

An Approach for Modeling Components with Customization for Distributed Software1

X. Xie and S. M. Shatz

Concurrent Software Systems Lab

University of Illi nois at Chicago

Abstract

Component-based software development has many potential advantages, including shorter time to market and lower

prices, making it an attractive approach to both customers and producers. However, component-based development

is a new technology with many open issues to be resolved. One particular issue is the specification of components as

reusable entities, especially for distributed object-oriented applications. Specification of such components by formal

methods can pave the way for a more systematic approach for component-based software engineering, including

design analysis and simulation. This paper discusses an approach for blending Petri net concepts and object-oriented

features to develop a specification approach for distributed component software systems. In particular, a scheme for

modeling behavior restriction in the design of object systems is presented. A key result of this work is the definition

of a “plug-in” structure that can be used to create “subclass” object models, which correspond to customized

components. Algorithms that support the automatic synthesis of these models are provided, discussed, and ill ustrated

by examples.

1. Introduction and Motivation

 There is significant interest in using components in software development. Specification and

implementation of a system in terms of existing and/or derived components can dramatically decrease the time

required for system development, increase the usabilit y of resulting products, and lower production costs [1].

However, component-based development is still i mmature, with a lack of established procedures and support from

formal modeling. Techniques and tools that are based on formal methods can pave the way for advanced software

engineering capabiliti es such as design analysis and simulation.

 Reuse principles have typically placed high demands on reusable components. Such components need to

suff iciently general to cover the different aspects of their use, while also being simple enough to serve a particular

requirement in an eff icient way. This has resulted in a situation where developing a reusable component may require

three to four times more resources than developing a component for particular use [2]. Thus, component vendors

desire to make full use of these components in order to achieve reasonable profit levels. Such component use

1 This material is based upon work supported by, or in part by, the U.S. Army Research Off ice under grant number
DAAD19-99-1-0350 and by NSF under grant number CCR-9988168.

 2

requires the customization of general components, a process that is aided by applying different constraints to

functionality to support different price policies and different user groups.

 In component-based development, the final products are not closed monolithic systems, but are instead

component-based products. The developers are not only designers and programmers; they are integrators and

marketing investigators. Often a component is not effectively reusable because its interface or part of the

implementation does not match the specified requirements of a target application. To achieve the reuse, the

component needs to be customized into another component that fulfill s the requirement [3]. One purpose of the

customization is to apply constraints in situations where the functionality of a “base component” is more general than

is actually needed, or when some base-component features exhibit characteristics not suitable for a particular

application – for example some functions (or methods) may not be fault tolerant or may be resource hogs. Thus, the

component’s behavior must be restricted before it can be reused in a new design.

One potentially eff icient and natural technique to support constraints is a particular type of inheritance

known as restriction inheritance [4]. Restriction inheritance defines a subclass that constrains the behavior of a

superclass. This is in contrast to augment inheritance, where a subclass augments, or extends, a superclass. Since

subclassing by restriction often conflicts with the semantics and intention of inheritance, where an instance of a

subclass should be an instance of the superclass and should behave like one, some researchers have suggested that

restriction inheritance be avoided [1][5]. But, in our own experience, which does involve development of

commercial component-based software, we have observed benefits of restriction inheritance for customizing

components. First, most commercial component-based software is based on middleware technologies such as

CORBA [6] and/or COM [7]. As a result, these systems mostly consist of classes. In COM, even the interface of a

component is a class. So, it seems natural to use inheritance techniques (defined for class-based systems) to handle

constraints. Also, restriction inheritance is eff icient, simple and straightforward. Finally, since restriction inheritance

is being used for the purpose of defining a wrapper for components, the original components and/or class is not

intended to be used directly, which limits any potential disadvantage associated with the use of restriction

inheritance.

To develop a systematic design process with the capabilit y for automated simulation and analysis, it is

valuable to define a design method’s syntax and semantics in terms of some formal notation and method. This is also

true for restriction inheritance. For engineering of distributed object systems, it is desirable for the formalization to

provide a simple and direct way to describe component relationships and capture essential properties like

nondeterminism, synchronization and concurrency. Petri nets [8] are one formal modeling notation that is in many

ways well matched for general concurrent systems. In particular, the standard graphical interpretation of Petri net

models is appealing as a basis for a design notation. But, standard Petri nets do not provide direct support for high-

level design and object oriented features. This has motivated some recent research into methods for combining Petri

net modeling and object-oriented design. In general, the proposed methods use enhanced forms of Petri nets as a

 3

base of the combination, and pursue two main approaches [9]. One is the “objects inside Petri nets” approach, in

which the semantics of tokens in Petri nets are expanded to include other information, which could include object

definitions (e.g., [10]). The other approach is the “Petri nets inside objects” approach, in which traditional Petri net

constructs are used to model the internal semantics of object (e.g., [11]).

In this paper we introduce a model called a State-Based Object Petri Net (SBOPN), which is developed

from the basic idea introduced in [12]. An example of using SBOPN concepts in the domain of aspect orientation is

described in [13]. In this paper we extend the basic SBOPN model to directly support restriction inheritance

modeling for the purposes discussed earlier. SBOPN is most similar in spirit to Lakos’ Language for Object Oriented

Petri Nets, LOOPN [10]. LOOPN’s semantics are richer, but SBOPN provides a more specific, and thus more

intuitive, notation for capturing the behavior of distributed state-based objects. Like LOOPN, SBOPN is based on a

generalized form of Petri net called colored Petri nets [14]. One other difference between LOOPN and SBOPN is

that the primary encapsulator of object behavior in LOOPN is tokens, while SBOPNs use separate Petri net objects

whose states are captured by special colored tokens. Another language, namely CO-OPN/2 [15], is also a “Petri nets

inside objects.” CO-OPN/2 uses high-level Petri nets that include data structures expressed as algebraic abstract data

types and a synchronization mechanism for building abstraction hierarchies to describe the concurrency aspects of a

system. CO-OPN/2 is a general model that focuses on concurrency. SBOPN focuses more on the architectural

modeling of state-based systems; thus it is simpler and more domain-specific.

The structure of this paper is as follows. Section 2 presents an example using restriction inheritance and

informally introduces the SBOPN model. Section 3 provides details on SBOPN modeling and discusses the

restriction subclasses and SBOPN control places. Section 4 describes our approach for synthesis of subclass models

that capture instances of restriction inheritance. The approach is characterized by the use of special net structures

called “plug-in structures.” Section 5 uses an e-commerce case study to ill ustrate the application of the SBOPN

model. Finally, Section 6 provides a conclusion and mentions some future work.

