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Abstract

Copying  data  from  devices  into  main  memory  is  a

computationally-trivial, yet time-intensive, task. In or-

der to free the CPU to perform more interesting work,

computers use direct memory access (DMA) engines —

a special-purpose piece of hardware — to transfer data

into and out of main memory. We show that the ability

to chain together such memory transfers, as provided by

commodity hardware, is sufficient to perform arbitrary

computation. Further, when hardware peripherals can be

accessed via memory-mapped I/O, they are accessible to

“DMA programs.” To demonstrate malicious behavior,

we build a proof-of-concept DMA rootkit that modifies

kernel objects in memory to perform privilege escalation

for target processes.

1 Introduction

Modern computers contain a variety of special purpose,

“auxiliary” processors designed to offload specific tasks

from the CPU, freeing the CPU to perform other work.

Conceptually, the CPU copies data from main memory

to the auxiliary processor and requests that it perform its

function. When the auxiliary processor has completed

its task, it signals the CPU that it is finished. In real-

ity, if the CPU were responsible for copying the data, it

would spend most of its time performing data transfers,

for example, copying memory to the GPU or network

controller. Instead, computers have specialized hardware

called direct  memory access (DMA) engines that  per-

form the copying to and from the auxiliary processors.

The DMA engines perform the data transfers in parallel

with the computation performed by the various proces-

sors by utilizing otherwise-free memory-bus cycles. In

this paper, we show that DMA engines, despite their lim-

ited functionality, are nevertheless capable of performing

Turing-complete computation.

At the same time that computer systems have been

gaining  additional  processors, computer  security  re-

searchers and practitioners have begun to recognize that

the once bright-line separation of code and data is per-

haps  not  so  bright. For  example, the  threat  of  soft-

ware exploitation has undergone a paradigm shift from a

malicious code model (i.e., attacker-delivered payloads),

to  a malicious  computation model  where  the  attacker

crafts data inputs to induce arbitrary computation on a

target system [38]. This style of data-only attack goes

by various names including return-oriented programming

(ROP) [6, 13–15, 20, 23, 27, 30, 35, 37] and weird ma-

chines [4, 10, 38, 47].

The ability to induce arbitrary computation from noth-

ing more than copying bytes from one address to another

may be surprising to those who are not steeped in the ar-

cana of weird machines.1 And indeed, it is a surprisingly

strong statement: Any function that can be computed by

a Turing machine can be computed using DMA.2 The

induced computation of ROP or weird machines gener-

ally takes the form of a sequence of “gadgets” which

the attacker strings together to perform the desired com-

putation. Each gadget typically performs some discrete

action such as “add two numbers together” or “store a

value to memory.” Once a Turing-complete set of gad-

gets has been constructed, any desired behavior can be

“programmed” in terms of the gadgets.

Turing-complete behavior in unexpected places is not

sufficient to write programs that are interesting from a se-

curity (as opposed to a computability) perspective. To

be useful, a programming language needs to be what

Atkinson et al. [3] call “resource complete.” That is, the

language needs to “be[] able to access all resources of

the system […] from within the language” [3]. By de-

sign, DMA has direct access to (some) hardware periph-

erals and RAM, including kernel memory and memory-

mapped I/O registers.3 Thus, a Turing-complete set of

DMA gadgets should also be resource-complete.

In order to build DMA gadgets, we require several

capabilities  of  the  DMA engine. In  particular, the

DMA engine (1) must be capable of performing memory-

to-memory  copies; (2) can  be  programmed  by  load-

ing the address of DMA control blocks or descriptors

into memory-mapped registers; and (3) supports a scat-

ter/gather mode where DMA transfers can be chained

together, typically by providing the address of the next

control block or descriptor.

Some DMA engines lack capability 1; for example, the

Intel Platform Controller Hub EG20T DMA controller

only supports transferring data between main memory

and PCI memory [24, Chapter 12]. For DMA engines

with  similar  restrictions, capability 1  can  be  relaxed

as long as the restricted source/target memory contains

1For example, the x86 mov instruction is Turing-complete [16].
2As we show in Section 5, DMA transfers can perform sequential

interactive computation à la Persistent Turing Machines [22].
3In some systems an IOMMU unit may restrict DMA access to cer-

tain regions of memory.
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a  byte  that  could  be  used  as  a  staging  area  enabling

memory-to-memory copies by transferring data first to

the restricted space and then back to memory.

