also shown in Table 2.

5 Sequential Dynamic Environments with

Perfect Observability of Continuous Types

Let us consider an even more general case, in which the ex-
pected utilities ual

are not limited to a finite number of val-
ues but can lie in some interval or even on the real line:
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Figure 8: f(λ; 749.9, 30, 30), updated after observing 30 ra-
tional actions under type 1 and 30 rational actions under type
2.

P (aj |u, λ) = eλuaj∑m
l=1 e

λual

, (9)

where ul < ual
< ul

′, l = 1, 2, ...,m, ul ≥ −∞ and ul
′ ≤

∞ are lower and upper bounds of the expected utilities ual
,

and where u is a vector of expected utilities of all m actions,
u = (ua1 , ua2 , ..., uam). Again assume ual

are known to
agent i, and he observes agent j’s action aj .

Similarly to Section 4, the Bayesian update equation with
continuous types is

f(λ|aj ,u) = P (aj |u, λ)f(λ)∫∞
0

P (aj |u, λ′)f(λ′) dλ′ . (10)

If we want to update the distribution of λ it would be
convenient to find a conjugate prior of (9) for λ. How-
ever, forming a conjugate prior in this case is not easy,
and may be impossible. The reason is that the construc-
tion of conjugate prior distributions (DeGroot 2004; Fink
1997) is based on the existence of sufficient statistics of
fixed dimension for the given likelihood function (equa-
tion (9) in this case). However, under very weak condi-
tions, the existence of fixed dimensional sufficient statis-
tic restricts the likelihood function to the exponential fam-
ily of distributions (Barndorff-Nielsen and Pedersen 1968;
Fraser 1963). Unfortunately, (9) does not belong to the ex-
ponential family with continuous utilities u when m ≥ 2.
(see Appendix B for proof).

In other words, in this case, there is no known way of de-
riving a family of conjugate priors. Two ways of circumvent-
ing this difficulty present themselves. First is to discretize u
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Figure 9: f(λ; 31.9, 3, 3), updated after observing three ran-
dom actions under type 1 and three random actions under
type 2.
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Figure 10: f(λ; 319.9, 30, 30), updated after observing 30
random actions under type 1 and 30 random actions under
type 2.

and approximate it by fitting its values into a finite number
of types. The second one is to give up on conjugate priors
altogether and use numerical approximation to update λ.

6 Conclusion

In this paper we postulated that bounded rationality of agents
be modeled as noise, or error rate, that perturbs their ratio-
nal action selection. Since error rates of other agents are not
directly observable, we presented ways to learn these param-
eters during interactions. The learning uses Bayesian update,
for which it is convenient to use a family of conjugate pri-
ors over the possible values of the error rate. We found the
conjugate priors of logit quantal response functions for static
and episodic environments, and for sequential dynamic en-
vironments with finite number of observable types. The ex-
istence of conjugate priors under these assumptions makes
the task of learning another agent’s error rate simple and
tractable. However, we have also shown that if the space of
types of the modeled agent is continuous, then the quantal
response likelihood does not satisfy the precondition needed
for construction of conjugate priors over the error rates. Dis-
cretizing their utilities to make continuous types fit into finite
pre-specified types can be a way of solving this difficulty.

Another method is to abandon the search for conjugate pri-
ors and use numerical approximations.

A Proof that the Conjugate Prior for the

Static Episodic Environment is a Valid

Probability Density Function

Here we prove (3) is a probability density function. First, we
prove the proposition:

∫∞
0

eλ
′u/(

∑m
l=1 e

λ′ual )n dλ′ con-
verges if and only if u < nmaxl ual

.
It is trivial that when n = 0,

∫∞
0

eλ
′u dλ′ converges if

and only if u < 0. So we just need to consider n ≥ 1.
We first prove the sufficiency of the condition. Given u <
nmaxl ual

:

∫ ∞

0

eλ
′u

(
∑m

l=1 e
λ′ual )n

dλ′

=

∫ ∞

0

1

(
∑m

l=1 e
λ′(ual

−u/n))n
dλ′

≤
∫ ∞

0

1

(eλ
′(maxl ual

−u/n))n
dλ′

=

∫ ∞

0

eλ
′(u−nmaxl ual

) dλ′

<∞,

namely
∫∞
0

eλ
′u/(

∑m
l=1 e

λ′ual )n dλ′ converges.
Now prove the necessity of the condition by contradiction.

