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Abstract

Gene Expression Programming (GEP) is an evolution-
ary algorithm that incorporates both the idea of a simple,
linear chromosome of fixed length used in Genetic Algo-
rithms (GAs) and the tree structure of different sizes and
shapes used in Genetic Programming (GP). As with other
GP algorithms, GEP has difficulty finding appropriate nu-
meric constants for terminal nodes in the expression trees.
In this work, we describe a new approach of constant gen-
eration using Differential Evolution (DE), a real-valued GA
robust and efficient at parameter optimization. Our exper-
imental results on two symbolic regression problems show
that the approach significantly improves the performance of
the GEP algorithm. The proposed approach can be easily
extended to other Genetic Programming variations.

1. Introduction

Gene Expression Programming (GEP) is an evolution-
ary algorithm for automatic creation of computer programs,
proposed in [5] by Candida Ferreira. In GEP, computer
programs are represented as linear strings of fixed length
called chromosomes which subsequently are mapped into
Expression Trees (ETs) of different sizes and shapes for fit-
ness evaluation. Due to the linear fixed-length genotype
representation, genetic manipulation becomes much easier
than that on parse trees in GP. GEP has performed well for
solving a large variety of problems, including symbolic re-
gression, optimization, time series analysis, classification,
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logic synthesis and cellular automata, etc. [5]. Zhou, et
al. [14] applied GEP to multi-class classification problems
and achieved significantly better results, compared with tra-
ditional GP and machine learning methods.

Despite its flexible representation and efficient evolu-
tionary process, GEP still has difficulty discovering suit-
able constants like other GP algorithms. In this paper, we
describe a new constant creation approach for GEP using
Differential Evolution (DE), and have tested this approach
on two symbolic regression problems. Experimental results
have demonstrated that the approach can find optimal con-
stants for a given GEP formula structure, and significantly
improves GEP performance. Preliminary results for this
work have been reported in [13].

The rest of the paper is organized as follows: Section
2 describes the GEP algorithm and provides a brief review
on related work on constant generation. Section 3 reviews
the Differential Evolution algorithm, and describes our ap-
proach. Experiments and results with our new approach are
presented in Section 4. Section 5 summarizes this research
work and ideas for future work.

2. Related Work

Gene Expression Programming is a genotype/phenotype
system that evolves computer programs of different sizes
and shapes encoded in linear chromosomes of fixed length.
When GEP is used to solve a problem, five components are
specified: the function set, the terminal set that includes
problem-specific variables and constants, fitness function,
control parameters, and stop condition. A chromosome is a



character string of fixed length, which consists of any ele-
ment from the function and terminal sets. A chromosome is
mapped into an Expression Tree (ET) following a breadth-
first procedure and can be further written in a mathematical
form. A chromosome is valid only when it can map into
a legal ET within its length limit. Therefore all the chro-
mosomes are subject to a validity test, in order to prevent
illegal expressions in the population [14]. To start, the algo-
rithm generates a random population of chromosomes. The
chromosomes are represented as ETs, evaluated based on a
user defined fitness function, and selected for reproduction
with modification. The individuals in this newly generated
population are subjected to the same development process
until the termination condition is satisfied. In GEP, the se-
lection procedures are often determined by roulette-wheel
sampling with elitism based on individuals fitness, which
guarantees the survival of the best individual to the next
generation. Variation in the population is introduced by ge-
netic operators, i.e., crossover, mutation and rotation [5].
Refer to [14] for detailed description on GEP.

Finding good numeric constants for terminal nodes in
parse tree is one of the issues that GP has to overcome.
Ryan and Keijzer [10] introduced two simple constant mu-
tation techniques, creep mutation and uniform/random mu-
tation. Several researchers have tried to combine hill climb-
ing, simulated annealing, local gradient search [5] [12] [3],
and other stochastic techniques to GP to facilitate finding
useful constants. A novel view of constant creation by a
digit concatenation approach is presented in [8] for Gram-
matical Evolution (GE). Most recently, a new concept of
linear scaling is introduced in [6] to help constructing an
expression that has the desired shape. The idea of embed-
ding a GA into GP has also been proposed [2] [1].

Since the invention of GEP, Ferreira has introduced two
approaches for symbolic regression in the original GEP [4].
One approach does not include any constants, but relies on
the spontaneous emergence of necessary constants through
the evolution. The other approach explicitly manipulates
constants by adding a random constant domain Dc at the
end of chromosome. Previously Li et. al. [7] proposed sev-
eral constant creation methods similar to creep and random
mutation in [10], but in a greedy fashion. Their experimen-
tal results demonstrated significant improvement.