For ease of implementation and testing, our work tar-

gets the Raspberry Pi 2’s DMA engine (see Section 2)

and thus we make no claim that our results hold for other

systems. That said, we believe that the three required ca-

pabilities listed above are satisfied by modern DMA en-

gines. For example, the following appear to meet our re-

quirements: Intel 8237 (e.g., legacy IBM PC/ATs), Core-

Link 330 [2] (i.e., ARM Advanced Bus Architecture com-

pliant SoCs), Cell multi-core microprocessor [40] (e.g.,

Sony Playstation 3), and Intel’s I/O Acceleration Tech-

nology [25] (e.g., Intel Xeon Server).

Our work differs from traditional DMA malware —

that is, malware that runs on an auxiliary processor such

as a GPU and leverages that processor’s DMA access —

in that it runs entirely in the DMA engine. An attacker

need only access hardware registers to exhibit control.

This can be achieved in user space with administrator per-

missions on the Raspberry Pi 2 by mapping the appropri-

ate region of physical memory [11, Chapter 4].

In this paper, we are concerned with the art of craft-

ing Turing- and resource-complete gadget sets using a

DMA engine. In particular, we do not discuss how an

attacker would gain permission to reprogram a DMA en-

gine, which typically requires administrator access, nor

do we discuss the full power of so-called DMA malware

as both topics are well described in prior work (see Sec-

tion 7). Concretely, we

• describe the theory behind the construction of DMA

gadgets (Section 3);

• build an interpreter for a known Turing-complete

language  and  demonstrate  resource-completeness

(Section 4); and

• build a proof-of-concept DMA rootkit (Section 5).

2 Background

Direct memory access (DMA), is a memory bus archi-

tectural feature that enables peripheral devices, such as

GPUs, drive controller or network controllers, to access

physical memory independently of the CPU. In particular,

DMA frees the CPU from I/O data transfer by offloading

memory operations (i.e., memory-to-memory copying or

moving) to the DMA engine.

In general, each DMA engine has several control regis-

ters that specify the operation of DMA transfer, including

the direction of data transfer, unit size in which to trans-

fer (e.g., a word or a byte), and the total number of bytes

to transfer. DMA transfers are typically configured by

the operating system but may be initiated by hardware

signals.

Our work targets the Raspberry Pi 2 for implementa-

tion and testing. Specifically, the Pi is equipped with the

src

01 00 00 00

cb0

dest

01 00 00 00

next_cb

cb1

00

01

.

.

.

04

01

square_tbl

Figure 1: Square gadget. This simple gadget loads a byte

x from address src, computes x2 mod 256 by using x as

an index into the square_tbl, and stores the result at ad-

dress dest. The next control block to be loaded into the

DMA engine is at address next_cb.

BCM2836 ARM processor which contains a 16-channel

Broadcom DMA controller [11, Chapter 4]. DMA trans-

fers are initiated by loading the address of a control block

data structure into one of the channel’s memory-mapped

control registers. This causes the DMA engine to load

the rest of its control registers from the control block.

The control block is composed of eight 32-bit words

that specify not only which operation to perform, but also

the address of the control block to be loaded next. The

control block forms the basis of our DMA gadget con-

struction.

3 Constructing DMA gadgets

A single DMA transfer is  little  more than a glorified,

hardware-assisted memcpy(dest, src, size).

As described in Section 2, on the Raspberry Pi 2, DMA

transfers are initiated by loading the address of a control

block into  a  memory-mapped  register. Each  control

block  contains  a  source  address, a  target  address, a

transfer length, and the address of the next control block

to load into the engine. In addition, there are fields that

control  aspects  of  DMA transfers  that  are  relevant  to

reading  from/writing  to  DMA-supported  peripherals

as  well  as  a  variety  of  options  such  as  2D transfers.

However, to make our results more general, we do not

make use of any of these features.

Unlike traditional computer programming, construct-

ing a DMA “program” fundamentally requires using self-

modifying constructs. Each of our DMA gadgets con-

sists of a collection of control blocks, chained together

using the next control block fields, and zero or more ta-

bles of constant data. Most of the control blocks in each

gadget modify one of the source, destination, or next con-

trol block fields in a subsequently-executed control block.

For gadgets that perform basic operations such as incre-

ment values in memory, the final control block will copy

the result to memory and then transition to the next gad-

get. For gadgets that perform control flow, the initial con-

trol blocks compute the address of the next control block
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to “execute” and store it in the next control block field of

the final control block — a trampoline — which performs

no memory transfer.