2. An Example and Introduction to SBOPN Modeling

Consider the classic example of a system that uses a bounded buffer to temporarily hold items, such as

messages. In this version we allow an operator to enable and disable the buffer, in addition to the standard producer

and consumer components. The four system components – buffer, producer, consumer and operator – operate

asynchronously and only interact via messages initiated by the producer (put message), consumer (get message) or

operator (enable and disable message). In particular, the producer sends put messages to the buffer when the

producer has some new item to be deposited into the buffer and the consumer sends get messages to the buffer when

the consumer desires to remove an item from the buffer. Also, the operator can send enable or disable message to

enable or disable the buffer. At any point in time, the buffer should be in one of four states: Empty, Full , Partial

 4

(means Partially Full) or Disabled. Depending on its state, the buffer may or may not be able to accept the messages

put, get, disable and enable. When the buffer is in Empty or Partial state, it can accept the put message and change

to Partial or Full state. When it is in Partial or Full state, it can accept the get message and change to Empty or

Partial state. When it is in any state except the Disabled state, it can accept the disable message and change to the

Disabled state. Finally, when it is in the Disabled state, it can accept the enable message and change to its previous

state (before it was disabled): Empty, Partial or Full . To simpli fy the example, we simply assume that after accepting

a disable message, the buffer is reset to Empty state.

To model state-based systems, such as this buffer system, we use State-Based Object Petri Nets (SBOPN)

[12]. This can be viewed as a special purpose form of (Colored) Petri net. Lack of space prevents us from giving an

overview of Petri nets here; we refer the reader to a reference like [8] for such information. Figure 1 shows a simple

SBOPN model of the system we have described above. Notice that there are separate models for the buffer,

producer, consumer and operator. These component models are called State-Based Petri Net Objects (SBPNO) and

the methods of objects are represented by shared transitions. For example, the put method is represented by a shared

transition used by the buffer object and the producer object. The system model is called a State-Based Object Petri

Net (SBOPN). To informally highlight some key features of the SBOPN model, let us consider the buffer object.

There is an arc from the place p1 to the shared transition put. The token labeled D in p1 is called a state token, and D

is the current state-value of this state token. This represents that the current state of the buffer is Disabled. The label

{Empty, Partial} for the arc (p1, put) shows that the put transition has the potential to fire only when the buffer is in

the Empty or Partial state. This arc label is called a state filter. When all the input places of a transition satisfy the

corresponding state filter, that transition is enabled. The arc from the transition put to the place p1 is also labeled.

This arc label (p1, F1) is called a state-transfer tuple, where p1 is called a state-transfer place and F1 is called a

state-transfer function. This tuple determines the possible state(s) the buffer can be in after the put method is

processed. The input value of a state-transfer function is the state-value of the state token consumed from the

associated state-transfer place. In this simple example, the buffer can have the following changes due to the put

method: from Empty to Partial, from Partial to Partial, or from Partial to Full . The state-transfer function F4

indicates that a call to the disable method results in the buffer transitioning to the Disabled state, regardless of the

state-value of the token consumed from place p1.

 Now, consider a need to customize this general buffer component for use in a more restricted application.

First, assume the new buffer component should not allow the disable operation – the buffer cannot be “ turned off .”

Second, to ensure tighter synchronization on producer and consumer components, the new buffer component should

behave as a simple capacity-1 buffer. Thus, only when the buffer is in the Empty state, instead of both Empty and

Partial states, should it accept a put message. We call this new buffer a “disable-free synchronous buffer.” To model

a new system that uses a disable-free synchronous buffer, we could just redesign the system model in Figure 1 to

create a new model. The obvious way to do this is to remove the disable transition from the operator object model

and from the buffer object model (along with the incident arcs), and change the state filter for the arc connecting

 5

place p1 to the put transition in the buffer model. However, there two important disadvantages inherent in performing

such a redesign of the model of this new buffer component:

1. In creating the new buffer, we have changed the interface of another class, the operator. This conflicts with the

basic modularity principle of object-design, i.e., the internal change of one class should not affect other classes.

This is an important issue, especially when it comes to consideration of model synthesis and reuse.

2. To model the fact that the new buffer class can accept a put message only when it is in the Empty state, the

redesign mentioned before would require a change in the state filter for arc (p1, put) in the general buffer class –

from {Empty, Partial} to {Empty}. But, such a change now makes it diff icult to directly identify that the new

object is one of many possible behaviorally restricted objects derived from a common object – borrowing from

object terminology, we can think of these restricted objects components as representing subclass objects of a

superclass object. We will revisit this issue in Section 3.

The first disadvantage, as we discussed, is due to the removal of a shared transition. Fortunately, SBOPNs

provides an alternative way to achieve this “removal” of behavior without changing the interface of an object. For

our example, this can be done by changing the state-filter for the arc (p1, disable) in the buffer object from {Full ,

Partial, Empty} to φ, the empty set. Since no buffer state can be an element of φ, the disable method is now

unsupported (i.e., the transition representing this method is unable to ever fire in this new subclass model). It can be

observed that this use of φ as a state filter is a special case of the technique mentioned earlier for modifying the

behavior of the put method.

To overcome the second disadvantages is not so easy and straightforward. We propose to model restriction

inheritance by the simple addition of a “plug-in” structure to a superclass model. In other words, we want to limit the

behavior of the superclass object by adding some control structure to the superclass model. Actually, this is very

natural from the view of control theory since control systems limit the behavior of a system by adding some

controller logic. For example, [16] describes a method for constructing a Petri net controller for a discrete event

system modeled by a Petri net.

3. Subclass Component Models and Control Places

In Section 2 we informally introduced the SBOPN modeling notation via an example. Now we can formally

define this notation and discuss how to derive design models for subclass components.

 6

Definition 1 (SBPNO): A State-Based Petri Net Object is a 7-tuple, SBPNO = (Type, NG, States, sp, ST, SFM,

STM), where

• Type is an identifier for the object’s type (or class).

• NG = (P, T, A) is a net graph, where

I. P is a finite set of nodes, called Places.

II . T is a finite set of nodes, called Transitions, disjoint from P, i.e., P ∩ T = φ.

III . A ⊆ (P × T) ∪ (T × P) is a set of arcs, known as the flow relation.

• States is a finite set of distinct states that define the possible states of the SBPNO. A token (as in standard, or

colored Petri nets) may have associated with it a state-value, which is one of the elements of States.

