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Abstract

Component-based software development has many potential advantages, including shorter time to market and lower
prices, making it an attradive gproach to bah customers and producers. However, component-based development
is a new technology with many open isauesto be resolved. One particular issue is the spedfication of components as
reusable entities, espedaly for distributed oljed-oriented applicaions. Spedfication of such components by formal
methods can pave the way for a more systematic goproach for component-based software engineaing, including
design analysis and simulation. This paper discusses an approach for blending Petri net concepts and oljed-oriented
feaures to develop a spedfication approac for distributed component software systems. In particular, a scheme for
modeling behavior restriction in the design of objed systems is presented. A key result of this work is the definition
of a “plug-in” structure that can be used to crede “subclass’ objed models, which correspond to customized
components. Algorithms that suppart the automatic synthesis of these models are provided, discussed, and ill ustrated

by examples.

1. Introduction and Motivation

There is sgnificant interest in uwsing components in software development. Spedficaion and
implementation of a system in terms of existing and/or derived components can dramaticdly deaease the time
required for system development, increese the usability of resulting products, and lower production costs [1].
However, component-based development is gill i mmature, with a ladk of established procedures and suppart from
formal modeling. Techniques and todls that are based on forma methods can pave the way for advanced software

engineaing capabiliti es such as design analysis and simulation.

Reuse principles have typicdly placel high demands on reusable cmponents. Such components need to
sufficiently general to cover the different aspeds of their use, while dso being simple enoughto serve aparticular
requirement in an efficient way. This has resulted in a situation where developing a reusable component may require
three to four times more resources than developing a component for particular use [2]. Thus, component vendors

desire to make full use of these components in order to achieve reasonable profit levels. Such component use
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requires the austomization of general components, a process that is aided by applying different constraints to

functionality to suppart different pricepalicies and dfferent user groups.

In component-based development, the final products are not closed monolithic systems, but are instead
component-based products. The developers are not only designers and programmers; they are integrators and
marketing investigators. Often a component is not effedively reusable because its interface or part of the
implementation does not match the spedfied requirements of a target applicaion. To achieve the reuse, the
component needs to be austomized into another component that fulfills the requirement [3]. One purpose of the
customizaion isto apply constraints in situations where the functionality of a*“base component” is more general than
is adualy nealed, or when some base-component fedures exhibit charaderistics not suitable for a particular
applicaion — for example some functions (or methods) may not be fault tolerant or may be resource hogs. Thus, the

component’s behavior must be restricted before it can be reused in a new design.

One patentialy efficient and natural technique to suppart constraints is a particular type of inheritance
known as restriction inheritance [4]. Restriction inheritance defines a subclass that constrains the behavior of a
superclass This is in contrast to augment inheritance, where asubclass augments, or extends, a superclass Since
subclassng by restriction often conflicts with the semantics and intention of inheritance, where an instance of a
subclass $iould be an instance of the superclassand should behave like one, some researchers have suggested that
restriction inheritance be avoided [1][5]. But, in our own experience, which does involve development of
commercial component-based software, we have observed benefits of restriction inheritance for customizing
components. First, most commercial component-based software is based on middeware technologies such as
CORBA [6] and/or COM [7]. As a result, these systems mostly consist of classes. In COM, even the interfaceof a
component is a dass So, it seams natural to use inheritance techniques (defined for classbased systems) to handle
constraints. Also, restriction inheritanceis efficient, smple and straightforward. Finally, since restriction inheritance
is being wsed for the purpaose of defining a wrapper for components, the original components and/or classis not
intended to be used dredly, which limits any potential disadvantage assciated with the use of restriction

inheritance.

To develop a systematic design process with the cgability for automated simulation and anaysis, it is
valuable to define adesign method' s g/ntax and semantics in terms of some formal notation and method. Thisis aso
true for restriction inheritance For engineaing of distributed oljed systems, it is desirable for the formalization to
provide a simple and dred way to describe component relationships and cepture essential properties like
nondeterminism, synchronizaion and concurrency. Petri nets [8] are one formal modeling rotation that is in many
ways well matched for general concurrent systems. In particular, the standard graphicd interpretation of Petri net
models is appeding as a basis for a design rotation. But, standard Petri nets do not provide dired suppart for high-
level design and oljed oriented feaures. This has motivated some recent research into methods for combining Petri

net modeling and oljed-oriented design. In general, the proposed methods use enhanced forms of Petri nets as a



base of the cmmbination, and pursue two main approaches [9]. One is the “objeds inside Petri nets’ approad, in
which the semantics of tokens in Petri nets are expanded to include other information, which could include objed
definitions (e.g., [10]). The other approach is the “Petri nets inside objeds’ approad, in which traditional Petri net

constructs are used to model the internal semantics of objed (e.g., [11]).