In order to compute simple functions f : {0, 1}8 →
{0, 1}8, we use 256-byte tables where the nth entry in

the table corresponds to f(n). These tables are stored

256-byte aligned in memory. By putting the address of

the table in the source field of a control block with a trans-

fer length of 1, a preceding control block can select the

index n by copying a byte to the least significant byte of

the source address pointing to the table. Figure 1 demon-

strates this by giving the control blocks and table for com-

puting the function n 7→ n2 mod 256.

In Figure 1 and subsequent figures, the source, destina-

tion, transfer length, and next control block fields of the

control blocks are drawn as follows.

src

dest

length

next_cb

Arrows represent pointers and shaded fields or partial

fields are modified by previous DMA transfers.

In the next section, we describe how to build a Turing-

complete set of DMA gadgets which we use to build an

interpreter for a simple programming language.

4 A Turing-complete gadget set

In 1964, Böhm described the simple programming lan-

guage P ′′ and showed that it is Turing-complete. That is,

it can compute every Turing-computable function [7, 8].

It holds that a program written in the language can simu-

late any other computational device or language. In fact,

such a program can be written using only six distinct ex-

pressions in P ′′.

The toy programming language Brainfuck (hereafter

referred to as BF) consists of six instructions semantically

equivalent to the six P ′′ expressions and two additional

instructions used for input and output. To show that we

can compute any arbitrary, Turing-computable function,

we build an interpreter for BF out of DMA gadgets. In or-

der to implement the I/O instructions, we use DMA gad-

gets which interact directly with memory-mapped regis-

ters for a UART, thus demonstrating that DMA gadgets

are resource-complete as well.

4.1 BF details

In this section, we give a brief overview of the BF pro-

gramming language. Readers familiar with BF are en-

couraged to skip to the following section.

BF is a minimalistic programming language consisting

of eight one-character instructions +-><[],.. All other

+ + +

Program

+ + + + + + + [ > + + + + + + + < - ] > - - .

pc

01

Tape

46 . . .

head

Figure 2: BF example. The program is in mid-execution

with head currently pointing to cell 0 on the tape. The cur-

rent instruction is a -, which decrements the byte pointed

to by head, setting it to zero. Next, the right condition

checks if the byte pointed to by head is zero; it is, so the

program executes the next instruction which moves head

one cell to the right. Cell 1 is then decremented twice, set-

ting its value to 0x44. Finally, the program outputs the

ASCII character ‘D’ and halts.

characters act as a no-op. BF instructions operate on a

tape divided into cells, much like the tape of a Turing ma-

chine. Each cell holds one of 256 values 00,01, . . . ,ff
and is initially empty. There is an implicit tape head,

head, which points to the current cell on the tape. The

eight instructions have the follow semantics.

+ increment the cell pointed to by head

- decrement the cell pointed to by head

> increment head to point to the next cell

< decrement head to point to the previous cell

[ if the cell pointed to by head is nonzero, execute the

next instruction; otherwise, jump to the instruction

following the matching ]

] if the cell pointed to by head is zero, execute the next

instruction; otherwise, jump to the instruction follow-

ing the matching [

, store input to the cell pointed to by head

. output the cell pointed to by head

The increment and decrement instructions +/- operate

modulo  256 and  the  loop  instructions [] nest  as  ex-

pected.

Except for the loop instructions which behave as de-

scribed above, BF instructions are executed sequentially.

A program counter, pc, keeps track of the currently exe-

cuting instruction. The program terminates when the pc

moves past the last instruction. Figure 2 illustrates an ex-

ample program that outputs the ASCII character D.

4.2 Basic building blocks

We construct our BF interpreter (Section 4.3) using the

basic building blocks described in this section. These

building blocks can be used to implement a wide variety

of gadgets beyond those needed for the BF interpreter.

Some of these are described in Section 4.4.
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head_addr

04 00 00 00

cb0

head_addr

04 00 00 00

cb1

01 00 00 00

cb2

01 00 00 00

next_insn

cb3

01

02

.

.

.

ff

00

inc_tbl

Figure 3: Increment gadget. The tape head is stored in a fixed location, head_addr. The first two control blocks copy head

to cb2’s source and cb3’s destination, respectively. Then, cb2 copies the cell pointed to by head into the least significant byte

of cb3’s source which acts as an offset into the increment table. Finally, cb3 stores the selected value back into the tape.