• sp ∈ P is called a state place. The value associated with the token in this place indicates the current state of the

SBPNO.

• ST ⊆ Τ is a set of shared transitions. A shared transition in a SBPNO is a transition that is shared with other

SBPNOs. Shared transitions model the acceptance of a message from other SBPNOs or the sending of a

message to other SBPNOs.

• SFM: (A ∩ (P × T)) → 2States is a state-filter mapping, where 2States is the power set of States. This mapping maps

each place-to-transition arc to a state filter. The basic purpose of the state filter mapping is to ensure that only

those tokens that have a state-value representing one of the states in the state filter can pass (i.e., be consumed

by a transition) via the corresponding arc.

• STM: (A ∩ (T × P)) → P × STF is a state-transfer mapping, where STF is the set of state-transfer functions, STF

= {stf | stf: States → 2States}. This mapping maps each transition-to-place arc (t, p) to a state-transfer tuple (p’ ,

stf), where p’ ∈ {p|(p, t) ∈ A} is called the state-transfer place and stf is called the state-transfer function. The

basic purpose of the state-transfer mapping is to allow the firing of transition t to map the state-value of the

token consumed from place p’ into a set of states, which represents the possible state-values that can be

associated with the token deposited into the output place via the corresponding arc.

As we saw in Section 2, a SBPNO is denoted graphically as a Petri net (a subnet) inside a box and a State-

Based Object Petri Net, SBOPN, is a Petri net consisting of connected SBPNOs, which are components of the

system being considered. A marking of a SBOPN is the distribution of state tokens to the SBPNO components, and

an SBOPN system (N, M0) is an SBOPN, N, along with an initial marking M0 (the initial states of the objects). In a

SBOPN system, a transition t is said to be enabled if and only if, for each p ∈ •t (where •t is the set of input places

for transition t), p contains a token whose state value is an element of the state-filter for arc (p, t). When an enabled

transition fires, it removes from each input place a token whose state value satisfies the corresponding state filter,

and then deposits a token to each output place. The state value assigned to a deposited token is one of the elements

given as an output of the corresponding state-transfer function. For example, assume an arc (t, p) with the state-

transfer tuple (q, f), where the state-transfer function f(x) = {x}. Then the firing of transition t will deposit a token

into place p and the state-value of this token will be equal to the state-value of the token removed from place q.

 7

To simpli fy SBPNO models, implicit state filters and implicit state-transfer tuples are allowed, i.e.,

definitions are assumed if they are not explicitly specified. For an implicit state filter, the state-filter is States. Note

that in Figure 1, the state filters are implicit in the producer, consumer, and operator objects. An implicit state-

transfer tuple can be used only when the output place associated with the arc is an input place of the transition

associated with the arc – the arc is part of a self-loop. The state-transfer place is the place in the self-loop. We also

require an implicit state-transfer function’s output to be the state-value of the token removed from the place in the

self-loop. Due to the simplicity of the producer, consumer, and operator object models, the state-transfer tuples are

also implicit.

Definition 2 (firing sequence): Let N = (Type, NG, States, V, ST, SFM, STM) be a SBOPN, ti ∈ ST (1 ≤ i ≤ n), and let

Mi be a marking (1 ≤ i ≤ n+1). If the marking Mi+1 is reached from marking Mi by firing ti, then we call σ = t1t2…tn a

firing sequence of the SBOPN system (N, M1).

Now we can identify properties of a restriction subclass and present the definition of a restriction subclass

model. First, the methods of a restriction subclass object should be a subset of the methods of the superclass object.

Second, the externally observable behavior of a restriction subclass object should be observable in the behavior of

the superclass object. In other words, any firing sequence of a SBPNO subclass model should be a firing sequence of

the superclass model when we only consider the shared transitions. In the following definition we use the notation

σ|T, a projection of σ onto T. As an example of this projection, let σ = t1t2t1t3t2, and T = {t1, t3}, then σ|T = t1t1t3.

Definition 3 (Restriction Subclass Model): Let N1 = (Type1, NG1, States1, ST1, SFM1, STM1), N2 = (Type2, NG2,

States2, ST2, SFM2, STM2) be two SBPNOs, then N2 is a restriction subclass model of N1 if and only if:

1) ST2 ⊆ ST1

2) For any marking M2 of N2, there exists a marking M1 of N1, such that for any firing sequence σ2 of (N2,

M2), there exists a firing sequence σ1 of (N1, M1), which satisfies σ1|ST1 = σ2|ST2.

A particular restriction subclass model must be defined in terms of some particular superclass model and

some specific method restrictions. These restrictions are captured by a restriction function, as defined next.

Definition 4 (Restriction Function): Let N1 = (Type1, NG1, States1, IS1, Stoken1, ST1, SFM1, STM1) be a SBOPN, and

let function f: SF1 → 2
States1

, where SF1 is the domain of SFM1, and 2
States1

 is the power set of States1. The

function f is called a restriction function for N1 if and only if f satisfies: ∀ sf1 ∈ SF1, f(sf1) ⊆ sf1.

Applying f to the state filters of N1 creates a new model, which we denote as N1|f. It can be shown that N1|f

is a restriction subclass model of N1, but note that N1|f features the two disadvantages discussed earlier in Section 2.

 8

Our goal is to create a “plug-in” structure that can be added to a superclass model causing it to have the same

behavior as N1|f but avoiding these disadvantages. Such a plug-in structure must be able to control the firing of some

shared transition t. This is accomplished by using a so-called “control place” as the heart of the plug-in structure. The

control place must ensure that the state-value of a token in the control place “ tracks” the state-value of a token in one

of the input places p to the transition t. We call such a place p the “controlled place.”

Definition 5 (Control Place): Let N = (Type, NG, States, ST, SFM, STM) be a SBPNO, and p1 and p2 be two places

of N. We say that p2 is a control place for p1 (p1 is a controlled place) if and only if:

1) (ST ∩ p2
• ≠ ∅) ∧ (ST ∩ p2

• ⊆ ST ∩ p1
•) (Note: p1

• is the set of output transitions of the place p1).

2) For any shared transition t ∈ (ST ∩ p2
•), the associated state filter for the arc (p2, t) is a subset of the

state filter for the corresponding arc (p1, t).

3) For any reachable marking M’ from M, which satisfies M(p1) = M(p2), and any transition t ∈ (ST ∩

p2
•), if t fires under M’ , then the tokens consumed by t from p1 and p2 should have the same state

values.