In this paper we introduce amodel cdled a State-Based Object Petri Net (SBOPN), which is developed
from the basic ideaintroduced in [12]. An example of using SBOPN concepts in the domain of asped orientation is
described in [13]. In this paper we extend the basic SBOPN model to diredly suppart restriction inheritance
modeling for the purposes discussed ealier. SBOPN ismost similar in spirit to Lakos' Languege for Objed Oriented
Petri Nets, LOOPN [10]. LOOPN’s smantics are richer, but SBOPN provides a more spedfic, and thus more
intuiti ve, notation for capturing the behavior of distributed state-based oljeds. Like LOOPN, SBOPN is based on a
generaized form of Petri net caled colored Petri nets [14]. One other diff erence between LOOPN and SBOPN is
that the primary encgpsulator of objea behavior in LOOPN is tokens, while SBOPNSs use separate Petri net objeds
whose states are catured by spedal colored tokens. Another language, namely CO-OPN/2 [15], is also a “Petri nets
inside objeds.” CO-OPN/2 uses high-level Petri nets that include data structures expressed as algebraic ebstrad data
types and a synchronization medcanism for buil ding abstradion hierarchies to describe the mncurrency aspeds of a
system. CO-OPN/2 is a general model that focuses on concurrency. SBOPN focuses more on the achitecural

modeling of state-based systems; thusit is smpler and more domain-spedfic.

The structure of this paper is as follows. Sedion 2 presents an example using restriction inheritance ad
informally introduces the SBOPN model. Sedion 3 provides details on SBOPN modeling and discusses the
restriction subclasses and SBOPN control places. Sedion 4 describes our approad for synthesis of subclassmodels
that cgpture instances of restriction inheritance The gproacd is charaderized by the use of speda net structures
cdled “plug-in structures.” Sedion 5 uses an e-commerce cae study to ill ustrate the gplicaion of the SBOPN

model. Finally, Sedion 6 provides a mnclusion and mentions ome future work.

2. An Exampleand Introduction to SBOPN M odeling

Consider the dassc example of a system that uses a bounded buffer to temporarily hold items, such as
messages. In this version we dlow an operator to enable and disable the buffer, in addition to the standard producer
and consumer components. The four system components — buffer, producer, consumer and operator — operate
asynchronously and only interad via messages initiated by the producer (put message), consumer (get message) or
operator (enabe and disable message). In particular, the producer sends put messages to the buffer when the
producer has some new item to be deposited into the buffer and the mnsumer sends get messages to the buffer when
the consumer desires to remove an item from the buffer. Also, the operator can send enalle or disable message to

enable or disable the buffer. At any point in time, the buffer should be in one of four states: Empty, Full, Partial



(means Partially Full) or Disabled. Depending on its gate, the buffer may or may not be &le to accet the messages
put, get, disable and enable. When the buffer isin Empty or Partial state, it can accept the put message and change
to Partial or Full state. When it is in Partial or Full state, it cen accept the get message and change to Empty or
Partial state. When it isin any state except the Disabled state, it can accept the disable message and change to the
Disabled state. Finally, when it isin the Disabled state, it can accept the enable message and change to its previous
state (before it was disabled): Empty, Partial or Full. To simplify the example, we simply assume that after accepting
adisable message, the buffer isreset to Empty state.

To model state-based systems, such as this buffer system, we use State-Based Objed Petri Nets (SBOPN)
[12]. This can be viewed as a speda purpase form of (Colored) Petri net. Ladk of spaceprevents us from giving an
overview of Petri nets here; we refer the realer to areferencelike [8] for such information. Figure 1 shows asimple
SBOPN model of the system we have described above. Notice that there ae separate models for the buffer,
producer, consumer and operator. These mmponent models are cdled State-Based Petri Net Objeds (SBPNO) and
the methods of objeds are represented by shared transitions. For example, the put method is represented by a shared
transition used by the buffer objed and the producer objed. The system node is cdled a State-Based Objed Petri
Net (SBOPN). To informally highlight some key feaures of the SBOPN model, let us consider the buffer objed.
There is an arc from the placep; to the shared transition put. The token labeled D in p, is cdl ed a state token, and D
isthe aurrent state-value of this gate token. This represents that the aurrent state of the buffer is Disabled. The label
{Empty, Partial} for the ac (p, put) shows that the put transition has the potential to fire only when the buffer isin
the Empty or Partial state. This arc label is cdled a state filter. When al the input places of a transition satisfy the
corresponding state filter, that transition is enabled. The ac from the transition put to the placep; is aso labeled.
This arc label (py, F1) is cdled a state-transfer tuple, where p; is cdled a state-transfer place and F1 is cdled a
state-transfer function. This tuple determines the posshble state(s) the buffer can be in after the put method is
procesed. The input value of a state-transfer function is the state-value of the state token consumed from the
asciated state-transfer place In this smple example, the buffer can have the following changes due to the put
method: from Empty to Partial, from Partial to Partial, or from Partial to Full. The state-transfer function F4
indicaes that a cdl to the disable method results in the buffer transitioning to the Disabled state, regardlessof the

state-val ue of the token consumed from placep,.