Unary functions. The basic operation of most gadgets

involves mapping some input to output. Section 3 and

Figure 1 illustrate the construction of 8-bit, unary func-

tions. It is frequently useful to compute a function g :
{0, 1}8 → {0, 1}32. We can do this by constructing

a table of the 32-bit output values and using a function

f : {0, 1}8 → {0, 4, . . . , 252} as an offset into the table.

I.e., g(n) = table[f(n)].

Variable dereferencing. In order to operate on data

stored at a location pointed to by a pointer, we can use a

control block to copy the value pointed to by the pointer

into the source or destination fields of a subsequent con-

trol block. Figure 3 performs the operation

∗head← ∗head + 1

by first copying the 32-bit address pointed to by head into

the source field of cb2 and the destination field of cb3.

Conditional goto. Conditional computation is achiev-

ed by writing the address of a control block to the next

control block field of a trampoline control block. Which

address is written is data-dependent. These conditional

gotos can be used to implement if-then-else statements

as well as while and do-while loops.

As a minor space-optimization, we implement condi-

tionals using a 512-byte aligned, 512-byte address table

consisting of 128 addresses paired with a 256-byte con-

dition table. The mth conditional goto in the program

is associated with a pair of addresses: the addresses of

the control blocks corresponding to the false condition,

cbm,F , and the true condition, cbm,T . The two addresses

are stored 256-bytes apart in the address table. For ex-

ample, if the address table is stored in memory at address

0x2000, then cbm,F is stored at address 0x2000+4m
and cbm,T is stored at address 0x2100 + 4m. Each en-

try in the condition table stores either the second least

significant byte of the address of the table or that value

plus 256. Continuing the example, for each value n for

which the condition is false, the nth entry in the condi-

tion table would be 0x20 and for each n for which the

condition is true, the nth entry would be 0x21.

By overwriting the second least significant byte of the

source field of a control block — whose source is the ad-

dress table — with the value from the conditional table,

that control block can copy the address of either cbF or

cbT into the next control block field of the trampoline.

This is illustrated in Figure 4.

Switch. The switch building block branches to differ-

ent control blocks depending on a data value. The value

is used as an index into a 256-byte offset table. The en-

tries in the offset table are the offsets into an address table

which holds the addresses of the various control blocks

associated with the switch cases.

Control blocks cb1 through cb3 in Figure 5 along with

the dispatch and instruction tables are an example of a

simple switch statement. ASCII values are mapped to

their corresponding BF gadgets by using the dispatch ta-

ble as the lookup table and the instruction table as the

address table.

Memory-mapped I/O registers. Memory-mapped I/O

registers are used to control hardware peripherals such

as general purpose I/O (GPIO) pins, UARTs, I2C or SPI

buses, and yes, DMA engines. Interacting with such pe-

ripherals typically consists of looping, where we read a

memory-mapped flag or status register over and over un-

til a particular status is indicated (e.g., transmit buffer

not full or receive buffer not empty), and then read or

write a value to a memory-mapped data register. This

building block is straight-forward to construct using con-

ditionals for the loop and unary functions for the condi-

tion test.

4.3 BF interpreter gadgets

In this section, we use the basic building blocks defined

in Section 4.2 to construct BF instruction and interpreter-

specific gadgets. In addition to the gadgets described be-

low, the BF interpreter requires a BF program to inter-

pret, a region of memory to act as a tape, and three words

at known addresses: a program counter, pc, a tape head

head, and a loop counter, lc. The program counter and

tape head behave as described in Section 4.1. The loop
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cond_ptr

01 00 00 00

cb0

01 00 00 00

cb1

04 00 00 00

cb2

00 00 00 00

tramp

21 20 21 20 21 20 21 · · · 21 20

conditional_tbl

cb0,F

cb1,F

.

.

.

cb0,T

cb1,T

.

.

.

address_tbl

Figure 4: Conditional goto gadget. First, cb0 copies the byte pointed to by cond_ptr into the least significant byte of cb1’s

source to use as an index into the conditional table. Then, cb1 copies the selected byte into the second least significant byte

of cb2’s source. This byte selects which of cbT or cbF are copied into tramp’s next control block field. If the address table

is at address 0x2000, then if the byte pointed to by cond_ptr is even, then cb1,T will be the next control block executed.