Assume
∫∞
0

eλ
′u/(

∑m
l=1 e

λ′ual )n dλ′ converges, but u ≥
nmaxl ual

, then

∫ ∞

0

eλ
′u

(
∑m

l=1 e
λ′ual )n

dλ′

=

∫ ∞

0

1

(
∑m

l=1 e
λ′(ual

−u/n))n
dλ′

≥
∫ ∞

0

1

(m eλ
′(maxl ual

−u/n))n
dλ′

=m−n

∫ ∞

0

eλ
′(u−nmaxl ual

) dλ′

=∞.

This contradicts with our assumption that the integral con-
verges. Therefore u < nmaxl ual

.
Now we have proven that

∫∞
0

eλ
′u/(

∑m
l=1 e

λ′ual )n dλ′
converges given u < nmaxl ual

. Therefore (3) is a proba-
bility density function because

∫∞
0

f(λ;u, n) dλ = 1.

B Proof of Quantal Response for Continuous

Types not Belonging to the Exponential

Family

We prove (9) does not belong to the exponential family when
m ≥ 2. Since the factor eλuaj is trivially in exponential
form, we only need to prove the other factor 1/

∑m
l=1 e

λual

is not in exponential form (Klauer 1986), which is equivalent
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to saying
∑m

l=1 e
λual is not in exponential form. To prove

this, we only need to prove its logarithm

ln

(
m∑
l=1

eλual

)
(11)

as a function of λ contains infinite number of linearly inde-
pendent functions (Fraser 1963).

Let us assume m = 2 for simplicity (the proof for m >
2 is the same). Since ua1

∈ (u1, u
′
1) and ua2

∈ (u2, u
′
2),

there exist countable infinite rational numbers in (u1, u
′
1)

and (u2, u
′
2). Let us pick up n different rational numbers

in each interval for ua1 and ua2 : ua1 = p′1, p
′
2, ..., p

′
n and

ua2 = q′1, q
′
2, ..., q

′
n. We get n functions from (11):

f1(λ) = ln(ep
′
1λ + eq

′
1λ),

...

fn(λ) = ln(ep
′
nλ + eq

′
nλ).

We now prove f1(λ), f2(λ), ..., fn(λ) are linearly inde-
pendent. Let c1, c2, ..., cn ∈ R. Consider

c1f1(λ) + c2f2(λ) + · · ·+ cnfn(λ) = 0. (12)

Let L be the lowest common denominator of the fractional
forms of p′1, ..., p

′
n, q

′
1, ..., q

′
n, then p1 = Lp′1, ..., pn =

Lp′n, q1 = Lq′1, ..., qn = Lq′n are integers. Let x = e
λ
L

(note that this is a bijection from λ ≥ 0 to x ≥ 1). Then we
get:

c1 ln(x
p1 + xq1) + · · ·+ cn ln(x

pn + xqn) = 0.

Taking its derivative, we get:

c1
p1x

p1−1 + q1x
q1−1

xp1 + xq1
+ · · ·+ cn

pnx
pn−1 + qnx

qn−1

xpn + xqn
= 0.

Multiplying both sides by (xp1 + xq1) · · · (xpn + xqn), we
will get a new equation with a polynomial on the left hand
side whose degree is less than 2(p1 + q1 + · · · + pn + qn).
Therefore the new equation has less than 2(p1 + q1 + · · ·+
pn + qn) roots on R, and the number of roots on [1,+∞)
is at most as that on R. We can always choose proper
p′1, ..., p

′
n, q

′
1, ..., q

′
n so that none of c1, c2, ..., cn can be can-

celed out. In order to make the new equation hold ∀x ≥ 1, it
has to hold that c1 = c2 = · · · = cn = 0.

So far we have proven that (12) implies c1 = c2 = · · · =
cn = 0, which means the system f1(λ), f2(λ), ..., fn(λ)

are linearly independent. Adding fn+1(λ) = ln(ep
′
n+1λ +

eq
′
n+1λ) (with proper p′n+1 and q′n+1) into the system makes

a new linearly independent system of n+1 functions. By re-
peating this process, we will get a system of infinite linearly
independent functions. Now we have proven (11) contains
infinite number of linearly independent functions, which
means (9) does not belong to the exponential family.
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