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Abstract 

Component-based software development has many potential advantages, including shorter time to market and lower 

prices, making it an attractive approach to both customers and producers. However, component-based development 

is a new technology with many open issues to be resolved. One particular issue is the specification of components as 

reusable entities, especially for distributed object-oriented applications. Specification of such components by formal 

methods can pave the way for a more systematic approach for component-based software engineering, including 

design analysis and simulation. This paper discusses an approach for blending Petri net concepts and object-oriented 

features to develop a specification approach for distributed component software systems. In particular, a scheme for 

modeling behavior restriction in the design of object systems is presented. A key result of this work is the definition 

of a “plug-in” structure that can be used to create “subclass” object models, which correspond to customized 

components. Algorithms that support the automatic synthesis of these models are provided, discussed, and ill ustrated 

by examples. 

1. Introduction and Motivation 

 There is significant interest in using components in software development. Specification and 

implementation of a system in terms of existing and/or derived components can dramatically decrease the time 

required for system development, increase the usabilit y of resulting products, and lower production costs [1]. 

However, component-based development is still i mmature, with a lack of established procedures and support from 

formal modeling. Techniques and tools that are based on formal methods can pave the way for advanced software 

engineering capabiliti es such as design analysis and simulation. 

 

 Reuse principles have typically placed high demands on reusable components. Such components need to 

suff iciently general to cover the different aspects of their use, while also being simple enough to serve a particular 

requirement in an eff icient way. This has resulted in a situation where developing a reusable component may require 

three to four times more resources than developing a component for particular use [2]. Thus, component vendors 

desire to make full use of these components in order to achieve reasonable profit levels. Such component use 
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requires the customization of general components, a process that is aided by applying different constraints to 

functionality to support different price policies and different user groups. 

 

 In component-based development, the final products are not closed monolithic systems, but are instead 

component-based products. The developers are not only designers and programmers; they are integrators and 

marketing investigators. Often a component is not effectively reusable because its interface or part of the 

implementation does not match the specified requirements of a target application. To achieve the reuse, the 

component needs to be customized into another component that fulfill s the requirement [3]. One purpose of the 

customization is to apply constraints in situations where the functionality of a “base component” is more general than 

is actually needed, or when some base-component features exhibit characteristics not suitable for a particular 

application – for example some functions (or methods) may not be fault tolerant or may be resource hogs. Thus, the 

component’s behavior must be restricted before it can be reused in a new design. 

 

One potentially eff icient and natural technique to support constraints is a particular type of inheritance 

known as restriction inheritance [4]. Restriction inheritance defines a subclass that constrains the behavior of a 

superclass. This is in contrast to augment inheritance, where a subclass augments, or extends, a superclass. Since 

subclassing by restriction often conflicts with the semantics and intention of inheritance, where an instance of a 

subclass should be an instance of the superclass and should behave like one, some researchers have suggested that 

restriction inheritance be avoided [1][5]. But, in our own experience, which does involve development of 

commercial component-based software, we have observed benefits of restriction inheritance for customizing 

components. First, most commercial component-based software is based on middleware technologies such as 

CORBA [6] and/or COM [7]. As a result, these systems mostly consist of classes. In COM, even the interface of a 

component is a class. So, it seems natural to use inheritance techniques (defined for class-based systems) to handle 

constraints. Also, restriction inheritance is eff icient, simple and straightforward. Finally, since restriction inheritance 

is being used for the purpose of defining a wrapper for components, the original components and/or class is not 

intended to be used directly, which limits any potential disadvantage associated with the use of restriction 

inheritance.  

 

To develop a systematic design process with the capabilit y for automated simulation and analysis, it is 

valuable to define a design method’s syntax and semantics in terms of some formal notation and method. This is also 

true for restriction inheritance. For engineering of distributed object systems, it is desirable for the formalization to 

provide a simple and direct way to describe component relationships and capture essential properties like 

nondeterminism, synchronization and concurrency. Petri nets [8] are one formal modeling notation that is in many 

ways well matched for general concurrent systems. In particular, the standard graphical interpretation of Petri net 

models is appealing as a basis for a design notation. But, standard Petri nets do not provide direct support for high-

level design and object oriented features. This has motivated some recent research into methods for combining Petri 

net modeling and object-oriented design. In general, the proposed methods use enhanced forms of Petri nets as a 
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base of the combination, and pursue two main approaches [9]. One is the “objects inside Petri nets” approach, in 

which the semantics of tokens in Petri nets are expanded to include other information, which could include object 

definitions (e.g., [10]). The other approach is the “Petri nets inside objects” approach, in which traditional Petri net 

constructs are used to model the internal semantics of object (e.g., [11]). 