Now, consider a nead to customize this general buffer component for use in a more restricted application.
First, assume the new buffer component should not all ow the disable operation — the buffer cannot be “turned off.”
Sewnd, to ensure tighter synchronization on producer and consumer components, the new buffer component should
behave & a simple cgadty-1 buffer. Thus, only when the buffer is in the Empty state, instead of both Empty and
Partial states, should it accept a put message. We cdl this new buffer a*“ disable-freesynchronous buffer.” To model
a new system that uses a disable-free synchronous buffer, we wuld just redesign the system model in Figure 1 to
creade anew model. The obvious way to dothisis to remove the disable transition from the operator objed model

and from the buffer objed model (along with the incident arcs), and change the state filter for the ac conneding



placep; to the put transition in the buffer model. However, there two important disadvantages inherent in performing

such aredesign of the model of this new buffer component:

1. Increding the new buffer, we have changed the interfaceof another class the operator. This conflicts with the
basic modularity principle of objed-design, i.e., the internal change of one dass $ould not affed other classes.

Thisisan important issue, espedally when it comes to consideration of model synthesis and reuse.

2. To model the fad that the new buffer class can accet a put message only when it is in the Empty state, the
redesign mentioned before would require a diange in the state filter for arc (pg, put) in the general buffer class—
from {Empty, Partial} to {Empty}. But, such a cthange now makes it difficult to dredly identify that the new
objed is one of many possble behaviorally restricted ohjeds derived from a common objed — borrowing from
objed terminology, we can think of these restricted oljeds components as representing subclass objeds of a

superclassobjed. Wewill revisit thisisauein Sedion 3.

The first disadvantage, as we discussed, is due to the removal of a shared transition. Fortunately, SBOPNs
provides an aternative way to achieve this “removal” of behavior without changing the interfaceof an object. For
our example, this can be done by changing the state-filter for the ac (py, disable) in the buffer objed from {Full,
Partial, Empty} to ¢, the empty set. Since no buffer state can be a1 element of ¢ the disable method is now
unsupparted (i.e., the transition representing this method is unable to ever fire in this new subclassmodel). It can be
observed that this use of @ as a state filter is a spedal case of the technique mentioned ealier for modifying the

behavior of the put method.

To overcome the second disadvantages is not so easy and straightforward. We propose to model restriction
inheritance by the simple aldition of a“plug-in” structure to a superclassmodel. In other words, we want to li mit the
behavior of the superclass objed by adding some cntrol structure to the superclass model. Actualy, this is very
natural from the view of control theory since @ntrol systems limit the behavior of a system by adding some
controller logic. For example, [16] describes a method for constructing a Petri net controller for a discrete event
system modeled by a Petri net.

3. Subclass Component M odels and Control Places

In Sedion 2 we informally introduced the SBOPN modeling rotation via an example. Now we can formally

define this notation and discusshow to derive design models for subclasscomponents.



Definition 1 (SBPNO): A Sate-Based Petri Net Objed is a 7-tuple, SBPNO = (Type, NG, Sates, sp, ST, SFM,

STM), where

« Typeisanidentifier for the objed’stype (or class.

e NG= (P, T,A)isanet graph, where
l. P isafinite set of nodes, cdled Places.

. T isafinite set of nodes, cdled Transitions, digoint fromP,i.e, P n T= @
. AP xT) (T xP) isaset of arcs, known as the flow relation.

* Satesisafinite set of distinct states that define the posdble states of the SBPNO. A token (as in standard, or
colored Petri nets) may have asociated with it a state-value, which is one of the dements of States.

* gp [JPiscdled adtate place The value sssciated with the token in this placeindicaes the arrent state of the
SBPNO.

* ST OTisaset of shared transitions. A shared transition in a SBPNO is a transition that is $ared with other
SBPNOs. Shared transitions model the accetance of a message from other SBPNOs or the sending of a
message to ather SBPNOs.

e SM: (AN (PxT) - 2%=isastatefilter mapping, where 25** is the power set of Sates. This mapping maps
ead placeto-transition arc to a state filter. The basic purpose of the state filter mapping is to ensure that only
those tokens that have astate-value representing one of the states in the state filter can pass(i.e., be mnsumed
by atransition) viathe correspondingarc.

* SIM: (AN (T xP)) - P xSTF is astate-transfer mapping, where STF isthe set of state-transfer functions, STF
= {stf | stf: States — 29%*}. This mapping maps ead transition-to-place ac (t, p) to a state-transfer tuple (p’,
stf), where p’ [ {p|(p, t) J A} is cdled the state-transfer place ad stf is cdled the state-transfer function. The
basic purpose of the state-transfer mapping is to allow the firing of transition t to map the state-value of the
token consumed from place p’ into a set of states, which represents the possble state-values that can be

asociated with the token deposited into the output placeviathe crresponding arc.

Aswe saw in Sedion 2, a SBPNO is denoted graphicdly as a Petri net (a subnet) inside abox and a State-
Based Objed Petri Net, SBOPN, is a Petri net consisting of conneded SBPNOs, which are mmponents of the
system being considered. A marking of a SBOPN is the distribution of state tokens to the SBPNO components, and
an SBOPN system (N, Mp) is an SBOPN, N, along with an initial marking Mg (the initial states of the objeds). In a
SBOPN system, a transition t is said to be enaded if and only if, for ead p [7°t (where "t is the set of input places
for transition t), p contains a token whose state value is an element of the state-filter for arc (p, t). When an enabled
transition fires, it removes from ead input place atoken whose state value satisfies the wrresponding state filter,
and then deposits a token to ead output place The state value asgned to a depasited token is one of the dements
given as an output of the arresponding state-transfer function. For example, asaume an arc (t, p) with the state-
transfer tuple (g, f), where the state-transfer function f(x) = {x}. Then the firing of transition t will depasit a token

into placep and the state-value of this token will be equal to the state-value of the token removed from placeq.



