

Potential Arc: A Modeling Mechanism For Conflict Control In Multi-Agent
Systems

Jiexin Lian and Sol M. Shatz
Department of Computer Science
University of Illinois at Chicago

851S. Morgan Street, Chicago, IL ,60612
{jlian1, shatz}@cs.uic.edu

ABSTRACT

Multi-Agent Systems (MAS) have become one of the
most important topics in distributed systems research.
Although there have been some system modeling
techniques to support MAS design and automatic analysis,
most state-of-the-art techniques haven’t distinguished
potential conflicts from real conflicts during the design
stage. In this paper, a new concept, called potential arc, is
added into colored Petri nets to support the modeling of
MAS. This modeling mechanism eliminates the
unnecessary resolution of potential conflicts since such
conflicts might not result in real conflicts at runtime. The
proposed technique also separates the global conflict
scheme from the local agent behavior, so as to provide
greater flexibility for conflict resolution and system
design.

KEYWORDS

Multi-Agent-System, Colored Petri Net, Conflict
Control, Potential Arc.

1. INTRODUCTION

In a Multi-Agent System (MAS), multiple agents may
work together to perform tasks or solve problems.
Conflicts may occur in the runtime when multiple agents
compete for external resource. Generally speaking, most
state-of-the-art research follows one of the following two
approaches to handle run-time conflicts:

1) In the design stage of MAS, every agent is
assigned a local plan by a certain agent designer, and the
local plan models the behavior of the agent. After all the
agents have been assigned local plans, a certain algorithm
would be chosen to integrate local plans to generate a
global plan, which models the behavior of the MAS.
Through analyzing local plans, the integration algorithm
may request some local plans be updated in order to
generate conflict-free global plans – a global plan being
conflict-free means that no run-time conflict is possible to
occur in the MAS described and developed based on this
global plan. The drawback of this approach is that the
local plans are dependent on each other, so that revising
one local plan may force other local plans to be revised, in
order to guarantee that the global plan remains conflict-
free. As a result, an individual agent cannot be designed

independently. Papers [1,2,9] describe some research
using this approach.

2) Individual agents are designed independently, and
there is no guarantee that run-time conflicts can be
avoided. Whenever a run-time conflict occurs, involved
agents may need to halt their current activities, and
negotiate using a predefined protocol to resolve the
conflict. Waiting for negotiation results can be expected to
make the agents idle (blocked) during runtime, and some
conflicts might not be resolved at all. Papers [6,12] are
examples for research that follows this approach.

Typically, techniques based on the first approach
have the characteristic that agents cannot be designed
independently because such techniques only model the
static properties of the MAS, and these models are not
designed to explicitly simulate the execution of a MAS.
We call such a model a static model. Henceforth,
algorithms applied to static models identify conflicts that
are possible at run-time, without considering any run-time
events that would trigger such conflicts, and eliminate
these conflicts by imposing various constraints during the
modeling stage. However, a run-time conflict only occurs
when triggered by a run-time event corresponding to some
competition for an external resource. The actual
occurrence of such an event is unknown in the MAS
design stage. For example, consider two agents A1 and A2
that model two different airplanes, and each airplane
requires a runway for landing. A conflict occurs only
when both airplanes request to use the same runway in the
same run-time moment. Using a static model, which does
not support run-time events, we would avoid the conflict
by creating agent models that assign different runways for
different airplanes. In this case, neither A1 nor A2 can be
designed independently without the risk of violating the
constraint that the design be conflict free. The key point is
that we need to distinguish a potential conflict from a real
conflict by considering the appropriate resource-
competition event that triggers the conflict.

It is a benefit to distinguish the representation of
potential conflicts and real conflicts in the modeling stage,
so that we can tolerate potential conflicts in the system
design stage, while still guarantee the avoidance of real
run-time conflicts. Our proposal is to incorporate some
new features in traditional colored Petri net (CPN) models
to explicitly support the description of potential conflicts.
Here we select CPN as the modeling tool because CPN-

based MAS models can support the simulation of dynamic
execution of a MAS and the token driven mechanism in
CPN can be used to describe the event triggering
mechanism of conflicts. We assume that the readers are
generally familiar with the basics of colored Petri net
theory [3].