Otherwise, cb1,F will be.

counter is used to find matching brackets in the imple-

mentation of the loop instructions.

Dispatch gadget. This specific gadget dispatches a BF

instruction. We use the switch building block with the

dispatch table as the offset table and the instruction ta-

ble as the address table. The dispatch gadget is shown in

Figure 5.

Increment/decrement word gadgets. We implement

generic 4-byte increment and decrement gadgets which

take as input the address of the value to increment (resp.

decrement) and the address of the next control block to

execute when the operation is complete. These work by

operating on a byte at a time. First, we increment (resp.

decrement) the least significant byte of the 4-byte word.

If the result is 00 (resp. ff), then we repeat with the sec-

ond least significant byte, and so on. This is a straight-

forward application of unary functions, variable derefer-

encing, and conditionals.

Next instruction gadget. The next instruction gadget

increments the pc by one using the increment word gad-

get and then jumps to the dispatch gadget.

Increment/decrement  instruction  gadgets. These

gadgets increment or decrement the cell pointed to by pc

using the generic increment and decrement word gadgets

and then jump to the next instruction gadget.

Move right/left  instruction gadgets. These  gadgets

move the head right or left by incrementing or decrement-

ing head using the generic increment and decrement word

gadgets and then jump to the next instruction gadget.

Loop  instruction  gadgets. The  left  and  right  loop

instruction  gadgets  use  the  increment/decrement  byte

and word, conditional, and switch gadgets in its imple-

mentation. We use the switch gadget  and define our

lookup table, or bracket table, to contain an offset into

two distinct address tables, or scan right table and scan

left  table, at  the nth  index, where n equals  0  or  the

ASCII byte representation of ‘[’, or ‘]’. The scan right

table assigns its indexes with the following control block

addresses in order: scan right, increment loop counter,

decrement loop counter, and quit. The scan left table

inverts all operations.

We implement the left condition to first check whether

the cell pointed to by head is zero. If it is, the gadget

jumps to the next instruction gadget. Otherwise, it in-

crements lc using the increment word gadget and scans

right, incrementing and decrementing lc as brackets are

encountered until lc = 0 at which point it jumps to the

next instruction gadget.

The right condition is similar with a few exceptions.

First, we jump to the next instruction if the cell pointed

to by head is zero. At the start of scan left we decrement

the pc using the decrement word gadget. The scan left

table, as stated above, simply inverts all operations of the

scan right table. This has the effect of scanning left until

the matching bracket is found at which point it jumps to

the next instruction gadget.

Input/output instruction gadgets. Using the memory-

mapped I/O building block, the input and output instruc-

tion gadgets use the Pi’s UART to receive a byte and store

it in the cell pointed to by head or to transmit the byte in

the cell.

4.4 Other gadgets

In previous sections, we demonstrated that DMA trans-

fers are Turing- and resource-complete by building gad-

gets to interpret the BF programming language and in-

teract with memory-mapped I/O registers. In this section

we sketch the construction of a handful of building blocks

that could be used to implement more efficient programs

than those built using BF.

5



pc

04 00 00 00

cb0

01 00 00 00

cb1

01 00 00 00

cb2

04 00 00 00

cb3

00 00 00 00

tramp

00 04 · · · 08 · · · 0c · · · 10 · · · 04

dispatch_tbl

quit

nop

increment

decrement

right

.

.

.

insn_tbl

Figure 5: Dispatch gadget. The byte pointed to by the program counter is used as an offset into the dispatch table. The

dispatch table contains the offset into the instruction table for the corresponding instruction. For example, the byte ‘+’ has

ASCII value 43; the 43rd entry of the dispatch table is 8; and the address of the increment gadget (see Figure 3) is stored at

offset 8 in the instruction table. The control block cb3 copies the corresponding entry from the instruction table into the next

control block field of a trampoline control block.

Similar to the unary function building block, we can

construct  arbitrary  binary  functions f : {0, 1}8 ×
{0, 1}8 → {0, 1}8 by using a 64-kilobyte table, appro-

priately aligned such that concatenation of the left and

right operands forms an offset into the table. Larger bi-

nary operations can be constructed by operating 8-bits at

a time. For arithmetic operations such as addition, an ad-

ditional table containing a carryout bit could be used to

implement carries.

Relational operators can be implemented in much the

same way or they can leverage a subtraction.