4. Synthesis of Plug-In Structures for Modeling Customized Components

4.1 Basic Plug-in Design

 A straightforward way to implement a control place is to create a duplicate place. The basic idea has two

steps. First, we duplicate the controlled place, such that the new place has exactly the same input and output

characteristics as the controlled place. Obviously, any change in the marking of the controlled place is

simultaneously reflected in the marking of the new duplicated place. Because the new SBPNO (created by the

duplication process) has the same exact behavior as the original SBPNO, the new SBPNO serves as a (trivial)

restriction subclass. In the second step, we modify the state filters for the arcs from the new place to all shared

transitions such that they satisfy the specific requirement of the particular desired restriction subclass. This creates a

model for a customized component. Recall that the specific restriction requirement (i.e., the customization feature) is

determined by a restriction function, as defined in Definition 4.

Although a duplicating place can be used to create a control place and thus build a restriction subclass

without changing interfaces, there is one significant disadvantage: redundancy. For example, in creating the “disable-

free synchronous” buffer model from Section 2, we do not want to change the firing conditions of the enable and get

methods. But it is necessary for the control place to connect with the associated shared transitions. Also, these

additional arcs must carry the same state-filters and state-transfer functions as in the superclass model. Such extra

arcs, which do not change the behavior of the methods, imply an existence of redundancy in the new model.

Since our goal is to ensure that the state-marking of a control place “ tracks” that of the controlled place, we

can copy the token of a controlled place into the control place, but we must be sure that this copying occurs before

 9

allowing these places to enable any shared transition. We call this type of control place a “refreshing place” since it

gets refreshed (i.e., the state-value of its current state token is updated) each time the state-value of the token in the

corresponding controlled place changes. Figures 2, 3 and 4 ill ustrate this idea by a simple example. In Figure 2, we

have a SBPNO for a component C1. Now suppose we want to model a restriction subclass C2 that has the property

that t1 can be enabled only when the object is in the state a – instead of either state a or b, as in the component C1.

We need t2 to remain enabled in the a state.

To model this subclass, we create a new place p2 (see Figure 3) as a control place candidate. Transition t3 is

introduced for the purpose of copying the state token from p1 to p2. As in the duplicating place technique, the state

filter associated with p2’s connection to t1 is {a}. However, under the general firing rule that controls the behavior of

a SBPNO, we cannot guarantee that the tokens in p1 and p2 are of the same value when t1 is enabled. For example, in

Figure 2, suppose p1 has initial state a, then the firing sequence is t1
*t2t1

*. Now consider Figure 3, where both p1 and

p2 have initial state a. Once t2 fires, p1 has state b, while p2 still has state a. If t3 does not yet fire, p1 and p2 have

different states, but t1 is still enabled. As a result, we could get the same firing sequence as C1, t1
*t2t1

*. However, C2

is supposed to only allow the restricted firing sequence t1
*t2, where we ignore the internal transition t3 in the firing

sequence. So the construction in Figure 3 does not yet provide for a proper modeling of the control place.

The problem is that when t2 fires, the token in p2 remains unchanged and thus is not “ tracking” the marking

of p1. To solve this problem, we need to force t3 to fire immediately after t2 fires, i.e., to refresh p2 immediately. This

is accomplished by using a special form of Petri net arc called an activator arc [17]. An activator arc can be used to

connect a place to a transition. For nets with activator arcs, the transition firing rules are as follows: 1) Those enabled

transitions with activator arcs have the highest priority, and 2) A transition that has activator arc input(s) cannot fire

twice in succession for the same input marking, i.e., the net’s marking must be modified in some manner before the

transition can fire again. For example, in Figure 4, t1, t2 and t3 are enabled, but t3 has an activator arc (denoted by the

arc with a solid bubble), so it fires first. After firing t3, we get the same marking, so t3 cannot fire again. As a result,

only t1 or t2 can next fire. Now, if t1 fires, because the marking remains unchanged, we have the same situation as

before t1 fires. But if t2 fires, both t1 and t3 are enabled. Since the marking has changed, only t3 can fire, which copies

the token b from p1 to p2, i.e., p2 is refreshed. This copying of the state-value from p1 to p2 is due to the state-transfer

function F3. Note that t1 is not enabled any more after t3 fires. As we can see, now p2 serves as a proper control place

to ensure we have only one firing sequence t1
*t2 (again, ignoring the internal transition t3 in the firing sequence).

We now present two algorithms for synthesis of restriction subclass models using plug-in structures. The

first algorithm is used to create a refreshing place. Its purpose is to support the second, more important, algorithm,

which synthesizes a restriction subclass model.

Algorithm 1: Create a refreshing place in a SBPNO.

Input: A SBPNO N = (Type, NG, States, ST, SFM, STM), and a place p1 that satisfies p1
• ∈ ST.

 10

Output: A new SBPNO (a modified version of N) with a refreshing place p2 for p1.

Procedure:

1) Add to N1 a place p2 and a transition t’ .

2) Add an arc r1 from p1 to t’ , and an arc r2 from t’ to p1.

3) Add an arc r3 from t’ to p2, and an arc r4 from p2 to t’ . Use (p1, F) as the state-transfer tuple for r3,

where F is defined as F(x) = {x}, x ∈ States.

4) Add an activator arc from p1 to t’ .

As an example, applying Algorithm 1 to the SBPNO in Figure 2 creates part of the SBPNO shown in Figure

4 – all of the model except the arcs (p2, t1), (t1, p2) and the state-filter {a} for the arc (p2, t1).

Algorithm 2: Model a restriction subclass by use of plug-in structures

Input: 1) A SBPNO N1 = (Type1, NG1, States1, ST1, SFM1, STM1).

2) A restriction function (see Definition 4), f: SF1 → 2States1

Output: A restriction subclass model N2 of N1 (N2 has the same externally observable behavior as the model N1|f

identified in Section 3).

Procedure:

1) Make a copy N1. Call this new model N2 and let N2 be the source net for the following step:

2) For each transition t in ST1:

For each p1 ∈ t •, let S1 be the state filter for the arc (p1, t). If S2 = f(S1) is a proper subset of S1, i.e., S2

≠ S1, then create a control place p2 of p1 by applying the following steps:

A. Use Algorithm 1 to create a refreshing place p2 of p1.

B. Add an arc r1 from p2 to t. Use S2 as the state filter for r1.

C. Add an arc r2 from t to p2

End For

End For

The initial marking of a subclass model created by Algorithm 2 is determined by the initial marking of the

superclass used to create it. All places except the created control places have the same initial marking as in the

superclass model. The control places take on the same initial marking as their corresponding controlled places. As an

example, applying Algorithm 2 to the SBPNO in Figure 2 creates the SBPNO shown in Figure 4. In this case, N1 is

the model shown in Figure 2 and the restriction function f is defined as f({a, b}) = {a}, f({a}) = {a}. Note that the

structure within the dashed box in Figure 4 is the plug-in structure. As we can see, Figure 4 is more complex than

Figure 2. And the switchable plug-in structures introduced in next subsection are even more complicated. Our

proposal of modeling restriction inheritance would not be practical i f we have to manually handle this complexity

 11

introduced by plug-in structure. Fortunately, since the synthesis of restriction subclass models is based on an

algorithmic process, automated tools can be used to hide the internal details of modeling and analysis.