The new feature we introduce in this paper is called a
potential arc, which serves to extend the traditional CPN
model with an explicit support for MAS modeling. By
adopting potential arcs, the design procedure of a MAS
can be divided into two basic steps: 1) design local plans
for individual agents using CPN with potential arcs, and 2)
concatenate local plans to form the MAS model. For each
agent in a MAS, there can be many different agent actions.
For example, “landing” and “taxiing” are two different
actions of an airplane agent. For each action, the agent
designer may design several alternative paths based on the
access or release of resources. Each path may contain
potential arcs to model such access/release of resources.
The agent designer doesn’t need to get the paths approved
in the design stage, because these paths only contain
potential conflicts, and those potential conflicts will not
become real conflicts (at runtime) unless appropriate
resource-competition events occur. For an implementation
based on our design, real conflicts will be detected
automatically at run time and an agent will become aware
of these detected conflicts. In contrast to some techniques
mentioned earlier, our approach will result in an agent that
can choose any path without real conflicts to take actions
and perform tasks, instead of the agent needing to wait for
negotiation results. In this way, we still guarantee the
conflict-free multi-agent environment.

2. MULTI-AGENT-SYSTEM BASED ON
COLORED PETRI NETS

Before discussing the potential arc concept, let’s
generally describe how a CPN model can be used in MAS
modeling [4,8,11].

To maintain conciseness, an incoming arc refers to
the arc from a Petri net place to a transition, while an out-
going arc refers to an arc from a transition to a place. With
regard to modeling an agent’s behavior, we want to
emphasize the following characteristics of an agent: An
agent is an autonomous entity with several properties and
actions. An agent’s mental state is a possible assignment
of the agent’s properties, and we abstract an agent’s
behavior into a set of transitions between different mental
states. An agent action implements some tasks and
updates the agent’s mental state.

For example, a very simple agent AP describes a
person’s behavior. The person has two properties, isHome
and isOffice – to indicate if the person is currently at home
or at his or her office. The person also has one action: go-
to-work. The action go-to-work moves the person from the
home to the office. Both isHome and isOffice have two
possible assignments: “YES” or “NO.” At a specific run-

time moment, isHome equals “YES” means the person is at
home, while isHome equals “NO” means the person isn’t
home; similarly for the property isOffice. The tuple
(isHome, isOffice) represents the agent’s mental state. The
state (isHome, isOffice) = (“YES”, “NO”) means the
person is home, and the action go-to-work updates the
agent’s mental state to (“NO”, “YES”).

We call the model describing an agent’s behavior the
agent’s local plan, and the agent is called the owner of its
local plan. Using a CPN model, we can model an agent’s
local plan. In a local plan, one Petri net place is used to
model one property of the owner agent, and one transition
is used to represent one agent action. For each agent
property, the possible assignments to that property
contribute to the color set for the corresponding CPN
place. Also, a default assignment means there is no
colored token in the place. A Petri net arc is used to
connect places and transitions, and each arc can carry an
inscription. The inscription carried by an incoming (place-
to-transition) arc specifies the colored tokens removed
from the arc’s source place when the arc’s destination
transition fires. The inscription carried by an out-going
(transition-to-place) arc specifies the colored tokens
deposited into the arc’s destination place when the arc’s
source transition fires. The local plan can describe its
owner agent’s run-time behavior. The concept of “running
an agent” means the agent performs actions, and the
actions update the agent’s mental state. From the
perspective of our model, an action corresponds to firing a
transition in the agent’s local plan. Similarly, updating the
agent’s mental state corresponds to updating the state
associated with that local plan.

Take agent AP as an example. We define place Home
and Office for the agent’s two properties isHome and
isOffice, respectively; and transition Move for the agent’s
action go-to-work. The color set for the place Home can
have only one element, since isHome has only two
possible assignments, and one assignment corresponds to
the default assignment of place Home containing no token.
We define the color set as {person}. If the place Home
holds the token “person”, then isHome equals “YES”. The
default assignment for isHome can be defined as “NO”.
Place Office has the same color set as place Home. We
also define arcs (Home, Move) and (Move, Office) in the
local plan, and the inscriptions in arcs (Home, Move) and
(Move, Office) are both “1`person”.

In the run-time, taking the action “go-to-work” can be
represented by firing the transition Move in the agent AP’s
local plan, which results in the token “person” being
removed from place Home and a token “person” being
deposited into place Office. Figure 1 shows the local plan
for agent AP.