 

In this paper we introduce a model called a State-Based Object Petri Net (SBOPN), which is developed 

from the basic idea introduced in [12]. An example of using SBOPN concepts in the domain of aspect orientation is 

described in [13]. In this paper we extend the basic SBOPN model to directly support restriction inheritance 

modeling for the purposes discussed earlier. SBOPN is most similar in spirit to Lakos’ Language for Object Oriented 

Petri Nets, LOOPN [10]. LOOPN’s semantics are richer, but SBOPN provides a more specific, and thus more 

intuitive, notation for capturing the behavior of distributed state-based objects. Like LOOPN, SBOPN is based on a 

generalized form of Petri net called colored Petri nets [14]. One other difference between LOOPN and SBOPN is 

that the primary encapsulator of object behavior in LOOPN is tokens, while SBOPNs use separate Petri net objects 

whose states are captured by special colored tokens. Another language, namely CO-OPN/2 [15], is also a “Petri nets 

inside objects.” CO-OPN/2 uses high-level Petri nets that include data structures expressed as algebraic abstract data 

types and a synchronization mechanism for building abstraction hierarchies to describe the concurrency aspects of a 

system. CO-OPN/2 is a general model that focuses on concurrency. SBOPN focuses more on the architectural 

modeling of state-based systems; thus it is simpler and more domain-specific.  

The structure of this paper is as follows. Section 2 presents an example using restriction inheritance and 

informally introduces the SBOPN model. Section 3 provides details on SBOPN modeling and discusses the 

restriction subclasses and SBOPN control places. Section 4 describes our approach for synthesis of subclass models 

that capture instances of restriction inheritance. The approach is characterized by the use of special net structures 

called “plug-in structures.” Section 5 uses an e-commerce case study to ill ustrate the application of the SBOPN 

model. Finally, Section 6 provides a conclusion and mentions some future work.

2. An Example and Introduction to SBOPN Modeling 

Consider the classic example of a system that uses a bounded buffer to temporarily hold items, such as 

messages. In this version we allow an operator to enable and disable the buffer, in addition to the standard producer 

and consumer components. The four system components – buffer, producer, consumer and operator – operate 

asynchronously and only interact via messages initiated by the producer (put message), consumer (get message) or 

operator (enable and disable message). In particular, the producer sends put messages to the buffer when the 

producer has some new item to be deposited into the buffer and the consumer sends get messages to the buffer when 

the consumer desires to remove an item from the buffer. Also, the operator can send enable or disable message to 

enable or disable the buffer. At any point in time, the buffer should be in one of four states: Empty, Full , Partial 
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(means Partially Full ) or Disabled. Depending on its state, the buffer may or may not be able to accept the messages 

put, get, disable and enable. When the buffer is in Empty or Partial state, it can accept the put message and change 

to Partial or Full  state. When it is in Partial or Full state, it can accept the get message and change to Empty or 

Partial state. When it is in any state except the Disabled state, it can accept the disable message and change to the 

Disabled state. Finally, when it is in the Disabled state, it can accept the enable message and change to its previous 

state (before it was disabled): Empty, Partial or Full . To simpli fy the example, we simply assume that after accepting 

a disable message, the buffer is reset to Empty state.  

 

To model state-based systems, such as this buffer system, we use State-Based Object Petri Nets (SBOPN) 

[12]. This can be viewed as a special purpose form of (Colored) Petri net. Lack of space prevents us from giving an 

overview of Petri nets here; we refer the reader to a reference like [8] for such information. Figure 1 shows a simple 

SBOPN model of the system we have described above. Notice that there are separate models for the buffer, 

producer, consumer and operator. These component models are called State-Based Petri Net Objects (SBPNO) and 

the methods of objects are represented by shared transitions. For example, the put method is represented by a shared 

transition used by the buffer object and the producer object. The system model is called a State-Based Object Petri 

Net (SBOPN). To informally highlight some key features of the SBOPN model, let us consider the buffer object. 

There is an arc from the place p1 to the shared transition put. The token labeled D in p1 is called a state token, and D 

is the current state-value of this state token. This represents that the current state of the buffer is Disabled. The label 

{Empty, Partial} for the arc (p1, put) shows that the put transition has the potential to fire only when the buffer is in 

the Empty or Partial state. This arc label is called a state filter. When all the input places of a transition satisfy the 

corresponding state filter, that transition is enabled. The arc from the transition put to the place p1 is also labeled. 

This arc label (p1, F1) is called a state-transfer tuple, where p1 is called a state-transfer place and F1 is called a 

state-transfer function. This tuple determines the possible state(s) the buffer can be in after the put method is 

processed. The input value of a state-transfer function is the state-value of the state token consumed from the 

associated state-transfer place. In this simple example, the buffer can have the following changes due to the put 

method: from Empty to Partial, from Partial to Partial, or from Partial to Full . The state-transfer function F4 

indicates that a call to the disable method results in the buffer transitioning to the Disabled state, regardless of the 

state-value of the token consumed from place p1. 

 

 Now, consider a need to customize this general buffer component for use in a more restricted application. 

First, assume the new buffer component should not allow the disable operation – the buffer cannot be “ turned off .” 

Second, to ensure tighter synchronization on producer and consumer components, the new buffer component should 

behave as a simple capacity-1 buffer. Thus, only when the buffer is in the Empty state, instead of both Empty and 

Partial states, should it accept a put message. We call this new buffer a “disable-free synchronous buffer.” To model 

a new system that uses a disable-free synchronous buffer, we could just redesign the system model in Figure 1 to 

create a new model. The obvious way to do this is to remove the disable transition from the operator object model 

and from the buffer object model (along with the incident arcs), and change the state filter for the arc connecting 
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place p1 to the put transition in the buffer model. However, there two important disadvantages inherent in performing 

such a redesign of the model of this new buffer component: 

 

1. In creating the new buffer, we have changed the interface of another class, the operator. This conflicts with the 

basic modularity principle of object-design, i.e., the internal change of one class should not affect other classes. 