3 Differential Evolution for GEP Constant
Creation

First proposed in [11], Differential Evolution(DE) is a
vector-based evolutionary algorithm. The algorithm opti-
mizes a system by choosing appropriate system parameters
represented as a real-valued vector.

In DE, a population of solution vectors are successively
updated by vector operations until the population converges.

It starts with P randomly generated n-dimensional vectors
X; = (241, %2, ...Tin),t = 1,..., P. At each generation,
mutation and crossover are applied to every individual vec-
tor, to generate an offspring. A selection between an indi-
vidual and its offspring is performed based on their objec-
tive value computed by an objective function. The one that
yields better objective value is included into the next popu-
lation, and the other one is eliminated.

For each vector, first a mutant vector V; =
(vi1, Vig, ---Vin),i = 1,..., P, is formed using one of the
following schemes [9] [11]:

Vi = Xp+F(Xp2 — X;3) (1)
Vi = Xbest + F(Xr2 - Xr3) (2)
‘/i = Xz + F(Xbest - XZ) + F(Xrl - Xr2) (3)

=
|

Xbest + F(Xrl - XTQ) + F(er - Xr4) (4)
V% = Xrl + F(Xr2 - XTB) + F(Xr4 - XT5) (5)

where Xp.s¢ is the best individual by far, and
X1, X2, Xr3,Xr4, Xp5 are mutually distinct vectors
randomly chosen from the population. F is a scaling factor
that controls the amplification of the difference between
two vectors, and F usually falls in (0,2) [11]. Then,
crossover is applied to X; and V;, to produce an offspring
U, called trial vector. For each vector component, draw
a random number rand; in the range of [0,1]. The trial
vector is produced, with

‘/'Z..
Uz‘j{ X,

where CR is a user-defined crossover threshold between 0
and 1. The trial vector has components from both X; and
V;. To ensure minimum crossover, one component of U; is
guaranteed to be from V;. Then the objective values of X;
and Ut are computed. In most cases, the objective func-
tion transforms the optimization problem into a minimiza-
tion task [11]. Therefore, the vector that yield a smaller
objective function value is considered better.

DE has the advantages of simple structure, speed and ro-
bustness, and has been widely used in optimization prob-
lems with real variables and many local optima. To utilize
DE for constants optimization in GEP, a special gene named
Random Number Generator (RNG) is introduced into the
GEP terminal set to replace a list of constant genes. In-
stances of the RNG gene have random initial values be-
tween 0 and 1. All RNGs in a GEP chromosome form a
parameter vector, and a separate DE process is applied to
optimize those parameters using the same fitness function as
in GEP. Each generation is now divided into two phases: in
the first phase, GEP focuses on searching for solution struc-
ture, and in the second phase, DE focuses on optimizing the
constants given a solution structure. Figure 1 illustrates the

if rand; < CR;
if rand; > CR.
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Figure 1. GEP with DE embedded.

\ P \ Gen. \ Crossoveﬁ Mutation\ CR \ F

GEP | 500 | 1000 | 0.7 0.02 NA | NA
DE | 128 | 500 | NA NA 02 | 05

Table 1. GEP and DE control parameters.

new GEP algorithm with DE embedded. During the popula-
tion evaluation, for every chromosome, DE searches for the
best constants and the optimal numbers found are assigned
to the chromosome.

4 Experiments

The two datasets tested in the experiments are regression
problems. One is a simple polynomial with real number
coefficients (6). A set of 21 fitness cases equally spaced
along the z axis from —10 to 10 are chosen for this poly-
nomial. The second problem is a V-shaped function with
real number coefficients, complex functionality and struc-
ture (7). The dataset has 20 random fitness cases chosen
from [-1, 1] of the variable a.

y=a>—0.322 - 04z — 0.6 (6)
y = 4.251a* + In(a?) + 7.243¢* (7

Table 1 shows the GEP and DE control parameters used in
our experiments.

The GEP terminal set includes the input attributes(the
variable z or a as in specific problems). Due to our prior
knowledge about the problems, the function set for poly-
nomial dataset is {4, —, *, /}, and {+, —, %, /, log, exp,
power, sin,cos} for the V-shaped function. The GEP ter-
mination condition is: either the residual error of the best
individual is less than 10~* or the number of generations

has reached 1000. The DE algorithm is terminated after 500
DE generations. The roulette-wheel selection with elitism
is used as the selection method based on the fitness function
calculated by (8), where fitness; indicates the fitness for
the ith individual in the population, minR is the best (min-
imun) residual error obtained so far, and ResError; is the
individual’s residual error. Note that this is the fitness func-
tion used for selection, and the fitness of a chromosome is
measured by its residual error which is better when smaller.

fitness; = minR/(minR + ResError;) (8)