4.2 Switchable Plug-in Structures

One advantage of Algorithm 2 is that the plug-in structures created are potentially controllable. By

controllabilit y we mean that a switch can be added to the structure to control its activity, i.e., the switch can be used

to “ turn on” or “ turn off ” the functionality of the plug-in structure. We call such a plug-in a “switchable plug-in.”

Switchable plug-ins offer a key advantage: They allow an model to represent a family of restriction subclass models,

corresponding to a family of components. The basic idea is that a single component-model with n potential

customizations (defined by n plug-in structures) can in fact model a family of 2n customized components. The family

members correspond to the various combinations of enabled customization features. This technique will be discussed

shortly by a specific example.

To transform a plug-in structure into a switchable plug-in, a new place node must be added. For example,

Figure 5 shows the same model as Figure 4, but with a switchable plug-in. Place p3 serves as this new switch place.

When there is a token in the switch place p3, the “plug-in” structure is active. In this case, the plug-in behaves as

before we introduced the switch place, i.e., like Figure 4. But when there is no token in p3, the transition t3 will never

be enabled. So, in this case, the model behaves as before we introduced the plug-in, i.e., like Figure 2. Notice that we

have introduced a new state value called internal to the state set. Although it is possible to create the switching

capability for this particular example without introducing this new internal state, use of this special state is required

for creating general-purpose switchable plug-ins. To explain this point, consider the following situation.

Suppose that we wanted to create a subclass C3 of class C1, where C3 does not support method t1 at all . In

this case, by Algorithm 2, the SBOPN for class C3 would look like the model in Figure 4, except that the state filter

for the arc (p2, t1) would be φ instead of {a}. Now, to make the plug-in of this model switchable, we would introduce

a switch place p3 as was done in Figure 5. But, since the state filter is the empty set, there is no way for the switch

place to enable transition t1 – it is always disabled, regardless of the state value of the token we put in p2. So, it is

clear that in a switchable plug-in we cannot allow φ as the state filter for a restricted transition. A simple solution is

to introduce a new state value that is reserved for use within the switchable plug-in structure. This is the internal

state referred to earlier. Now, the state filter can become {internal}, as opposed to φ. To create the initial marking of

this subclass C3, it is necessary that the initial markings of the control place p2 and the switch place p3 have the

state-value internal. In general, to model a restriction subclass using switchable plug-ins, we can use Algorithm 2

with the following two simple modifications:

1. For each plug-in, create a switch place (connected to/from the transition for the refreshing place).

2. For each plug-in, modify the state filter (for the arc from the control place to the restricted transition) to include

the state internal.

 12

As an example, let us revisit the buffer example from Section 2. Now, the modified algorithm mentioned

above can be applied to the model in Figure 1 to create a model for a “disable-free synchronous” buffer. The

resulting model (with two switchable plug-ins) is shown in Figure 6. Note that the initial marking of all places

belonging to plug-ins are internal. Note that the plug-in associated with the disable method employs a state filter of

{ internal} . Thus, if this plug-in is “ turned-on” (by marking the switch place), the disable method will become

inactive. For the plug-in associated with the put method, the state filter is set to { i,Empty} . Thus, the put method is

active only when the buffer is in the empty state. Most importantly, note that this one subclass model actually models

a family of buffer types. The binding of the model to a specific buffer behavior is accomplished by varying the initial

markings of the switch places (p2’ and p3’). The following table defines the options:

p2’ p3’ Model
Marked Marked A “disable-free synchronous” buffer
Marked Unmarked A “disable-free” buffer
Unmarked Marked A “synchronous” buffer
Unmarked Unmarked A general buffer

The abilit y to model a family of components can be very helpful for commercial component-based

development. It supports flexible analysis of varying configurations of customized components in the design phase,

which can reduce the overall cost of development. This has the potential to aid configuration management and

support, which is becoming a major challenge that organizations face in component-based software development

[18].

4.3 Some Analysis Issues

Basic SBOPN models (without plug-in structures) are derived from standard colored Petri nets. Basic

SBOPN models, with state filters and state-transfer functions, can be transformed into colored Petri nets [12]. This is

important since we want SBOPN models to be able to use a full set of analysis techniques already existing for mature

models like colored Petri nets or ordinary Petri nets. But, the subclass models that correspond to customized

components in this paper use activator arcs. Thus, we must understand the impact of these arcs in terms of analysis

potential. After all , activator arcs are special arcs with unique semantics. In the generally case, there is no equivalent

ordinary Petri net structure for a Petri net with activator arcs. But, in our models, activator arcs are used only in plug-

in structures. Thus, it is possible to convert an SBOPN model with activator arcs to a general SBOPN model and

preserve liveness, safeness and boundedness of the model. To simpli fy our discussion, we use Figure 5 as an

example to explain some key aspects of this translation. The results apply in general.

 13

Consider the switch place p3 in Figure 5. In the case that p3 is not marked, it can be observed that removal

of the plug-in will not change the liveness, safeness and boundedness properties of the model. Now consider the case

when p3 is marked. In this case, p3 can never disable t3. Thus, p3 and the corresponding arcs can be removed

without changing the model’s behavior. From the structure of the plug-in, it is clear that the plug-in will not affect the

safeness or boundedness of the model. A similar analysis of p2’s impact on the liveness of the model confirms that

that both state-filters (on the arcs (p1, t1) and (p2, t1)) can be changed to {a} without changing the liveness property

of t1. Now, since both state-filters associated with t1 are equal, and whenever t1 fires, the tokens in p1 and p2 have

identical state-values, the plug-in structure can be removed without impacting the liveness of t1. Furthermore,

because of the 1-to-1 correspondence between a plug-in and a shared transition, the translation just described does

not impact the liveness of transition t2. Further conversion of an object model to a colored Petri net or ordinary Petri

net is now assured, providing a basis for various analysis capabiliti es. Further discussion on specific analysis

techniques using these lower-level, basic net models is beyond the scope of this paper.