This is an important issue, especially when it comes to consideration of model synthesis and reuse. 

 

2. To model the fact that the new buffer class can accept a put message only when it is in the Empty state, the 

redesign mentioned before would require a change in the state filter for arc (p1, put) in the general buffer class – 

from {Empty, Partial} to {Empty}. But, such a change now makes it diff icult to directly identify that the new 

object is one of many possible behaviorally restricted objects derived from a common object – borrowing from 

object terminology, we can think of these restricted objects components as representing subclass objects of a 

superclass object. We will revisit this issue in Section 3. 

   

The first disadvantage, as we discussed, is due to the removal of a shared transition. Fortunately, SBOPNs 

provides an alternative way to achieve this “removal” of behavior without changing the interface of an object. For 

our example, this can be done by changing the state-filter for the arc (p1, disable) in the buffer object from {Full , 

Partial, Empty} to φ, the empty set. Since no buffer state can be an element of φ, the disable method is now 

unsupported (i.e., the transition representing this method is unable to ever fire in this new subclass model). It can be 

observed that this use of φ as a state filter is a special case of the technique mentioned earlier for modifying the 

behavior of the put method. 

 

To overcome the second disadvantages is not so easy and straightforward. We propose to model restriction 

inheritance by the simple addition of a “plug-in” structure to a superclass model. In other words, we want to limit the 

behavior of the superclass object by adding some control structure to the superclass model. Actually, this is very 

natural from the view of control theory since control systems limit the behavior of a system by adding some 

controller logic.  For example, [16] describes a method for constructing a Petri net controller for a discrete event 

system modeled by a Petri net. 

 

 

 

3. Subclass Component Models and Control Places 

In Section 2 we informally introduced the SBOPN modeling notation via an example. Now we can formally 

define this notation and discuss how to derive design models for subclass components. 

 



   6 

Definition 1 (SBPNO): A State-Based Petri Net Object is a 7-tuple, SBPNO = (Type, NG, States, sp, ST, SFM, 

STM), where 

• Type is an identifier for the object’s type (or class). 

• NG = (P, T, A) is a net graph, where 

I. P is a finite set of nodes, called Places. 

II . T is a finite set of nodes, called Transitions, disjoint from P, i.e., P ∩ T = φ. 

III . A ⊆ (P × T) ∪ (T × P) is a set of arcs, known as the flow relation.  

• States is a finite set of distinct states that define the possible states of the SBPNO. A token (as in standard, or 

colored Petri nets) may have associated with it a state-value, which is one of the elements of States. 

• sp ∈ P is called a state place. The value associated with the token in this place indicates the current state of the 

SBPNO. 

• ST ⊆ Τ is a set of shared transitions. A shared transition in a SBPNO is a transition that is shared with other 

SBPNOs. Shared transitions model the acceptance of a message from other SBPNOs or the sending of a 

message to other SBPNOs. 

• SFM: (A ∩ (P × T)) → 2States is a state-filter mapping, where 2States is the power set of States. This mapping maps 

each place-to-transition arc to a state filter. The basic purpose of the state filter mapping is to ensure that only 

those tokens that have a state-value representing one of the states in the state filter can pass (i.e., be consumed 

by a transition) via the corresponding arc. 

• STM: (A ∩ (T × P)) → P × STF is a state-transfer mapping, where STF is the set of state-transfer functions, STF 

= {stf | stf: States → 2States}. This mapping maps each transition-to-place arc (t, p) to a state-transfer tuple (p’ , 

stf), where p’ ∈   {p|(p, t) ∈ A} is called the state-transfer place and stf is called the state-transfer function. The 

basic purpose of the state-transfer mapping is to allow the firing of transition t to map the state-value of the 

token consumed from place p’  into a set of states, which represents the possible state-values that can be 

associated with the token deposited into the output place via the corresponding arc. 

 

As we saw in Section 2, a SBPNO is denoted graphically as a Petri net (a subnet) inside a box and a State-

Based Object Petri Net, SBOPN, is a Petri net consisting of connected SBPNOs, which are components of the 

system being considered. A marking of a SBOPN is the distribution of state tokens to the SBPNO components, and 

an SBOPN system (N, M0) is an SBOPN, N, along with an initial marking M0 (the initial states of the objects). In a 

SBOPN system, a transition t is said to be enabled if and only if, for each p ∈ •t (where •t is the set of input places 

for transition t), p contains a token whose state value is an element of the state-filter for arc (p, t). When an enabled 

transition fires, it removes from each input place a token whose state value satisfies the corresponding state filter, 

and then deposits a token to each output place. The state value assigned to a deposited token is one of the elements 

given as an output of the corresponding state-transfer function. For example, assume an arc (t, p) with the state-

transfer tuple (q, f), where the state-transfer function f(x) = {x}. Then the firing of transition t will deposit a token 

into place p and the state-value of this token will be equal to the state-value of the token removed from place q. 
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To simpli fy SBPNO models, implicit state filters and implicit state-transfer tuples are allowed, i.e., 

definitions are assumed if they are not explicitly specified. For an implicit state filter, the state-filter is States. Note 

that in Figure 1, the state filters are implicit in the producer, consumer, and operator objects. An implicit state-

transfer tuple can be used only when the output place associated with the arc is an input place of the transition 

associated with the arc – the arc is part of a self-loop. The state-transfer place is the place in the self-loop. We also 

require an implicit state-transfer function’s output to be the state-value of the token removed from the place in the 

self-loop.  Due to the simplicity of the producer, consumer, and operator object models, the state-transfer tuples are 

also implicit. 