To smplify SBPNO models, implicit state filters and implicit state-transfer tuples are dlowed, i.e.,
definitions are asumed if they are not explicitly spedfied. For an implicit state filter, the state-filter is States. Note
that in Figure 1, the state filters are implicit in the producer, consumer, and operator objeds. An implicit state-
transfer tuple can be used only when the output place asciated with the ac is an input place of the transition
asciated with the ac — the ac is part of a self-loop. The state-transfer placeis the placein the self-loop. We dso
require an implicit state-transfer function’s output to be the state-value of the token removed from the placein the
self-loop. Due to the simplicity of the producer, consumer, and operator objed models, the state-transfer tuples are

also implicit.

Definition 2 (firing sequence): Let N = (Type, NG, Sates, V, ST, SFM, STM) be aSBOPN, t; 0 ST (1 <i <n), and let
M; be amarking (1 <i <n+1). If the marking M;., is readed from marking M; by firingt;, thenwe cdl o= tit,...t,a

firing sequence of the SBOPN system (N, My).

Now we can identify properties of a restriction subclassand present the definition of a restriction subclass
model. First, the methods of a restriction subclassobjed should be asubset of the methods of the superclassobjed.
Seoond, the externally observable behavior of a restriction subclass objed should be observable in the behavior of
the superclassobjed. In other words, any firing sequence of a SBPNO subclassmodel should be afiring sequence of
the superclass model when we only consider the shared transitions. In the foll owing definition we use the notation

alt, aprojedion of gonto T. As an example of this projedion, let o= titotitsty, and T = {ty, ta}, then ot = tytyts.

Definition 3 (Restriction Subclass Model): Let N; = (Type;, NG,, States;, ST;, SFM;, STM;), N, = (Type,, NG,
Sates,, ST,, SFM,, STM,) be two SBPNOs, then N, is a restriction subclassmodel of N, if and only if:

1) ST,0 ST,

2) For any marking M, of N,, there exists a marking M, of Ny, such that for any firing sequence o, of (N,,

M), there exists afiring sequence g, of (N, My), which satisfies 01|sr; = 02| sr-

A particular restriction subclass model must be defined in terms of some particular superclass model and

some spedfic method restrictions. These restrictions are cgtured by arestriction function, as defined next.

Definition 4 (Restriction Function): Let N; = (Typey, NG;, States,, 1S;, Soken;, ST;, SFM;, STM;) be aSBOPN, and

Satesl Satesl
let function f: SF; - 2 , where S, is the domain of SFM,, and 2 is the power set of States;. The

function f is cdled arestriction function for Ny if and only if f satisfies: [Jsfy [7 S, f(sfy) [ sfy.

Applying f to the state filters of N; creaes a new model, which we denote a N;,|f. It can be shown that Ny|f
is arestriction subclassmodel of Ny, but note that N,|f feaures the two dsadvantages discussd ealier in Sedion 2.



Our goal is to creade a“plug-in’ structure that can be alded to a superclass model causing it to have the same
behavior as N|f but avoiding these disadvantages. Such a plug-in structure must be ale to control the firing of some
shared transition t. Thisis acaomplished by using a so-cdled “control place” &the heat of the plug-in structure. The
control placemust ensure that the state-value of atoken in the control place“tracks’ the state-value of atoken in one

of theinput places p to the transition t. We cdl such a placep the “controlled place”

Definition 5 (Control Place: Let N = (Type, NG, Sates, ST, SFM, STM) be aSBPNO, and p; and p, be two places
of N. We say that p, isa control placefor p; (p; isa controlled pace if and only if:
1) (STnp, 20)0(STnp,” OSTn p)(Note: p; isthe set of output transitions of the placep;).
2) For any shared transition t [7 (ST n p,’), the ssciated state filter for the ac (p,, t) is a subset of the
state filter for the correspondingarc (py, t).
3) For any reatable marking M’ from M, which satisfies M(p,) = M(p2), and any transitiont .7 (ST n
p>’), if t fires under M, then the tokens consumed by t from p; and p, should have the same state

values.

4. Synthesisof Plug-In Structuresfor Modeling Customized Components
4.1 Basic Plug-in Design

A sraightforward way to implement a control placeis to creae aduplicae place The basic ideahas two
steps. First, we duplicae the mntrolled place such that the new place has exadly the same input and output
charaderistics as the ontrolled place Obviously, any change in the marking of the ntrolled pace is
simultaneoudly refleded in the marking of the new duplicaed place Because the new SBPNO (creaed by the
duplication procesg has the same exad behavior as the origina SBPNO, the new SBPNO serves as a (trivial)
restriction subclass In the second step, we modify the state filters for the acs from the new placeto al shared
transitions such that they satisfy the spedfic requirement of the particular desired restriction subclass This creges a
model for a austomized component. Recdl that the spedfic restriction requirement (i.e., the austomization feaure) is
determined by arestriction function, as defined in Definition 4.