5. A Case Study

In the recent years, business via the Internet (e-commerce) has become more and more important in

industry. Since the Internet is a global-scale distributed system, e-commerce systems face issues such as non-

determinism, synchronization, and parallelism. The inherent complexity of such systems requires architects,

designers, and developers to use techniques and tools with formal methods characterized by a sound mathematical

basis. Our SBOPN is one such technique. To demonstrate the usage of SBOPN in the e-commerce domain, the case

study presented in this section will focus on design of e-commerce systems. The first part of the case ill ustrates how

to use SBOPN to model a web-shopping system. The second part of the case features one of the benefits of SBOPN:

reusabilit y. In the example, some classes are reused directly in a new system design while some are reused by

inheritance, and some are totally rebuilt .

5.1 Basic Model

A web-shopping system is a classic business-to-customer example in e-commerce. In this system, customers

use the Internet to do shopping in a virtual store, instead of a physical store. Typically, a customer uses a web

browser, such as Netscape or Internet Explorer, to connect to a web site of a company doing e-business, such as

Amazon.com. Then he registers to the shopping system, orders goods, and possibly inputs promotion information.

Finally, the customer pays online, and finishes the shopping session. In our example, we assume that there are two

different types of customers, as found in many shopping stores: regular-customers, and member-customers. Member-

customers are automatically granted some special discounts that are not available for regular-customers. We want to

model the system using the SBOPN notations.

First, we determine the classes of this system. Here we have four different classes: “user interface” to

control customers’ input and output logic, “ register” to hold customers’ registration information, “order system” to

 14

take orders and send out invoices, and “cashier” to receive invoices and charge customers. Second, we need to

determine the states of each class, the messages each class can accept, and the pre- and post-states associated with

each message. For the “user interface” class, the simpli fied procedure is: login system, begin order, input promotion

information if necessary, pay order, end order, and logout. So it has states: Unauthorized, Authorized, Ordering,

WaitDone. Unauthorized means the customer has not logged-in yet. Authorized means the customer has successfully

logged-in. Ordering means the customer is in the process of ordering items. WaitDone means the customer is waiting

for the shopping section to finish. Note that the customer maybe input promotion information during the order

process, which is represented by the Promote message. Although this action does not change the state of the “user

interface” class, it does affect the state of the “order system” class. Table 1 shows the pre- and post-states of each

message.

Starting State Message Ending State

Unauthorized Login Authorized

Authorized Logout Unauthorized

Authorized Begin Order Ordering

Ordering Promote Ordering

Ordering Charge WaitDone

WaitDone End Order Authorized

Table 1. The State Changes of a “User Interface” Component

The “Register” class can accept method calls for Login, Logout, and Check Membership. Table 2 shows the

state changes. The behaviors sequence of the “Order System” is Begin Order, Check Membership, Promote, Invoice,

Notify, and End Order. Table 3 defines the state changes. The “Cashier” class receives an invoice and then charges

the customer and sends back notification. Table 4 shows state changes of “Cashier” .

Starting State Message Ending State

Ready Login Busy

Busy Check Membership Busy

Busy Logout Ready

Table 2. The State Changes of a “Register” Component

 15

Starting State Message Ending State

Ready Begin Order StartOrder

StartOrder Check Membership RegularCustomer

StartOrder Check Membership MemberCustomer

RegularCustomer Promote PromotedRegular

MemberCustomer Promote PromotedMember

RegularCustomer Invoice WaitNotification

PromotedRegular Invoice WaitNotification

MemberCustomer Invoice WaitNotification

PromotedMember Invoice WaitNotification

WaitNotification Notify FinishOrder

FinishOrder End Order Ready

Table 3. The State Changes of an “Order System” Component

Starting State Message Ending State

Ready Invoice ReadyCharge

ReadyCharge Charge ReadyNotify

ReadyNotify Notify Ready

Table 4. The State Changes of a “Cashier” Component

Once we have the classes and states, it is straightforward to create the SBPNOs for these classes, as shown

in Figures 7, 8, 9, and 10.

Now, we can proceed to the next step and create the system-level SBOPN. The last step is to determine the

initial state of each class (these we already showed in the previous figures). The result is shown in Figure 11. Note

that we omit the detailed information for each class in the system-level SBOPN view.

5.2 A New Model Based on Reuse

One of the most important benefits of component technology is reusabilit y. In our models, reusabilit y is

achieved by modularity and inheritance of classes objects. Let us consider the web-shopping system presented in

Section 5.1 again. Assume that after this system is used for several months, it turns out that the performance needs to

 16

be improved for handle multiple customers and also it is no longer deemed necessary to give promotions for

member-customers since this marketing plan has ceased to improve the bottom-line of the business.

To improve the performance, let us review the SBOPN shown in Figure 11. As we can see, the system has a

register class and a cashier class. Both of them have some information about customers. So there is some overhead

to use these two classes. If we combine these two classes to one class, then we can improve the performance. We

name the new class registerCashier. To reduce the effect of the new class to other classes remaining in the system,

we need this new class have all the methods in the register class and the cashier class. The new class is shown in

Figure 12.

To reuse our earlier component models, but prevent member-customers from getting a promotion offer, we

can create a subclass model of the order system class model such that the subclass model will only allow regular-

customers to get promotion. This can be easily achieved by using the plug-in concept to restrict the Promote method.

We call this subclass model a restricted order system. As a result, the interface of the subclass is the same as for its

superclass. The new subclass design is shown in Figure 13. Note that we only require a simple plug-in, not a

switchable plug-in, in this example, but for generality, we included a switchable plug-in in the design.

Because we do not change the functionality of the user interface class, and all methods remain the same, we

can reuse the user interface class directly. This is the benefit of modularity of our modeling notation. As an

experiment, we can use Figure 7 as the model of the user interface class. The system-level model of the improved

web-shopping system is shown in Figure 14. In this view of the system, the internal details of the plug-in structure

are suppressed in order to simpli fy the model.

6. Conclusion and Future Work

One challenge in component-based software engineering is to find techniques and tools that are effective in

aiding the specification and design of component-based systems. One way to increase the effectiveness of these

design techniques is to employ formal methods that provide a well -defined design notation and support design

analysis. From our research, and experience with commercial component-based software development, we noticed

that restriction inheritance seems to have practical use when customizing general components to define special

components.