 

Definition 2 (firing sequence): Let N = (Type, NG, States, V, ST, SFM, STM) be a SBOPN, ti ∈ ST (1 ≤ i ≤ n), and let 

Mi be a marking (1 ≤ i ≤ n+1). If the marking Mi+1 is reached from marking Mi by firing ti, then we call  σ = t1t2…tn a 

firing sequence of the SBOPN system (N, M1). 

 

Now we can identify properties of a restriction subclass and present the definition of a restriction subclass 

model. First, the methods of a restriction subclass object should be a subset of the methods of the superclass object. 

Second, the externally observable behavior of a restriction subclass object should be observable in the behavior of 

the superclass object. In other words, any firing sequence of a SBPNO subclass model should be a firing sequence of 

the superclass model when we only consider the shared transitions. In the following definition we use the notation 

σ|T, a projection of σ onto T. As an example of this projection, let σ = t1t2t1t3t2, and T = {t1, t3}, then σ|T = t1t1t3. 

 

Definition 3 (Restriction Subclass Model): Let N1 = (Type1, NG1, States1, ST1, SFM1, STM1), N2 = (Type2, NG2, 

States2, ST2, SFM2, STM2) be two SBPNOs, then N2 is a restriction subclass model of N1 if and only if: 

1) ST2 ⊆  ST1 

2) For any marking M2 of N2, there exists a marking M1 of N1, such that for any firing sequence σ2 of (N2, 

M2), there exists a firing sequence σ1 of (N1, M1), which satisfies σ1|ST1 = σ2|ST2. 

 

A particular restriction subclass model must be defined in terms of some particular superclass model and 

some specific method restrictions. These restrictions are captured by a restriction function, as defined next. 

 

Definition 4 (Restriction Function): Let N1 = (Type1, NG1, States1, IS1, Stoken1, ST1, SFM1, STM1) be a SBOPN, and 

let function f: SF1 → 2
States1

, where SF1 is the domain of SFM1, and 2
States1

 is the power set of States1. The 

function f is called a restriction function for N1 if and only if f satisfies: ∀ sf1 ∈ SF1, f(sf1) ⊆ sf1. 

  

Applying f to the state filters of N1 creates a new model, which we denote as N1|f. It can be shown that N1|f 

is a restriction subclass model of N1, but note that N1|f features the two disadvantages discussed earlier in Section 2. 
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Our goal is to create a “plug-in” structure that can be added to a superclass model causing it to have the same 

behavior as N1|f but avoiding these disadvantages. Such a plug-in structure must be able to control the firing of some 

shared transition t. This is accomplished by using a so-called “control place” as the heart of the plug-in structure. The 

control place must ensure that the state-value of a token in the control place “ tracks” the state-value of a token in one 

of the input places p to the transition t. We call such a place p the “controlled place.”  

 

Definition 5 (Control Place): Let N = (Type, NG, States, ST, SFM, STM) be a SBPNO, and p1 and p2 be two places 

of N. We say that p2 is a control place for p1 (p1 is a controlled place) if and only if: 

1) (ST ∩ p2
• ≠ ∅) ∧ ( ST ∩ p2

•  ⊆  ST ∩   p1
•) (Note:   p1

• is the set of output transitions of the place p1). 

2) For any shared transition t ∈ (ST ∩ p2
•), the associated state filter for the arc (p2, t) is a subset of the 

state filter for the corresponding arc (p1, t). 

3) For any reachable marking M’ from M, which satisfies M(p1) = M(p2),  and any transition t ∈  (ST ∩ 

p2
•), if t fires under M’ , then the tokens consumed by t from p1 and p2 should have the same state 

values. 

 

4. Synthesis of Plug-In Structures for Modeling Customized Components 

4.1 Basic Plug-in Design 

 A straightforward way to implement a control place is to create a duplicate place. The basic idea has two 

steps. First, we duplicate the controlled place, such that the new place has exactly the same input and output 

characteristics as the controlled place. Obviously, any change in the marking of the controlled place is 

simultaneously reflected in the marking of the new duplicated place. Because the new SBPNO (created by the 

duplication process) has the same exact behavior as the original SBPNO, the new SBPNO serves as a (trivial) 

restriction subclass. In the second step, we modify the state filters for the arcs from the new place to all shared 

transitions such that they satisfy the specific requirement of the particular desired restriction subclass. This creates a 

model for a customized component. Recall that the specific restriction requirement (i.e., the customization feature) is 

determined by a restriction function, as defined in Definition 4. 