Although a duplicding place ca be used to creae a ontrol place ad thus build a restriction subclass
without changing interfaces, there is one significant disadvantage: redundarty. For example, in creaing the “disable-
freesynchronous’ buffer model from Sedion 2, we do not want to change the firing conditi ons of the enable and get
methods. But it is necessry for the @ntrol placeto conned with the essociated shared transitions. Also, these
additional arcs must carry the same state-filters and state-transfer functions as in the superclass model. Such extra

arcs, which do not change the behavior of the methods, imply an existence of redundancy in the new model.

Since our goa isto ensure that the state-marking of a @ntrol place“tradks’ that of the controlled place we

can copy the token of a controlled paceinto the ntrol place but we must be sure that this copying occurs before



allowing these places to enable ay shared transition. We cdl this type of control place & 'refreshing place”sinceit
gets refreshed (i.e., the state-value of its current state token is updated) ead time the state-value of the token in the
corresponding controlled place tanges. Figures 2, 3 and 4 ill ustrate thisideaby a simple example. In Figure 2, we
have aSBPNO for a mmponent C1. Now suppose we want to model a restriction subclass C2 that has the property
that t; can be enabled only when the objed is in the state a — instead of either state a or b, as in the cmponent C1.
We nedl t, to remain enabled in the a state.

To model this subclass we aede anew placep, (seeFigure 3) asa @ntrol place cadidate. Transition tzis
introduced for the purpaose of copying the state token from p; to p,. As in the duplicaing placetechnique, the state
filter associated with p,’s connedion to t; is{a}. However, under the general firing rule that controls the behavior of
a SBPNO, we canot guaranteethat the tokens in p; and p, are of the same value when t; is enabled. For example, in
Figure 2, suppose p; hasinitial state a, then the firing sequenceis t; t,t; . Now consider Figure 3, where both p; and
p. have initial state a. Oncet; fires, p; has date b, while p, till has date a. If t; does not yet fire, p; and p, have
different states, but t; is gill enabled. As aresult, we could get the same firing sequence & C1, t,"t,t,". However, C2
is supposed to only allow the restricted firing sequence t; t,, where we ignore the internal transition ts in the firing

sequence. So the anstruction in Figure 3 daes not yet provide for a proper modeling of the antrol place

The problem is that when t; fires, the token in p, remains unchanged and thus is not “tracking”’ the marking
of p;. To solve this problem, we neead to forcets to fire immediately after t, fires, i.e., to refresh p, immediately. This
is acaomplished by using a spedal form of Petri net arc cdled an adivator arc [17]. An adivator arc can be used to
conned a placeto atransition. For nets with adivator arcs, the transition firing rules are & follows: 1) Those enabled
transitions with adivator arcs have the highest priority, and 2) A transition that has adivator arc input(s) cannot fire
twice in succesgon for the same input marking, i.e., the net’'s marking must be modified in some manner before the
transition can fire again. For example, in Figure 4, t, t, and t; are enabled, but t; has an adivator arc (denoted by the
arc with asolid bubble), so it fires first. After firing t;, we get the same marking, so t; cannot fire ggain. As aresult,
only t; or t, can rext fire. Now, if t; fires, because the marking remains unchanged, we have the same situation as
beforet; fires. But if t, fires, bath t; and t; are enabled. Since the marking hes changed, only t; can fire, which copies
the token b from py to p,, i.e., poisrefreshed. This copying of the state-value from p1to p2is due to the state-transfer
function F3. Note that t; is not enabled any more &ter t; fires. Aswe can see now p, serves as a proper control place

to ensure we have only one firing sequencet; t, (again, ignoring the internal transition t; in the firing sequence).

We now present two agorithms for synthesis of restriction subclass models using plug-in structures. The
first algorithm is used to creae arefreshing place Its purpose is to suppart the second, more important, algorithm,

which synthesizes arestriction subclassmodel.

Algorithm 1: Crede arefreshing placein a SBPNO.
Input: A SBPNO N = (Type, NG, Sates, ST, SFM, STM), and a placep; that satisfiesp,” [J ST.
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Output: A new SBPNO (amodified version of N) with arefreshing placep, for p;.
Procedure:
1) Addto N; aplacep, and atransitiont’.
2) Addanarcr,fromp;tot’,andanarcr, fromt’ to p;.
3) Addan arc rz fromt' to p,, and an arc r, from p, to t'. Use (p;, F) as the state-transfer tuple for rs,
where F isdefined as F(X) = {x}, x [J Sates.

4) Addan adivator arc fromp, tot’.

As an example, applying Algorithm 1 to the SBPNO in Figure 2 credes part of the SBPNO shown in Figure
4 —all of the model except the acs (p2, t1), (t1, p2) and the state-filter {a} for the ac (p2, t1).