Finally, DMA-specific features can be used to easily

implement functionality which would otherwise be more

difficult to implement or be less performant. For one ex-

ample, the DMA engine on the Raspberry Pi 2 is capable

of zeroing regions of memory. Another example is the

Pi is capable of performing moderately complex copy-

ing modes including nonconsecutive 2D copies. Lastly,

as mentioned above, the DMA is usually responsible for

communicating directly with hardware peripherals and

DMA engines typically support gating the transfers be-

tween devices and memory using a variety of hardware

signals. This would significantly simplify access to sup-

ported peripherals.

5 A DMA rootkit

The most common operating system used on the Rasp-

berry Pi  is  a  Debian-derived distribution called Rasp-

bian  which  has  a  Linux  kernel. Linux  maintains  a

circular linked list of task_structs each of which

holds  information  about  a  process. The  head  of

the  list, init_task, is  an  exported  kernel  sym-

bol  which  is  exposed  using  the ksymtab mechanism.

Each task_struct contains a pointer to cred struc-

ture  which contains  various credentials, including the

user ID (UID) of the process.

We implemented a DMA rootkit  that first  finds the

address of init_task and then continually walks the

linked list. For each process, the rootkit examines the

process’s UID. If the UID matches the target UID, then

the UID is changed to 0, effectively giving the process

super user privileges. Any processes with the target UID

that are running are modified shortly after the rootkit is

started. Similarly, any processes with the target UID that

are started after the rootkit are quickly modified.

Unlike the DMA gadgets described in Section 4, for

the rootkit we utilize the DMA engine’s ability to per-

form a 2D transfer. This enables the rootkit  to copy

the task_struct’s next struct pointer and its cred

pointer to a known location in memory given only the

address of the next task_struct pointer.4

In more detail, starting with a four-byte kernel virtual

address, va for a task_struct’s next struct pointer

which is  stored in a  fixed location p, the rootkit  first

converts va to a bus address ba. Next, it loads the two

words at ba and ba + ∆— where ba + ∆ is the bus ad-

dress of the cred pointer — to p and p + 4 using a 2D

transfer with an appropriate stride constant ∆. After this

transfer, location p contains a kernel virtual address for a

task_struct’s next struct pointer and p+ 4 contains

a kernel virtual address for the current task_struct’s

cred struct. The latter address is converted to a bus ad-

dress, the UID is loaded, compared to the target UID, and

on a match, 0 is written. In either case, the loop repeats.

Since the list is circular, the rootkit’s logic is particu-

larly simple. It consists of two DMA control blocks to

get the address of init_task and an additional 18 to

implement the loop, UID test, and UID setting.

4Lists in the Linux kernel contain pointers to the next element’s next

element pointer rather than to the beginning of the structure. In normal

kernel code, this leads to an additional arithmetic instruction to recover

a pointer to the structure.
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6 Implementation

We implemented  the  BF interpreter  described  in  Sec-

tion 4.3 and the rootkit described in Section 5 on a Rasp-

berry Pi 2. We were running the common Debian-based

operating system, Raspbian. By default, Raspbian ex-

poses the physical address space — including both the

SDRAM main memory and the memory-mapped I/O reg-

isters — through the psuedo device file /dev/mem.

Our code is setuid root. It opens /dev/mem, maps

pages  of  physical  memory  and  I/O memory  into  the

process’s virtual address space, then closes the file and

drops privileges. Next, it  crafts DMA control blocks

and  tables  as  described  above  in  an  unused  region

of  physical  memory. Finally, a run_dma() func-

tion loads the address of the first control block in the

DMA engine’s memory-mapped I/O control block regis-

ter which begins execution of the DMA program. All

of our code is available at https://github.com/

stevecheckoway/rundma.

For input and output, we connected an FTDI UART to

USB cable to the UART pins on the Pi.

7 Related work

There are two, mostly disjoint, lines of research related to

our work: the security of auxiliary processors inside com-

puters, and unintended, Turing-complete computation.

Auxiliary processors. Security researchers have only

recently begun examining the security of auxiliary pro-

cessors and the firmware that runs on them. The most

obvious example of an auxiliary processor is the GPU

which uses DMA to transfer graphics data between the

graphics card and main memory. Vasiliadis et al. [48]

use the GPU to implement malware unpacking and run-

time polymorphism in order to harden malware against

detection. Ladakis et al. [29] use the GPU to build a key

logger that monitors the system’s keyboard buffer.