 

Although a duplicating place can be used to create a control place and thus build a restriction subclass 

without changing interfaces, there is one significant disadvantage: redundancy. For example, in creating the “disable-

free synchronous” buffer model from Section 2, we do not want to change the firing conditions of the enable and get 

methods. But it is necessary for the control place to connect with the associated shared transitions. Also, these 

additional arcs must carry the same state-filters and state-transfer functions as in the superclass model. Such extra 

arcs, which do not change the behavior of the methods, imply an existence of redundancy in the new model.  

 

Since our goal is to ensure that the state-marking of a control place “ tracks” that of the controlled place, we 

can copy the token of a controlled place into the control place, but we must be sure that this copying occurs before 
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allowing these places to enable any shared transition. We call this type of control place a “refreshing place” since it 

gets refreshed (i.e., the state-value of its current state token is updated) each time the state-value of the token in the 

corresponding controlled place changes. Figures 2, 3 and 4 ill ustrate this idea by a simple example. In Figure 2, we 

have a SBPNO for a component C1. Now suppose we want to model a restriction subclass C2 that has the property 

that t1 can be enabled only when the object is in the state a – instead of either state a or b, as in the component C1. 

We need t2 to remain enabled in the a state.  

 

To model this subclass, we create a new place p2 (see Figure 3) as a control place candidate. Transition t3 is 

introduced for the purpose of copying the state token from p1 to p2. As in the duplicating place technique, the state 

filter associated with p2’s connection to t1 is {a}. However, under the general firing rule that controls the behavior of 

a SBPNO, we cannot guarantee that the tokens in p1 and p2 are of the same value when t1 is enabled. For example, in 

Figure 2, suppose p1 has initial state a, then the firing sequence is t1
*t2t1

*. Now consider Figure 3, where both p1 and 

p2 have initial state a. Once t2 fires, p1 has state b, while p2 still has state a. If t3 does not yet fire, p1 and p2 have 

different states, but t1 is still enabled. As a result, we could get the same firing sequence as C1, t1
*t2t1

*. However, C2 

is supposed to only allow the restricted firing sequence t1
*t2, where we ignore the internal transition t3 in the firing 

sequence. So the construction in Figure 3 does not yet provide for a proper modeling of the control place.  

 

The problem is that when t2 fires, the token in p2 remains unchanged and thus is not “ tracking” the marking 

of p1. To solve this problem, we need to force t3 to fire immediately after t2 fires, i.e., to refresh p2 immediately. This 

is accomplished by using a special form of Petri net arc called an activator arc [17]. An activator arc can be used to 

connect a place to a transition. For nets with activator arcs, the transition firing rules are as follows: 1) Those enabled 

transitions with activator arcs have the highest priority, and 2) A transition that has activator arc input(s) cannot fire 

twice in succession for the same input marking, i.e., the net’s marking must be modified in some manner before the 

transition can fire again.  For example, in Figure 4, t1, t2 and t3 are enabled, but t3 has an activator arc (denoted by the 

arc with a solid bubble), so it fires first. After firing t3, we get the same marking, so t3 cannot fire again. As a result, 

only t1 or t2 can next fire. Now, if t1 fires, because the marking remains unchanged, we have the same situation as 

before t1 fires. But if t2 fires, both t1 and t3 are enabled. Since the marking has changed, only t3 can fire, which copies 

the token b from p1 to p2, i.e., p2 is refreshed. This copying of the state-value from p1 to p2 is due to the state-transfer 

function F3. Note that t1 is not enabled any more after t3 fires. As we can see, now p2 serves as a proper control place 

to ensure we have only one firing sequence t1
*t2 (again, ignoring the internal transition t3 in the firing sequence).  

 

We now present two algorithms for synthesis of restriction subclass models using plug-in structures. The 

first algorithm is used to create a refreshing place. Its purpose is to support the second, more important, algorithm, 

which synthesizes a restriction subclass model.  

 

Algorithm 1: Create a refreshing place in a SBPNO. 

Input:  A SBPNO N = (Type, NG, States, ST, SFM, STM), and a place p1 that satisfies p1
• ∈  ST. 
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Output: A new SBPNO (a modified version of N) with a refreshing place p2 for p1. 

Procedure: 

1) Add to N1 a place p2 and a transition t’ . 

2) Add an arc r1 from p1 to t’ , and an arc r2 from t’  to p1.  

3) Add an arc r3 from t’  to p2, and an arc r4 from p2 to t’ . Use (p1, F) as the state-transfer tuple for r3, 

where F is defined as F(x) = {x}, x ∈ States. 

4) Add an activator arc from p1 to t’ . 

 

As an example, applying Algorithm 1 to the SBPNO in Figure 2 creates part of the SBPNO shown in Figure 

4 – all of the model except the arcs (p2, t1),  (t1, p2) and the state-filter  {a} for the arc (p2, t1). 

 

Algorithm 2: Model a restriction subclass by use of plug-in structures 

Input:  1) A SBPNO N1 = (Type1, NG1, States1, ST1, SFM1, STM1). 

2) A restriction function (see Definition 4), f: SF1 → 2States1
 

Output: A restriction subclass model N2 of N1 (N2 has the same externally observable behavior as the model N1|f 

identified in Section 3). 