Three sets of experiments have been performed, start-
ing with the experiment where in every generation of GEP,
DE is applied to optimize the constants for each individual
chromosome in the population. This experiment is compu-
tationally expensive due to the extra time required for DE.
In order to decrease the computational cost, two alternatives
were tried. One was to turn on DE at a lower frequency in-
stead of at every GEP generation, and the other was to apply
DE at every generation, but only to a top portion of the pop-
ulation with lower residual error. The scheme chosen for
the DE algorithm is Equation (4). We also experimented
the five different DE schemes in Equation (1) — (5), with
DE applied at every 10" generation. All these experiments
were repeated 30 times. The experimental results in pre-
vious work by Li et al. [7] are used for comparison. The
three criteria that will be used throughout this section for
performance evaluation are defined as follows:

1. Best Residual: smallest residual error among the 30
best-of-run;

2. Average of the Best Residuals: average error of the
30 best-of-run;

3. Average Tree Size: average size of the ETs of the 30
best-of-run.

Table 2a lists the generation-based experiment results
and the results in [7]. Table 2b shows the statistics for the
population-based experiments. The following observations
can be made from Table 2a and 2b:

e Significantly better results in terms of Best residual,
compared with the results in [7]. Having the DE pro-
cess applied at smaller intervals or to larger portion of
GEP population produces better residuals.

e Smaller average of best residuals. The more fre-
quently DE is invoked to larger subset of the popula-
tion, the better result achieved. The improvement on
the polynomial problem is more obvious than that on
the V-shaped problem.

e Significantly smaller expression trees on the polyno-
mial problem and comparable average tree size for the
V-shaped problem as in [7].



\ Statistics | Every Generation | Every 5th Gen. | Every 10th Gen. | Bestin [7]
Best residual 5.901e-6 1.078e-5 1.989¢e-5 0.157
Avg. of best residuals | 3.222e-443.558e-4 | 5.135e-3+£8.556e-3 | 2.229e-2+1.768e-2 | 0.966+0.167
Avg. tree size 22.200 22.867 23.933 37.300
Best residual 1.969¢-2 8.866e-3 5.142e-4 1.038
Avg. of best residuals | 1.731e-1£7.061e-2 | 2.572e-1+8.672e-2 | 3.404e-149.878e-2 | 1.863+0.127
Avg. tree size 26 26.533 28.867 28.4

Table 2a. DE applied at different intervals. P - polynomial dataset. V - V-shaped dataset.

Statistics

| Entire population | Top 20% Population | Top 10% Population | Best in [7]

Best residual 5.901e-6 2.896e-5 1.523e-5 0.157
Avg. of best residuals | 3.222e-4+3.558e-4 | 8.909e-3+1.187e-2 2.578e-2+2.186e-2 | 0.966+0.167
Avg. tree size 22.2 22.133 23.8 37.3
Best residual 1.969e-2 4.593e-3 1.063e-2 1.038
Avg. of best residuals | 1.731e-1£7.061e-2 | 3.511e-149.498e-2 3.89e-1+9.185¢e-2 1.863+0.127
Avg. tree size 26 26.667 27.6 28.4
Table 2b. DE applied to subsets of the GEP population.

statistics scheme 1 scheme 2 scheme 3 scheme 4 scheme 5
Best residual | 3.827e-5 4.614e-5 1.763e-5 1.989¢-5 2.615e-5
P Avg. best 4.614e-3 =+ | 4518¢-3 £ | 2.868e-2 £ | 2.229e-2 + | 9.099¢-3 =+
8.538e-3 8.544e-3 2.436e-2 1.768e-2 1.185¢e-2
Avg. tree size | 20.533 20.333 23.3 23.933 21
Best residual | 6.076e-3 1.069e-2 3.569e-2 5.142e-4 1.299¢-2
A\ Avg. best 2.057e-1 £ | 2.143e-1 =+ | 4.232e-1 =+ | 3.404e-1 =+ | 2.491e-1 =+
6.818e-2 6.151e-2 8.897e-2 9.878e-2 7.354e-2
Avg. tree size | 27.333 27.2 28.033 28.867 28.1

Table 2c. Five different DE schemes.
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Figure 2. Fitness curves for three experiments on two datasets. X-axis represents the number of
GEP evaluations, and y-axis is the average of the best residual error. Log scale is used on y-axis.



e The population-based alternative produces more con-
cise GEP formulas, as the average tree size is slightly
smaller. However, in terms of average best residual,
the generation-based approach perform better.

