To receive full credit for each construction you give, you must justify why your construction is correct unless the problem explicitly says otherwise.

Problem 1 Prove that the class of regular languages is closed under reversal. That is, show that given a regular language \(L \), show that \(L^R = \{ w^R \mid w \in L \} \) is regular.

Hint: Given a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(L \), build an NFA \(N = (Q', \Sigma, \delta', q'_0, F') \) that recognizes \(L^R \).

Problem 2 Define

\[
\text{BackwardsAndForwards}(L) = \{ w \in L \mid w \in L \text{ and } w^R \in L \}.
\]

That is, given a language \(L \), \(\text{BackwardsAndForwards}(L) \) is a new language consisting of the elements of \(L \) whose reversal is also an element of \(L \). Using closure properties of regular languages, show that the class of regular languages is closed under the operation \(\text{BackwardsAndForwards} \).

Problem 3

a. Use closure properties of regular languages to show that regular languages are closed under set difference. That is, given regular languages \(L_1 \) and \(L_2 \), show that

\[L_1 \setminus L_2 = \{ w \in L_1 \mid w \notin L_2 \} \]

is regular.

b. Show that regular languages are closed under symmetric set difference

\[L_1 \triangle L_2 = \{ w \mid \text{either } w \in L_1 \text{ or } w \in L_2 \text{ but not both} \} \]

Problem 4

a. For any language \(L \), define

\[
\text{Prefix}(L) = \{ w \mid \exists x \in \Sigma^* \text{ s.t. } wx \in L \}.
\]

Prove that regular languages are closed under \(\text{Prefix} \).
b. For any language L, define

$$\text{Suffix}(L) = \{w \mid \exists x \in \Sigma^* \text{ s.t. } xw \in L\}.$$

Using closure properties of regular languages and the result of part a, prove that regular languages are closed under Suffix.

Problem 5 For languages L_1 and L_2, define

$$L_1 \odot L_2 = \{w \in L_1 \mid w \text{ does not contain any string in } L_2 \text{ as a substring}\}.$$

Prove that regular languages are closed under \odot.\footnote{Hint: Think about what $\Sigma^* \circ L \circ \Sigma^*$ means for a language L. Write $L_1 \odot L_2$ in terms of set difference and concatenation and apply closure properties of regular languages.}

Problem 6 Let Σ and Γ be alphabets and let $f : \Sigma \to \Gamma$ be a function that maps symbols in Σ to symbols in Γ. One such example is $f : \{1, 2, 3, 4, 5\} \to \{a, b, c, d\}$ given by

- $f(1) = b$
- $f(2) = b$
- $f(3) = a$
- $f(4) = d$
- $f(5) = a$.

We can extend such an f to operate on strings $w = w_1w_2 \cdots w_n$ by

$$f(w) = f(w_1)f(w_2) \cdots f(w_n).$$

Using the same example, $f(132254) = babbad$. We can extend f to operate on languages by $f(L) = \{f(w) \mid w \in L\}$.

Prove that if L is a regular language and $f : \Sigma \to \Gamma$ is an arbitrary function—that is, it is not necessarily the example given above—then $f(L)$ is regular. \footnote{Hint: given a DFA M that recognizes L, build an NFA N that recognizes $f(L)$ by applying f to the symbols on each transitions. To prove that this works, consider the states M goes through on input w and the states N goes through on input $f(w)$.}

Problem 7 A homomorphism is a function $f : \Sigma \to \Gamma^*$ that maps symbols in Σ to strings over Γ. One example of a homomorphism is the function that maps every string to ε. A less-trivial example is $f : \{a, b\} \to \{a, b, c\}$ given by

- $f(a) = bacca$
- $f(b) = b$.\footnote{You can typeset \odot in \LaTeX{} by putting the line \texttt{\usepackage{mathabx}} in the preamble and using \texttt{\S} in math mode.}
We can extend f to operate on strings $w = w_1w_2 \cdots w_n$ by $f(w) = f(w_1)f(w_2)\cdots f(w_n)$ and languages by $f(L) = \{f(w) \mid w \in L\}$.

Prove that regular languages are closed under homomorphism. [Hint: As with your construction in Problem 6, you want to apply f to the symbols on each transition but in this case you may need to add additional states if the length of $f(a)$ is not 1. Be sure to handle the case where $f(a) = \varepsilon$.]

Problem 8 For each language in Exercise 1.6 in Sipser, give an equivalent regular expression. (You don’t need to prove that it’s correct.)

Problem 9 Using the procedure given in Lemma 1.55 in Sipser, convert the regular expression $(0 \cup 1)^*01(00 \cup 1)^*$ to an NFA. Show each step.

Problem 10 Using the procedure given in Lemma 1.60 in Sipser, convert the following DFA to a regular expression. Show each step.

Extra Credit This extra credit problem is worth as much as 1.5 other problems but is more difficult. Define the chop of languages A and B as

$$\text{Chop}(A, B) = \{w \mid \exists x \in B \text{ s.t. } wx \in A\}.$$

For example, if

$$X = \{aab, aba, bba, bbb\}$$
$$Y = \{ba, bbb\}$$
$$Z = \{a^n b^n \mid n \geq 0\}$$

are languages then,

$$\text{Chop}(X, Y) = \{\varepsilon, a, b\}$$
$$\text{Chop}(X, Z) = \{a, aab, aba, bba, bbb\}$$
$$\text{Chop}(Z, X) = \{a^n b^{n-3} \mid n \geq 3\}.$$

If you compare the definition of Chop to the definition of Prefix, you can see that they are similar. Indeed $\text{Prefix}(L) = \text{Chop}(L, \Sigma^*)$.

Prove that if A is a regular language and B is any language (in particular, it need not be regular), then $\text{Chop}(A, B)$ is regular. [Hint: Try modifying your proof that regular languages are closed under Prefix.]