Procedure: 

1) Make a copy N1. Call this new model N2 and let N2 be the source net for the following step: 

2) For each transition t in ST1: 

For each p1 ∈ t •, let S1 be the state filter for the arc (p1, t). If S2 = f(S1) is a proper subset of S1, i.e., S2 

≠ S1, then create a control place p2 of p1 by applying the following steps: 

A. Use Algorithm 1 to create a refreshing place p2 of p1. 

B. Add an arc r1 from p2 to t. Use S2 as the state filter for r1. 

C. Add an arc r2 from t to p2 

End For 

End For 

 

The initial marking of a subclass model created by Algorithm 2 is determined by the initial marking of the 

superclass used to create it. All places except the created control places have the same initial marking as in the 

superclass model. The control places take on the same initial marking as their corresponding controlled places. As an 

example, applying Algorithm 2 to the SBPNO in Figure 2 creates the SBPNO shown in Figure 4. In this case, N1 is 

the model shown in Figure 2 and the restriction function f is defined as f({a, b}) = {a}, f({a}) = {a}. Note that the 

structure within the dashed box in Figure 4 is the plug-in structure. As we can see, Figure 4 is more complex than 

Figure 2. And the switchable plug-in structures introduced in next subsection are even more complicated. Our 

proposal of modeling restriction inheritance would not be practical i f we have to manually handle this complexity 
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introduced by plug-in structure. Fortunately, since the synthesis of restriction subclass models is based on an 

algorithmic process, automated tools can be used to hide the internal details of modeling and analysis.  

 

4.2 Switchable Plug-in Structures 

One advantage of Algorithm 2 is that the plug-in structures created are potentially controllable. By 

controllabilit y we mean that a switch can be added to the structure to control its activity, i.e., the switch can be used 

to “ turn on” or “ turn off ” the functionality of the plug-in structure. We call such a plug-in a “switchable plug-in.” 

Switchable plug-ins offer a key advantage: They allow an model to represent a family of restriction subclass models, 

corresponding to a family of components. The basic idea is that a single component-model with n potential 

customizations (defined by n plug-in structures) can in fact model a family of 2n customized components. The family 

members correspond to the various combinations of enabled customization features. This technique will be discussed 

shortly by a specific example. 

 

To transform a plug-in structure into a switchable plug-in, a new place node must be added. For example, 

Figure 5 shows the same model as Figure 4, but with a switchable plug-in. Place p3 serves as this new switch place. 

When there is a token in the switch place p3, the “plug-in” structure is active. In this case, the plug-in behaves as 

before we introduced the switch place, i.e., like Figure 4. But when there is no token in p3, the transition t3 will never 

be enabled. So, in this case, the model behaves as before we introduced the plug-in, i.e., like Figure 2. Notice that we 

have introduced a new state value called internal to the state set. Although it is possible to create the switching 

capability for this particular example without introducing this new internal state, use of this special state is required 

for creating general-purpose switchable plug-ins. To explain this point, consider the following situation. 

 

Suppose that we wanted to create a subclass C3 of class C1, where C3 does not support method t1 at all . In 

this case, by Algorithm 2, the SBOPN for class C3 would look like the model in Figure 4, except that the state filter 

for the arc (p2, t1) would be φ instead of {a}. Now, to make the plug-in of this model switchable, we would introduce 

a switch place p3 as was done in Figure 5. But, since the state filter is the empty set, there is no way for the switch 

place to enable transition t1 – it is always disabled, regardless of the state value of the token we put in p2. So, it is 

clear that in a switchable plug-in we cannot allow φ as the state filter for a restricted transition. A simple solution is 

to introduce a new state value that is reserved for use within the switchable plug-in structure. This is the internal 

state referred to earlier. Now, the state filter can become {internal}, as opposed to φ. To create the initial marking of 

this subclass C3, it is necessary that the initial markings of the control place p2 and the switch place p3 have the 

state-value internal. In general, to model a restriction subclass using switchable plug-ins, we can use Algorithm 2 

with the following two simple modifications:  

1. For each plug-in, create a switch place (connected to/from the transition for the refreshing place). 

2. For each plug-in, modify the state filter (for the arc from the control place to the restricted transition) to include 

the state internal. 
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As an example, let us revisit the buffer example from Section 2. Now, the modified algorithm mentioned 

above can be applied to the model in Figure 1 to create a model for a “disable-free synchronous” buffer. The 

resulting model (with two switchable plug-ins) is shown in Figure 6. Note that the initial marking of all places 

belonging to plug-ins are internal. Note that the plug-in associated with the disable method employs a state filter of 

{ internal} . Thus, if this plug-in is “ turned-on” (by marking the switch place), the disable method will become 

inactive. For the plug-in associated with the put method, the state filter is set to { i,Empty} . Thus, the put method is 

active only when the buffer is in the empty state. Most importantly, note that this one subclass model actually models 

a family of buffer types. The binding of the model to a specific buffer behavior is accomplished by varying the initial 

markings of the switch places (p2’  and p3’ ). The following table defines the options: 

 

p2’  p3’  Model 
Marked Marked A “disable-free synchronous” buffer 
Marked Unmarked A “disable-free” buffer 
Unmarked Marked A “synchronous” buffer 
Unmarked Unmarked A general buffer 

 
 
The abilit y to model a family of components can be very helpful for commercial component-based 

development. It supports flexible analysis of varying configurations of customized components in the design phase, 

which can reduce the overall cost of development. This has the potential to aid configuration management and 

support, which is becoming a major challenge that organizations face in component-based software development 

[18].  