Figure 1. A local plan for a simple agent AP

Figure 2. A revised local plan for a simple agent AP

To illustrate the role of arc inscriptions on the local
plan model, let’s refine the previous example. Consider
Figure 2. The difference between Figure 1 and Figure 2 is
that the color set and the inscription on the arcs have
changed. The new color set is defined as {strong, week}.
The inscriptions for both arcs (Home, Move) and (Move,
Office) are revised to “1`strong”. The place Home should
hold a token “strong” to enable transition “move”. A token
“weak” in place Home cannot enable transition “move.”
Intuitively, this enabling policy can be explained as
follows: A person at home should be strong enough to
walk a long distance in order to be moved from home to
office.

Based on the BDI agent model [5], an agent has goal,
plan, knowledge base, and environment modules. The
local plan of our agent corresponds to the plan module in
the BDI agent model. In the BDI model, an agent’s
properties in the plan module also contain belief state set
and goal state set. Goal, knowledge base, environment,
belief state set and goal state set are used to describe a
decision making policy for an agent in the BDI model.
These components are omitted from our agent model since
the technique proposed here is independent of any specific
agent decision making policy.

A local plan only involves one agent; however, in a
MAS, agents interact with each other and one agent’s
action may be dependent on the actions of other agents. In
particular, conflicts may occur due to competition for
external resources. Therefore, supporting a flexible
conflict resolution mechanism is important in MAS
modeling (as discussed earlier). We use the term global
plan to refer to the model of the whole MAS. The global
plan is a concatenation of local plans, and such
concatenation must ensure that the resulting global plan
encapsulates the behaviors of all agents. The global plan
should also model the interaction between different agents
and provide mechanism for conflict detection and
resolution. Ideally, the resulting global plan is also a CPN
model, since the local plans are CPN models.

As a summary, a CPN based MAS model should
include local plans for each agent involved, and a global
plan results from concatenation of local plans. As we can
observe, a CPN-based local plan can’t distinguish
potential conflicts from real conflicts, since the model

can’t encapsulate events triggering run-time conflicts. In
the next section, we will introduce the potential arc
concept to deal with this issue.

3. POTENTIAL ARCS IN MAS
MODELING

Considering the MAS environment, we can extend
our description of an agent to include the concept of a
path: Within an agent, an action is taken through one of
several predefined paths. Associated with each path are
an agent action and a set of resources that may be
acquired or released. In the runtime, an agent action can
be taken along any available path, whose availability is
determined by the availability of associated resources
(especially external resource). The agent is provided the
autonomy to select any available path.

Now we introduce the concept of potential arc
(illustrated by the dashed arcs in Figure 3, Figure 4). In
the basic CPN model, each arc carries one inscription –
we refer to these as regular arcs and regular inscriptions.
We now add the capability for an additional inscription to
describe the need for access to an external resource that is
modeled “out-side” of a local plan. This new inscription is
called a potential inscription, since the access to the
resource is a potential access in terms of the view of the
design model. We call an arc that includes both a regular
inscription and a potential inscription a potential arc and
we call a CPN with potential arcs a Potential Colored
Petri Net (PCPN). A potential inscription carried by an
incoming potential arc specifies the resource unit required
to enable the arc’s destination transition, while a potential
inscription carried by an out-going potential arc specifies
the resource unit released after the arc’s source transition
is fired. We can view the PCPN model as a superset of
CPN models.

By adopting the concept of potential arc, a local plan
can encapsulate the description of an external resource
that triggers a conflict. Thus, we can distinguish a
potential conflict from a real conflict in the agent model.
Due to the unpredictability of external resource conflict at
runtime, it is useful to include several paths for each agent
action in an agent’s local plan. As long as a path exists in
the runtime, the corresponding agent action can be taken,
resulting in a conflict-free behavior in the MAS
environment. In this way, we tolerate potential conflicts in
the agent design stage.

Figure 3. A potential arc from place to transition

1`personHome 1`person

Office

Move

1`strong
Home

1`strong

Office

Move

1`person1`person

Move 1`car

Home Office

Figure 4. A potential arc from transition to place

Figure 3 is a PCPN-based local plan revised from
Figure 1. Intuitively, the agent modeled by Figure 3 has
the potential to fire transition Move. But in order to enable
the transition, we not only need token “person” in place
Home, but also some other agent from the outside must
provide one resource unit “car.” Figure 4 is another
revision of Figure 1. In Figure 4, we need token “person”
in Home to enable transition Move, and firing the
transition would release a resource unit (car) that is
accessible outside the scope of this local plan. The two
local plans, Figure 3 and Figure 4, define different ways in
which the agent of concern, AP, is able to interact with
other agents.