In this paper, we have discussed our research to blend Petri net concepts and object-oriented design in order

to develop a design approach for component-based software systems development. We have selected Petri nets as

our underlying design model because we have experience and expertise in applying this formalism (e.g., [19][20]),

and because the formalism is mature and with strong support from theory and tools. Finally, Petri nets have an

 17

intuitively appealing graphical interpretation. A unique feature of this work is the idea of a “plug-in” control

structure to allow for modeling restriction inheritance.

For future work, we plan to develop some prototype tools that can be used to automate the creation of

SBOPN designs for complex systems, including support features for synthesis and management of customizing

general components to particular components. In addition, we plan to widen the scope of the work on inheritance

modeling to include capabiliti es for modeling other types of inheritance.

References

[1] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 1998, ISBN

0-201-17888-5.

[2] M. Larsson and I. Crnkovic, “Development Experiences of a Component-based System,” Proceedings of
Engineering of Computer Based Systems (ECBS 2000), IEEE, 2000.

[3] R. Karl, “Design Patterns for Component-Oriented Development,” Proceedings of the 25th EUROMICRO
Conference, IEEE, ISBN 0-7695-0321-7, 1999.

[4] G. Booch, Object-Oriented Analysis and Design, with Applications (2
nd

 ed.), Benjamin/Cummings, San
Mateo, Cali fornia, 1994.

[5] B. Henderson-Sellers and J. M. Edwards, Booktwo of Object-Oriented Knowledge : The Working Object :
Object-Oriented Software Engineering : Methods and Management, Prentice Hall , 1994.

[6] CORBA, http://www.corba.org

[7] D. Rogerson, Inside COM, Microsoft Press, ISBN 1-5731-349-8.

[8] T. Murata, “Petri Nets: Properties, Analysis, and Applications,” Proceedings of the IEEE, April 1989, pp.
541-580.

[9] R. Bastide, “Approaches in Unifying Petri Nets and the Object-Oriented Approach,” Proceedings of the 1st
Workshop on Object-Oriented Programming and Models of Concurrency, June 1995.

[10] C. A. Lakos, “Pragmatic Inheritance Issues for Object Petri Nets,” Proceedings of TOOLS Pacific ‘95
Conference (The 18th Technology of Object-Oriented Languages and Systems Conference), C. Mingins, R.
Duke, and B. Meyer (Eds), Prentice-Hall , 1995, pp. 309-322.

[11] Y. Deng, S. K. Chang, J. C. A. Figueiredo and A. Perkusich, “ Integrating Software Engineering Methods
and Petri Nets for the Specification and Prototyping of Complex Information Systems,” Proceedings of the
14th

International Conference on the Application and Theory of Petri Nets, Chicago, IL, USA pp. 203-223,

June 1993.

[12] A. Newman, S. M. Shatz, and X. Xie, “An Approach to Object System Modeling by State-Based Object
Petri Nets,” Journal of Circuits, Systems, and Computers, Vol. 8, No. 1, Feb. 1998, pp. 1-20.

[13] X. Xie and S. M. Shatz, “An Approach to Using Formal Methods in Aspect Orientation,” Proceedings of
the Int. Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA), (Special
Session on Architectural Support for Aspect-Oriented Software Systems), Vol. 1, June 26-29, 2000, Las
Vegas, Nevada, pp. 263-269.

[14] K. Jensen, “Coloured Petri Nets: A High Level Language for System Design and Analysis,” Advances in
Petri Nets 1990, G. Rozenberg (Editor), in Lecture Notes in Computer Science, 483, Springer-Verlag, 1990.

 18

[15] D. Buchs and N. Guelfi, “A Formal Specification Framework for Object-Oriented Distributed Systems,”
IEEE Transactions on Software Engineering, Vol. 26, No. 7, July 2000, pp. 635-652.

[16] K. Yamalidou, J. Moody, M. Lemmon and P. Antsaklis, “Feedback Control of Petri Nets Based on Place
Invariants,” Automatica, Vol. 32, No. 1, pp. 15-28, 1996.

[17] S. Ramaswamy and K. P. Valavanis, “Hierarchical Time-Extended Petri Nets (H-EPNs) Based Error
Identification and Recovery for Hierarchical Systems,” IEEE Transactions on Systems, Man and
Cybernetics, Feb. 1996.

[18] A. W. Brown and K. C. Wallnau, “The Current State of CBSE,” IEEE Software, Vol. 15, No. 5, September,
pp. 37-46, 1998.

[19] A. Khetarpal, S. M. Shatz, and S. Tu, “Applying an Object-Based Petri Net to the Modeling of
Communication Primitives for Distributed Software,” Proceedings of the High Performance Computing
Conference (HPC98), Boston, Mass., April 1998, pp. 404-409.

[20] S. M. Shatz, S. Tu, T. Murata, and S. Duri, “An Application of Petri Net Reduction for Ada Tasking
Deadlock Analysis,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No. 12, Dec. 1996,
pp. 1307-1322.

 19

Type : Producer Type : Consumer

R R

R = Ready
States = { Ready}

R = Ready
States = { Ready}

from
Buffer

to
Buffer

D

Type : Buffer

put get

p1

p1

p1

from
Producer

to
Operator

to
Producer to

Consumer

{E, P} {P, F}

(p1, F1)
(p1, F2)

D = Disabled, E = Empty, P = Partial, F = Full
States = { E, P, F, D}

F1(E) = { P} F1(P) = { P, F}
F2(P) = { E, P} F2(F) = { P}
F3(D) = { E}
F4(x) = { D} , if x ∈ States

Figure 1. A SBOPN for the Buffer, Producer, Consumer, and Operator System

get
put

from
Operator

to
Operator

 {E, P, F}

(p1, F4)

disable

from
Operator

from
Consumer

{D}

(p1, F3)

enable

R

p1

R = Ready
States = { Ready}

Type : Operator

from
Buffer from

Buffer

to
Buffer

to
Buffer

disable enable

 20

a
p1

States = { a, b}

Type : C1

t1
t2

{a, b}

(p1, F1)

{a}

(p1, F2)

F1(a) = { a}
F1(b) = { b}
F2(a) = { b}

a
p1

States = { a, b}

Type : C2

t1

t2
{a,b}

(p1, F1)

{a}

F2

F1(a) = { a}
F1(b) = { b}
F2(a) = { b}
F3(x) = { x} , if x ∈ {a, b}

Figure 2. A SBPNO for Class C1

(p1, F3)
t3

p2

{a}

Figure 3. A SBPNO for Subclass C2 (Incomplete)

a

 21

a
p1

States = { a, b}

Type : C2

t1

t2
{a ,b}

(p1, F1)