Algorithm 2: Model arestriction subclassby use of plug-in structures
Input: 1) A SBPNO N; = (Typey, NG,, States;, STy, SFM;, STM,).
2) A restriction function (seeDefinition 4), f: SF, — 2%t
Output: A restriction subclass model N, of N; (N, has the same externally observable behavior as the model N,|f
identified in Sedion 3).
Procedure:
1) Make a opy N;. Call this new model N, and let N, be the source net for the foll owing step:
2) Foreahtransitiontin STy:
For ead p; [Jt", let S1lbethe statefilter for the ac (py, t). If S2= f(S1) isaproper subset of SJ, i.e., S2
# S1, then creae a ontrol placep, of p; by applying the foll owing steps:
A. UseAlgorithm 1 to crede arefreshing placep, of p;.
B. Addanarcr;fromp,tot. Use S2asthe state filter for r.
C. Addanarcr,fromttop,
End For
End For

The initial marking of a subclassmodel creaed by Algorithm 2 is determined by the initial marking of the
superclass used to crede it. All places except the aeded control places have the same initial marking as in the
superclassmodel. The wntrol places take on the same initial marking as their corresponding controlled places. Asan
example, applying Algorithm 2 to the SBPNO in Figure 2 creaes the SBPNO shown in Figure 4. In this case, N; is
the model shown in Figure 2 and the restriction function f is defined as f({a, b}) = {a}, f({a}) = {a}. Note that the
structure within the dashed bax in Figure 4 is the plug-in structure. As we can see Figure 4 is more cmplex than
Figure 2. And the switchable plugrin structures introduced in next subsedion are even more mplicaed. Our

proposal of modeling restriction inheritance would not be pradicd if we have to manually handle this complexity
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introduced by plug-in structure. Fortunately, since the synthesis of restriction subclass models is based on an

agorithmic process automated tools can be used to hide the internal detail s of modeling and analysis.

4.2 Switchable Plug-in Structures

One alvantage of Algorithm 2 is that the plug-in structures creaed are potentially controllable. By
controll ability we meen that a switch can be alded to the structure to control its adivity, i.e., the switch can be used
to “turn on” or “turn off” the functionality of the plug-in structure. We cdl such a plug-in a “switchable plug-in.”
Switchable plug-ins offer a key advantage: They allow an model to represent a family of restriction subclassmodels,
corresponding to a family of components. The basic idea is that a singe component-model with n potential
customizations (defined by n plug-in structures) can in fad model afamily of 2" customized components. The family
members correspond to the various combinations of enabled customizaion fedures. This technique will be discussed

shortly by a spedfic example.

To transform a plug-in structure into a switchable plug-in, a new placenode must be added. For example,
Figure 5 shows the same model as Figure 4, but with a switchable plug-in. Placeps serves as this new switch place
When there is a token in the switch placeps, the “plug-in” structure is adive. In this case, the plug-in behaves as
before we introduced the switch place i.e., like Figure 4. But when there is no token in ps, the transition t; will never
be enabled. So, in this case, the model behaves as before we introduced the plug-in, i.e., like Figure 2. Notice that we
have introduced a new state value cdled internal to the state set. Althoughiit is possble to creae the switching
cgoability for this particular example without introducing this new internal state, use of this gedal state is required

for creaing general-purpose switchable plug-ins. To explain this point, consider the foll owing situation.

Suppose that we wanted to crede a subclassC3 of classC1, where C3 does not suppat methodtl at all. In
this case, by Algorithm 2, the SBOPN for classC3 would look like the model in Figure 4, except that the state filter
for the ac (p,, t;) would be ginstead of {a}. Now, to make the plug-in of this model switchable, we would introduce
a switch placep3 as was done in Figure 5. But, since the state filter is the enpty set, there is no way for the switch
placeto enable transition t1 — it is always disabled, regardiessof the state value of the token we put in p2. So, it is
clea that in a switchalde plug-in we cainot alow @as the state filter for a restricted transition. A ssimple solution is
to introduce anew state value that is reserved for use within the switchable plug-in structure. This is the internal
state referred to ealier. Now, the state filter can beame {internal}, as oppsed to @ To creae the initial marking of
this subclass C3, it is necessary that the initial markings of the cntrol placep2 and the switch placep3 have the
state-value internal. In general, to model a restriction subclass using switchable plug-ins, we can use Algorithm 2
with the foll owing two simple modifications:

1. For ead plug-in, crede aswitch place(conneded to/from the transition for the refreshing place.
2. For ead plug-in, modify the state filter (for the ac from the mntrol place to the restricted transition) to include
the state internal.
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As an example, let us revisit the buffer example from Sedion 2. Now, the modified algorithm mentioned
above can be gplied to the model in Figure 1 to creade amodel for a “disable-free synchronous’ buffer. The
resulting model (with two switchable plug-ins) is $own in Figure 6. Note that the initial marking of al places
belonging to pug-ins are internal. Note that the plug-in associated with the disable method employs a state filter of
{internal}. Thus, if this plug-in is “turned-on” (by marking the switch placé, the disable method will become
inadive. For the plug-in associated with the put method, the state filter is st to {i,Empty}. Thus, the put method is
adive only when the buffer isin the anpty state. Most importantly, note that this one subclassmodel adually models
afamily of buffer types. The binding of the model to a spedfic buffer behavior is acaomplished by varying the initial
markings of the switch places (p2 and p3'). The foll owing table defines the options:

p2 p3 Model

Marked Marked A “disable-freesynchronous’ buffer
Marked Unmarked A “disable-free” buffer

Unmarked Marked A “synchronous’ buffer

Unmarked Unmarked A general buffer

The aility to model a family of components can be very helpful for commercial component-based
development. It supparts flexible analysis of varying configurations of customized components in the design phase,
which can reduce the overall cost of development. This has the potential to aid configuration management and
suppart, which is beaoming a major challenge that organizations facein component-based software development
[18].