Duflot and Perez [17] examine the processor that runs

on network interface cards (NICs). They exploit a vul-

nerability in the NIC’s firmware to achieve arbitrary code

execution and mount a DMA attack to add a backdoor in

the kernel. Triulzi [44, 45] uses both the NIC and video

card in concert to recover sensitive data in memory such

as cryptographic keys. In follow-up work, Duflot et al.

[18] construct an anomaly detection system that uses an

IOMMU mechanism to limit access to main memory.

The  IEEE 1394  FireWire  specification  allows  the

FireWire bus to communicate via DMA to minimize in-

terrupts and buffer copies. Numerous researchers exploit

this feature to access main memory directly [5, 9, 21, 34].

Kalenderidis and Collinson [26] exploit Intel Thunder-

bolt in a similar fashion.

The Intel Management Engine (ME) is a microcon-

troller embedded in the Intel chip set with a separate NIC,

DMA access to main memory, and remote out-of-band

management technology called Intel Active Management

Technology (AMT). Stewin and Bystrov [42] use the ME

to build a DMA key logger, and Tereshkin and Wojtczuk

[43] use AMT to construct a “Ring −3” rootkit. Simi-

larly, Farmer [19] and Moore [32] examine vulnerabil-

ities in the Intelligent Platform Management Interface

(IPMI).

Other exploitable auxiliary processors include laptop

batteries [31] and webcams [12].

Unintended computation. The ability to craft  input

data to drive programs in the target system has been dis-

cussed by the hacker community as far back as Aleph

One’s seminal article on buffer overflows [1]. Return-

to-libc [39], Krahmer’s  borrowed  code  chunks  tech-

nique [28], and return-oriented programming (ROP) [37]

represent an evolution of exploitation techniques leading

to Turing-complete computation built by borrowing ex-

isting program code.

ROP was first introduced by Shacham [37] as a tech-

nique to perform arbitrary, Turing-complete computation

by executing a string of gadgets: short sequences of in-

structions, linked together by an “update-load-branch”

mechanism [15], that exist within the program or linked

library. ROP has since been extended to various architec-

tures [13, 14, 20, 27, 30]. More recent work has focused

on the automation of each step in the technique [6, 23,

35, 36]. For example, Bittau et al. [6] explores the lim-

its of ROP by crafting an exploit without possessing the

target’s binary.

Turing-complete gadget sets need not be comprised of

misappropriated CPU instructions. Indeed, parsers for

complex file and record formats can be abused to pro-

vide Turing-complete computation. Oakley and Bratus

[33] uses  the  Debugging With  Attribute  Records  For-

mat (DWARF) to perform arbitrary computation with the

DWARF bytecode. Shapiro et al. [38] use the ELF loader

mechanism to effect computation.

The prior work most similar to ours combines specialized

hardware and unintended computation. Bangert et al. [4]

demonstrate a Turing-complete execution environment

using the IA32 arcitecture’s page fault handling mecha-

nism. Neither the page fault handling hardware nor the

DMA hardware was designed with computation in mind;

however, computation emerges from the hardware’s com-

plexity.

8 Conclusions

In  this  work, we have shown that  DMA engines can

be used to perform Turing-complete computation even

though it is not their intended function. In particular, we

have crafted DMA Turing- and resource-complete gad-

get sets that we used to build an interpreter for BF. In
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addition, we built a DMA rootkit to performs privilege

escalation for targeted programs.

Although we are the first to build malware entirely out

of DMA transfers, we are not the first to consider the

capabilities DMA provides to auxiliary processors run-

ning in the system (see Section 2). Indeed, researchers

have considered various countermeasures to such DMA

malware. These countermeasures are applicable to our

work as well. Example countermeasures include using

the input/out memory management unit (IOMMU) [41],

peripheral firmware load-time integrity [42, 46], anomaly

detection systems [18], and bus agent runtime monitors

(BARMs) [41].

Several of these defenses have been found lacking. Re-

searchers have noted that peripheral firmware load-time

integrity is inadequate because it does not provide run-

time integrity [18, 42]. Stewin and Bystrov [42] further

describes the IOMMU as lacking because it can be con-

figured improperly, and it cannot be applied if there are

memory access policy conflicts.

Given the current lack of strong defenses against DMA

abuse and the ability of DMA to do both Turing-complete

and resource-complete computation, it is clear that more

work on secure defenses is needed. (╯°□°）╯（┻━┻
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