{a}

(p1, F2)

F1(a) = { a}
F1(b) = { b}
F2(a) = { b}
F3(x) = { x} , if x ∈ {a, b}

(p1,F3)

t3

p2

 {a}

Figure 4. A SBPNO for Subclass C2 Using a Plug-in

a

a

p1

i = internal
States = { a, b, i}

Type : C2

t1

t2

{a, b}

(p1, F1)

{a}

(p1, F2)

(p1, F3)

t3

p2
 {i ,a}

Figure 5. A SBPNO for class C2 Using a Switchable Plug-in

i

i

p3

F1(a) = { a}
F1(b) = { b}
F2(a) = { b}
F3(x) = { x} , if x ∈ {a, b, i}

 22

D

Type : Buffer

p1

from
Producer

to
Operator

to
Producer to

Consumer

 {E, P} {P, F}

(p1, F1) F2

F1(E) = { P} F1(P) = { P, F}
F2(P) = { E, P} F2(F) = { P}
F3(D) = { E}
F4(x) = { D} , if x ∈ {E, P, F}
F5(x) = { x} , if x ∈ States

get
put

from
Operator

to
Operator

{E, P,F}

(p1, F4)

disable

from
Operator

from
Consumer

 {D}

F3

enable

i p2 {i}

{i, E}

i
p3

Figure 6. The SBPNO for a “Disable-Free Synchronous” Buffer
Using a Switchable Plug-in

(p1, F5)

(p1, F5)

t2

t3

i
p2’

i

p3’

D = Disabled, E = Empty, P = Partial, F = Full , i = internal
 States = { E, P, F, D, i}

 23

Figure 7. SBPNO of “User Interface” Component

U

Type: User Interface

U = Unauthorized, A = Authorized,
O = Ordering, WD = WaitDone

States = { U, A, O, WD}

F1(U) = { A} , F2(A) = { U} , F3(A) = { O} ,
F4{ O} = { O} , F5{ WD} = { A} , F6{ O} = { WD}

Login

Logout

Charge

Promote

End
Order

Begin
Order

{ U}

p

(p, F1)

{ A}

(p, F2)

{ A}

(p, F3)

{ O}

(p, F4)

{ WD}

(p, F5)

{ O} (p, F6)

 24

R

Type: Register

R = Ready, B = Busy

States = { R, B}

F1(R) = { B} ,
F2(B) = { B} ,
F3(B) = { R}

Check
Membership

Logout

Login

{ B}

p (p, F2)

{ R}

(p, F1)

{ B}

(p, F3)

Figure 8. SBPNO of “Register” Component

 25

R

Type: Order System

R = Ready, SO = StartOrder,
RC = RegularCustomer, MC = MemberCustomer,
PR = PromotedRegular, PM = PromotedMember,
WN = WaitNotify, FO = FinishOrder

States = { R, SO, RC, MC, PR, PM, WN, FO}

F1(R) = { SO} , F2(SO) = { RC, MC} ,
F3(RC) = { PR} , F3(MC) = { PM} ,
F4(RC) = F4(PR) = F4(MC) = F4(PM) = { WN}
F5(WN) = { FO} , F6(FO) = { R}

Check
Membership

Invoice

Promote

End
Order

Begin
Order

{ SO}

p (p, F2)

{ R}

(p, F1)

{ RC, MC}

(p, F3)

{ FO}

(p, F6)

{ NR, PR,
NM, PM}

(p, F4)

Notify

{ WN}

(p, F5)

Figure 9. SBPNO of “Order System” Component

 26

R

Type: Cashier

R = Ready, RC = ReadyCharge, RN = ReadyNotify

States = { R, RC, RN}

F1(R) = { RC} ,
F2(RC) = { RN} ,
F3(RN) = { R}

Charge

Notify

Invoice

{ RC}

p (p, F2)

{ R}

(p, F1)

{ RN}

(p, F3)

Figure 10. SBPNO of “Cashier” Component

 27

 U: Unauthorized
 R: Ready

U

R

R

R

Begin
Order

Promote

End
Order

Login Logout

Check Membership

Charge Notify Invoice

Type: Register

Type: User
Interface

Type: Order
System

Type: Cashier

Figure 11. SBPNO of a Web-Shopping System

 28

R

Type: RegisterCashier

R = Ready, CI = CustomerIn,
WI = WaitInvoice, RC = ReadyCharge,
RN = ReadyNotify

States = { R, CI, WI, RC, RN}

F1(R) = { CI} , F2(CI) = { R} ,
F3(CI) = { WI} , F4(WI) = { RC} ,
F5(RC) = { RN} , F6(RN) = { R}

Check
Membership

Invoice

Charge Logout

Login { R}

p

(p, F2)

{ WI}

(p, F1)

{ RC }

(p, F3)

{ RN}

(p, F6)

{ CI}

(p, F4)

Notify

{ CI}

(p, F5)

Figure 12. SBPNO of the “RegisterCashier” Component in
the Improved Web-Shopping System

 29

R

Type: Restricted Order System

R = Ready, SO = StartOrder, I = Internal
RC = RegularCustomer, MC = MemberCustomer,
PR = PromotedRegular, PM = PromotedMember,
WN = WaitNotify, FO = FinishOrder

States = { R, I, SO, RC, MC, PR, PM, WN, FO}

F1(R) = { SO} , F2(SO) = { RC, MC} ,
F3(RC) = { PR} , F3(MC) = { PM} ,
F4(RC) = F4(PR) = F4(MC) = F4(PM) = { WN} ,
F5(WN) = { FO} , F6(FO) = { R} ,
F7(x) = { x} , if x ∈ States

Check
Membership

Invoice

Promote

End
Order

Begin
Order

{ SO}

p
(p, F2)

{ R}

(p, F1) { RC, MC}

(p, F3)

{ FO}

(p, F6)

{ NR, PR,
NM, PM}

(p, F4)

Notify

{ WN}

(p, F5)

{ I, RC}

I p1

(p1, F7)

t’

I

p1’

Figure 13. SBPNO of the “Restricted Order System” Component in
the Improved Web-Shopping System

 30

 U: Unauthorized
 R: Ready

U R

R

Begin
Order

Promote

End
Order

Login Logout
Check

Membership Charge
Notify

Invoice

Type: User
Interface

Type: Restricted
Order System

Type: RegisterCashier

Plug-in

Figure 14. SBOPN of the Improved Web-Shopping System