4.3 Some Analysis I ssues

Basic SBOPN models (without plug-in structures) are derived from standard colored Petri nets. Basic
SBOPN models, with state filters and state-transfer functions, can be transformed into colored Petri nets[12]. Thisis
important sincewe want SBOPN modelsto be ale to use afull set of analysistedhniques arealy existing for mature
models like lored Petri nets or ordinary Petri nets. But, the subclass models that correspond to customized
components in this paper use adivator arcs. Thus, we must understand the impaa of these acsin terms of analysis
potential. After al, adivator arcs are spedal arcs with urique semantics. In the generally case, there is no equivalent
ordinary Petri net structure for a Petri net with adivator arcs. But, in our models, adivator arcs are used only in plug-
in structures. Thus, it is possble to convert an SBOPN model with adivator arcs to a genera SBOPN model and
preserve liveness safeness and baundedness of the model. To simplify our discusson, we use Figure 5 as an

example to explain some key aspeds of thistrandation. The results apply in general.
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Consider the switch placep3in Figure 5. In the cae that p3 is not marked, it can be observed that removal
of the plug-in will not change the liveness safenessand baundednessproperties of the model. Now consider the cae
when p3 is marked. In this case, p3 can rever disable t3. Thus, p3 and the mrresponding arcs can be removed
without changing the model’ s behavior. From the structure of the plugrin, it is clea that the plug-in will not affed the
safenessor boundednessof the model. A similar analysis of p2'simpad on the livenessof the model confirms that
that both state-filters (on the acs (p1, t1) and (p2, t1)) can be changed to {a} without changing the livenessproperty
of t1. Now, since both state-filters associated with t1 are equal, and whenever t1 fires, the tokens in p1 and p2 have
identicd state-values, the plug-in structure can be removed without impading the liveness of t1. Furthermore,
because of the 1-to-1 correspondence between a plug-in and a shared transition, the trandation just described dces
not impad the livenessof transition t2. Further conversion of an objed model to a wlored Petri net or ordinary Petri
net is now asared, providing a basis for various analysis capabiliti es. Further discusson on spedfic analysis

techniques using these lower-level, basic net modelsis beyond the scope of this paper.

5. A Case Study

In the recent yeas, business via the Internet (e-commerce) has becme more aad more important in
industry. Since the Internet is a global-scde distributed system, e-commerce systems face isuues guch as non-
determinism, synchronizaion, and paralelism. The inherent complexity of such systems requires architeds,
designers, and developers to use techniques and tools with formal methods charaderized by a sound mathematica
basis. Our SBOPN is one such technique. To demonstrate the usage of SBOPN in the ecommerce domain, the cae
study presented in this dion will focus on design of e-commerce systems. The first part of the cae ill ustrates how
to use SBOPN to model aweb-shoppng system. The second part of the case feaures one of the benefits of SBOPN:
reusability. In the example, some dasss are reused dredly in a new system design while some ae reused by

inheritance, and some aetotally rebuilt.

5.1 Basic M odéel

A web-shopping system isa dasdc businessto-customer example in e-commerce In this g/stem, customers
use the Internet to do shopping in a virtual store, instead of a physicd store. Typicdly, a astomer uses a web
browser, such as Netscgpe or Internet Explorer, to conned to a web site of a company doing e-business such as
Amazon.com. Then he registers to the shopping system, orders goods, and paosshly inputs promotion information.
Finaly, the austomer pays online, and finishes the shopping sesson. In our example, we asaume that there ae two
different types of customers, as found in many shopping stores. regular-customers, and member-customers. Member-
customers are automaticaly granted some spedal discounts that are not avail able for regular-customers. We want to

model the system using the SBOPN notations.

First, we determine the dasses of this g/stem. Here we have four different classes: “user interface” to

control customers' input and output logic, “register” to hold customers' registration information, “order system” to
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take orders and send out invoices, and “cashier” to receve invoices and charge astomers. Seand, we neel to
determine the states of ead class the messages ead classcan accet, and the pre- and post-states asociated with
eat message. For the “user interface” dass the simplified procedure is: login system, begin order, input promotion
information if necessary, pay order, end arder, and logout. So it has dates. Unauthorized, Authorized, Ordering,
WaitDone. Unauthorized means the austomer has not logged-in yet. Authorized means the austomer has suiccesgully
logged-in. Ordering means the austomer isin the processof ordering items. WaitDone means the austomer is waiting
for the shoppng sedion to finish. Note that the austomer maybe input promotion information during the order
process which is represented by the Promote message. Although this adion does not change the state of the “user

interface” dass it does affed the state of the “order system” class Table 1 shows the pre- and post-states of eat

message.
Starting State Message Ending State
Unauhorized Login Authorized
Authorized Logou Unauthorized
Authorized Begin Order Ordering
Ordering Promote Ordering
Ordering Charge WaitDone
WaitDone End Order Authorized

Table 1. The State Changes of a*“User Interface” Component

The “Register” classcan accept method cdls for Login, Logou, and CheckMembership. Table 2 shows the
state changes. The behaviors sequence of the “Order System” is Begin Order, CheckMembership, Promote, Invoice,
Notify, and End Order. Table 3 defines the state thanges. The “Cashier” classreceves an invoice and then charges

the austomer and sends badk notification. Table 4 shows date changes of “Cashier”.