 
 
 
 
4.3 Some Analysis Issues 

Basic SBOPN models (without plug-in structures) are derived from standard colored Petri nets. Basic 

SBOPN models, with state filters and state-transfer functions, can be transformed into colored Petri nets [12]. This is 

important since we want SBOPN models to be able to use a full set of analysis techniques already existing for mature 

models like colored Petri nets or ordinary Petri nets. But, the subclass models that correspond to customized 

components in this paper use activator arcs. Thus, we must understand the impact of these arcs in terms of analysis 

potential. After all , activator arcs are special arcs with unique semantics. In the generally case, there is no equivalent 

ordinary Petri net structure for a Petri net with activator arcs. But, in our models, activator arcs are used only in plug-

in structures. Thus, it is possible to convert an SBOPN model with activator arcs to a general SBOPN model and 

preserve liveness, safeness and boundedness of the model. To simpli fy our discussion, we use Figure 5 as an 

example to explain some key aspects of this translation. The results apply in general. 
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Consider the switch place p3 in Figure 5. In the case that p3 is not marked, it can be observed that removal 

of the plug-in will not change the liveness, safeness and boundedness properties of the model. Now consider the case 

when p3 is marked. In this case, p3 can never disable t3. Thus, p3 and the corresponding arcs can be removed 

without changing the model’s behavior. From the structure of the plug-in, it is clear that the plug-in will not affect the 

safeness or boundedness of the model. A similar analysis of p2’s impact on the liveness of the model confirms that 

that both state-filters (on the arcs (p1, t1) and (p2, t1)) can be changed to {a} without changing the liveness property 

of t1. Now, since both state-filters associated with t1 are equal, and whenever t1 fires, the tokens in p1 and p2 have 

identical state-values, the plug-in structure can be removed without impacting the liveness of t1. Furthermore, 

because of the 1-to-1 correspondence between a plug-in and a shared transition, the translation just described does 

not impact the liveness of transition t2. Further conversion of an object model to a colored Petri net or ordinary Petri 

net is now assured, providing a basis for various analysis capabiliti es. Further discussion on specific analysis 

techniques using these lower-level, basic net models is beyond the scope of this paper. 

 

5. A Case Study 

In the recent years, business via the Internet (e-commerce) has become more and more important in 

industry. Since the Internet is a global-scale distributed system, e-commerce systems face issues such as non-

determinism, synchronization, and parallelism. The inherent complexity of such systems requires architects, 

designers, and developers to use techniques and tools with formal methods characterized by a sound mathematical 

basis. Our SBOPN is one such technique. To demonstrate the usage of SBOPN in the e-commerce domain, the case 

study presented in this section will focus on design of e-commerce systems. The first part of the case ill ustrates how 

to use SBOPN to model a web-shopping system. The second part of the case features one of the benefits of SBOPN: 

reusabilit y. In the example, some classes are reused directly in a new system design while some are reused by 

inheritance, and some are totally rebuilt . 

 

5.1 Basic Model 

A web-shopping system is a classic business-to-customer example in e-commerce. In this system, customers 

use the Internet to do shopping in a virtual store, instead of a physical store. Typically, a customer uses a web 

browser, such as Netscape or Internet Explorer, to connect to a web site of a company doing e-business, such as 

Amazon.com. Then he registers to the shopping system, orders goods, and possibly inputs promotion information. 

Finally, the customer pays online, and finishes the shopping session. In our example, we assume that there are two 

different types of customers, as found in many shopping stores: regular-customers, and member-customers. Member-

customers are automatically granted some special discounts that are not available for regular-customers. We want to 

model the system using the SBOPN notations. 

 

First, we determine the classes of this system. Here we have four different classes: “user interface” to 

control customers’ input and output logic, “ register” to hold customers’ registration information, “order system” to 
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take orders and send out invoices, and “cashier” to receive invoices and charge customers. Second, we need to 

determine the states of each class, the messages each class can accept, and the pre- and post-states associated with 

each message. For the “user interface” class, the simpli fied procedure is: login system, begin order, input promotion 

information if necessary, pay order, end order, and logout. So it has states: Unauthorized, Authorized, Ordering, 

WaitDone. Unauthorized means the customer has not logged-in yet. Authorized means the customer has successfully 

logged-in. Ordering means the customer is in the process of ordering items. WaitDone means the customer is waiting 

for the shopping section to finish. Note that the customer maybe input promotion information during the order 

process, which is represented by the Promote message. Although this action does not change the state of the “user 

interface” class, it does affect the state of the “order system” class. Table 1 shows the pre- and post-states of each 

message. 

 

Starting State Message Ending State 

Unauthorized Login Authorized 

Authorized Logout Unauthorized 

Authorized Begin Order Ordering 

Ordering Promote Ordering 

Ordering Charge WaitDone 

WaitDone End Order Authorized 

 

Table 1. The State Changes of a “User Interface” Component 

 

The “Register” class can accept method calls for Login, Logout, and Check Membership. Table 2 shows the 

state changes. The behaviors sequence of the “Order System” is Begin Order, Check Membership, Promote, Invoice, 

Notify, and End Order. Table 3 defines the state changes. The “Cashier” class receives an invoice and then charges 

the customer and sends back notification. Table 4 shows state changes of “Cashier” . 