Figure 2(a) and 2(b) are the fitness curves for the
generation-based experiments on the two problems respec-
tively, and Fig. 2(c) and 2(d) are for the population-based
experiments. The curves in the two figures illustrate how
the average residual error decreases when the number of
GEP evaluations increases. These curves agree with the pat-
terns presented in Table 2a and 2b.

Both the population-based and the generation-based ex-
periments decrease the computational cost while still hav-
ing decent performance. For the polynomial function, both
experiments reduce the execution of one run from hours
to within an hour. For the V-shaped function, both exper-
iments drastically decrease the run time from days to hours.

Table 2c¢ shows the results of the experiments with DE
variations. In terms of the average of best residuals,
schemes 1, 2 and 5 outperform 3 and 4 on both datasets.
It is especially obvious on the polynomial dataset. As for
average tree size, schemes 1 and 2 produce slightly smaller
trees. Figure 2(e) and 2(f) are the fitness curves correspond-
ing to the two datasets. Towards the end in both figures,
from bottom up, the curves for schemes 3, 4, and 5 are
higher than those for 1 and 2. The figures confirm the ob-
servations based on Table 2c. Although schemes 1 and 2
work better than others in our experiments, surprisingly,
they both have simpler formula and involve less vectors
when computing the mutant vector. From our experiments,
it is not necessary that more sophisticated schemes will per-
form better than less complex ones.

4.1 A Closer Look at Constants

For each problem, we pick a good and a bad example
formula to take a closer look at the constants tuned up by
DE.

The polynomial regression problem is relatively simple
and most of its GEP formulas obtained in our experiments
are almost perfect. A good example with residual error is
9.463e — 5 is shown in (9), which is equivalent to (10). The
constants are almost the same as those in the target func-
tion (6). (11) is a relatively worse GEP formula of which
the residual error is 0.1309. Its equivalence is (12). The
constants in (12) are still very close to those in the target
function, although less precise than those in (10). Com-
paring (9) and (11), the differences in their structures are
obvious, but both of them can be converted into exactly the
same structure of the target function.

y = (z* (—0.399962 — ((—1 * z) *

(z — 0.300001)))) — 0.599972  (9)

y = 2% —0.30000122 — 0.399962z — 0.599972  (10)
y = (z * (0.501598 + (((2.180309/z) * (x +

0.243787)) + x) — 1.855177)) * (& — 1.126747)  (11)

y = x> —0.3000172% — 0.400092z — 0.59878  (12)

The V-shaped function is much more complicated, and im-
provement on this dataset was far from perfect. A GEP for-
mula with residual error 5.901e — 6 is shown in (13), which
is equivalent to (14). This is a very close approximation of
(7). Equation (15) is a worse example, whose correspond-
ing residual error is 0.5360. Notice the structure of (15), it
is far from the structure of the target function (7), and no
matter how we try to convert this equation, its equivalence
is nothing like (7).

y =T (e%/0.138066) — ((log(x)/(—0.500009))
_elog(z)7(71.001507*(1.445251+10g(x)))) (13)

y = 7242913636 + 10g<w1.999964) + 4.25216861.447429 (14)
y = log(e®/0-012217 4 (_1.865846 +
x % (—119.921534))) (15)

The above analysis shows that when GEP finds a structure
close to that of the target function, DE oftentimes can find
proper constants. While GEP fails to find an appropriate
formula structure, the optimization power of DE is limited,
even though it might still find the best constants for the
given bad structure. Therefore, GEP and DE are dependent
on each other to find a good approximation. A good GEP
formula structure brings out the power of DE, and proper
constants found by DE may simplify the structure of a GEP
formula.

5 Conclusions and Future Work

We have succeeded in enhancing the performance of
GEP, by embedding DE into GEP, to optimize constants
in GEP chromosomes. Our approach is novel in that real
number constants are introduced into GEP formula and the
choices of constants are no longer limited to pre-specified
random or prime numbers. By finding appropriate constants
for chromosomes, the performance of GEP is improved. In
addition, constants need not be represented by combina-
tion of pre-selected constants via arithmetic operators any-
more. That in turn simplifies the expression tree structure.
DE helps improving GEP performance even when it is not
turned on at every generation, or to the entire population,
and the running time is significantly reduced. We also ex-
perimented with five different DE schemes, and found their
performances comparable.

To further decrease the computational cost of the algo-
rithm, we plan to parallelize the evaluation of GEP popula-
tion and the constant optimization of each chromosome. We



also plan to try different selection methods such as tourna-
ment selection, as roulette-wheel selection requires fitness
comparison between all individuals, which is time consum-

ing.

Another work would be modifying our system for clas-

sification tasks. For multi-class classification problems, it
is again an open question whether multiple binary classi-
fiers/classification rules should be trained combined, or a
single multi-class classifier is practical.
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