Starting State Message Ending State
Ready Login Busy

Busy CheckMembership Busy

Busy Logou Ready

Table 2. The State Changes of a“Register” Component
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Starting State Message Ending State
Ready Begin Order SartOrder
SartOrder CheckMembership Regular Customer
SartOrder CheckMembership Member Customer
Regular Customer Promote PromotedRegular
Member Customer Promote PromotedMember
Regular Customer Invoice WaitNotifi cation
PromotedRegular Invoice WaitNotifi cation
Member Customer Invoice WaitNotifi cation
PromotedMember Invoice WaitNotifi cation
WaitNotifi cation Notify FinishOrder
FinishOrder End Order Ready

Table 3. The State Changes of an “Order System” Component

Starting State Message Ending State
Ready Invoice ReadyCharge
ReadyCharge Charge ReadyNotify
ReadyNotify Notify Ready

Table 4. The State Changes of a“Cashier” Component

Once we have the dasses and states, it is draightforward to creae the SBPNOs for these dasss, as iown
inFigures 7, 8, 9, and 10

Now, we can procedl to the next step and crede the system-level SBOPN. The last step isto determine the
initial state of ead class (these we dready showed in the previous figures). The result is giown in Figure 11. Note

that we omit the detail ed information for ead classin the system-level SBOPN view.
5.2 A New Model Based on Reuse
One of the most important benefits of component technology is reusability. In our models, reusability is

achieved by modularity and inheritance of classes objeds. Let us consider the web-shopping system presented in

Sedion 5.1 again. Assume that after this s/stem is used for several months, it turns out that the performance needs to
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be improved for handle multiple austomers and aso it is no longer deamed necessary to give promotions for

member-customers sncethis marketing plan has ceaed to improve the bottom-line of the business

To improve the performance, let us review the SBOPN shown in Figure 11. Aswe can seg the system hasa
register classand a cashier class Both of them have some information about customers. So there is me overhead
to use these two classs. If we ambine these two classes to one dass then we can improve the performance We
name the new classregisterCashier. To reduce the dfed of the new classto ather classes remaining in the system,
we ned this new classhave dl the methods in the register classand the cashier class The new classis $own in

Figure 12.

To reuse our ealier component models, but prevent member-customers from getting a promotion offer, we
can creae asubclassmodel of the order system classmodel such that the subclass model will only alow regular-
customers to get promotion. This can be eaily achieved by using the plug-in concept to restrict the Promote method.
We cdl this sibclassmodel arestricted order system. As aresult, the interfaceof the subclassis the same & for its
superclass The new subclass design is down in Figure 13. Note that we only require asimple plug-in, not a

switchable plug-in, in this example, but for generality, we included a switchable plug-in in the design.

Because we do not change the functionality of the user interface class and al methods remain the same, we
can reuse the user interface class diredly. This is the benefit of modularity of our modeling notation. As an
experiment, we can use Figure 7 as the model of the user interface class The system-level model of the improved
web-shopping system is down in Figure 14. In this view of the system, the internal detail s of the plug-in structure

are suppressed in order to simplify the model.

6. Conclusion and Future Work

One challenge in component-based software engineeingis to find techniques and todls that are dfedivein
aiding the spedficaion and design of component-based systems. One way to increase the dfediveness of these
design techniques is to employ formal methods that provide awell-defined design rotation and suppat design
analysis. From our reseach, and experience with commercial component-based software development, we noticed
that restriction inheritance seems to have pradicd use when customizing general components to define spedal

components.

In this paper, we have discussed our reseach to blend Petri net concepts and oljed-oriented designin order
to develop a design approach for component-based software systems development. We have seleded Petri nets as
our underlying design model becaise we have experience ad expertise in applying this formalism (e.g., [19][20]),

and because the formalism is mature axd with strong suppart from theory and tools. Finally, Petri nets have an
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intuitively appeding gaphicd interpretation. A unique feaure of this work is the idea of a “plug-in” control

structure to allow for modeling restriction inheritance.

For future work, we plan to develop some prototype todls that can be used to automate the aedion of

SBOPN designs for complex systems, including suppart feaures for synthesis and management of customizing

general components to particular components. In addition, we plan to widen the scope of the work on inheritance

modeling to include capabiliti es for modeling other types of inheritance
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Figure 9. SBPNO of “Order System” Component
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Figure 12. SBPNO of the “RegisterCashier” Component in
the Improved Web-Shoppng System
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