 

Starting State Message Ending State 

Ready Login Busy 

Busy Check Membership Busy 

Busy Logout Ready 

 

Table 2. The State Changes of a “Register” Component 
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Starting State Message Ending State 

Ready Begin Order StartOrder 

StartOrder Check Membership RegularCustomer 

StartOrder Check Membership MemberCustomer 

RegularCustomer Promote PromotedRegular 

MemberCustomer Promote PromotedMember 

RegularCustomer Invoice WaitNotification 

PromotedRegular Invoice WaitNotification 

MemberCustomer Invoice WaitNotification 

PromotedMember Invoice WaitNotification 

WaitNotification Notify FinishOrder 

FinishOrder End Order Ready 

 

Table 3. The State Changes of an “Order System” Component 

 
Starting State Message Ending State 

Ready Invoice ReadyCharge 

ReadyCharge Charge ReadyNotify 

ReadyNotify Notify Ready 

 

Table 4. The State Changes of a “Cashier” Component 

 

Once we have the classes and states, it is straightforward to create the SBPNOs for these classes, as shown 

in Figures 7, 8, 9, and 10. 

 

Now, we can proceed to the next step and create the system-level SBOPN. The last step is to determine the 

initial state of each class (these we already showed in the previous figures). The result is shown in Figure 11. Note 

that we omit the detailed information for each class in the system-level SBOPN view.  

 

5.2 A New Model Based on Reuse 

 

One of the most important benefits of component technology is reusabilit y. In our models, reusabilit y is 

achieved by modularity and inheritance of classes objects. Let us consider the web-shopping system presented in 

Section 5.1 again. Assume that after this system is used for several months, it turns out that the performance needs to 
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be improved for handle multiple customers and also it is no longer deemed necessary to give promotions for 

member-customers since this marketing plan has ceased to improve the bottom-line of the business.  

 

To improve the performance, let us review the SBOPN shown in Figure 11. As we can see, the system has a 

register class and a cashier class. Both of them have some information about customers. So there is some overhead 

to use these two classes. If we combine these two classes to one class, then we can improve the performance. We 

name the new class registerCashier. To reduce the effect of the new class to other classes remaining in the system, 

we need this new class have all the methods in the register class and the cashier class. The new class is shown in 

Figure 12. 

 

To reuse our earlier component models, but prevent member-customers from getting a promotion offer, we 

can create a subclass model of the order system class model such that the subclass model will only allow regular-

customers to get promotion. This can be easily achieved by using the plug-in concept to restrict the Promote method. 

We call this subclass model a restricted order system. As a result, the interface of the subclass is the same as for its 

superclass. The new subclass design is shown in Figure 13. Note that we only require a simple plug-in, not a 

switchable plug-in, in this example, but for generality, we included a switchable plug-in in the design.  

 

Because we do not change the functionality of the user interface class, and all methods remain the same, we 

can reuse the user interface class directly. This is the benefit of modularity of our modeling notation. As an 

experiment, we can use Figure 7 as the model of the user interface class. The system-level model of the improved 

web-shopping system is shown in Figure 14. In this view of the system, the internal details of the plug-in structure 

are suppressed in order to simpli fy the model. 

 

6. Conclusion and Future Work 

One challenge in component-based software engineering is to find techniques and tools that are effective in 

aiding the specification and design of component-based systems. One way to increase the effectiveness of these 

design techniques is to employ formal methods that provide a well -defined design notation and support design 

analysis. From our research, and experience with commercial component-based software development, we noticed 

that restriction inheritance seems to have practical use when customizing general components to define special 

components.  

 

In this paper, we have discussed our research to blend Petri net concepts and object-oriented design in order 

to develop a design approach for component-based software systems development. We have selected Petri nets as 

our underlying design model because we have experience and expertise in applying this formalism (e.g., [19][20]), 

and because the formalism is mature and with strong support from theory and tools. Finally, Petri nets have an 
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intuitively appealing graphical interpretation. A unique feature of this work is the idea of a “plug-in” control 

structure to allow for modeling restriction inheritance. 

 

For future work, we plan to develop some prototype tools that can be used to automate the creation of 

SBOPN designs for complex systems, including support features for synthesis and management of customizing 

general components to particular components. In addition, we plan to widen the scope of the work on inheritance 

modeling to include capabiliti es for modeling other types of inheritance. 
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PR = PromotedRegular, PM = PromotedMember, 
WN = WaitNotify, FO = FinishOrder  

 
States = { R, I, SO, RC, MC, PR, PM, WN, FO}  

 
F1(R) = { SO} , F2(SO) = { RC, MC} , 
F3(RC) = { PR} , F3(MC) = { PM} , 
F4(RC) = F4(PR) = F4(MC) = F4(PM) = { WN} , 
F5(WN) = { FO} , F6(FO) = { R} , 
F7(x) = { x} , if x ∈ States 
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Figure 13. SBPNO of the “Restricted Order System” Component in  
the Improved Web-Shopping System 
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Figure 14. SBOPN of the Improved Web-Shopping System 