In the design stage of an agent’s local plan, the
designer can use the potential arc concept to describe a
potential path for one agent action, without concern for the
ability of that potential path to become a real path at run-
time. After creating the individual PCPN-based local plans
for each agent of the MAS, the local plans will be
concatenated to form a global plan. This concatenation
process depends upon an appropriate interpretation
scheme for the potential arcs that appear in the local plans.
A potential arc is interpreted as follows: For each potential
arc, we create a place node outside the local plan to
produce or consume the resource unit specified by the
potential inscription. Figure 5 and Figure 6 show
examples of how a potential arc in a local plan is
interpreted in the global plan. As we can see, Figure 5
shows how the potential arc in Figure 3 is interpreted in a
global plan. The potential arc (Home, Move) in Figure 3 is
replaced by a regular arc, and place R1, outside the local
plan model, is added to control the enablement of Move.
R1 needs to produce the token “car” so that transition
Move can be enabled. Similarly, Figure 6 shows how the
potential arc in Figure 4 is interpreted in a global plan.

Figure 5. The interpretation of Figure 3

Figure 6. The interpretation of Figure 4

The concatenation procedure interprets all the
potential arcs from different local plans by the above
semantics, and also develops a unit, modeled as a CPN,
called a coordinator. The final step involves connecting
the coordinator with all the local plans to form the global
plan. An important observation is that with our approach,
an agent’s local plan can be modified in a way that is
transparent to other agents. This is because a modified
local plan can be reconnected to an existing global plan as
long as the potential arcs of the modified local plan remain
the same as in the pre-modified local plan..

4. A MAS DESIGN PROCEDURE

After adopting the concept of potential arc, the MAS
design procedure can be divided into four stages. Tasks of
the four different stages are briefly defined as follows. (1)
Specify the type and the quantity of agents, and the
communication language in the MAS system. A
communication language is a color set defined for agents
to specify the external resource unit requested or released.
(2) Design the local plan for each agent. (3) Interpret all
potential arcs to develop the coordinator. (4)
Concatenating local plans and the coordinator to generate
the global plan.

When designing a MAS model, we need to make sure
all the agents in the MAS use the same communication
language so that a resource unit requested or released by
one agent can be recognized and processed by others. An
agent communication language has an analogy with human
language. In human society, two people speaking two
different languages can’t communicate with each other.
Likewise, in the agent society, two agents representing
their resources in different communication languages can’t
interact with each other, because there is no way for one
agent to recognize and process the resource requested or
demanded from the other. The external resource can be
represented as potential inscription, so we use PI to denote
such a potential inscription. In our discussion, the CPN
ML language [13] is used to specify the communication
language. According to the definition of the CPN ML
language, PI is a CPN ML expression that evaluates to a
multi-set or a single element of the communication
language. For example, the following statement written
using CPN ML defines color set RESOURCE, which
serves as our communication language:

colset ResType = with car | train | bus;
colset Loc = with home | office | park | school |

hospital;
colset RESOURCE = product ResType * Loc;
An element on RESOURCE is a 2-tuple (x, y), which

defines one color token. For example, (car, office) is a
single element on RESOURCE; it’s a colored token.
2`(car, office) + 3`(train, office) is a CPN ML expression
that evaluates to a multi-set on RESOURCE. Both (car,
office) and 2`(car, office) + 3`(train, office) are valid PIs.
We can also use variables in PI. For example, x is a
variable whose type is color set Loc defined above; so

Move

1`car

1`person
Home

1`person

Office

Move

1`person
Home

1`person

Office 1`car

 R1

R2

1`person
Home

1`person

Office

Move
1`car

1`(car, x) + 2`(train, office) is also a valid PI. Note that
our design procedure is independent of any specific
representation of a communication language, as long as
the communication language guarantees that a PI can be
recognized and processed by all the agents.

When designing a coordinator, first we create a Petri
net place for each type of external resource that appears in
potential inscriptions, and create a transition
corresponding to each source or destination transition of a
potential arc in a local plan. Also, the agent id is added as
a prefix for transitions in the coordinator to ensure unique
naming. Then we match the transitions and places in the
coordinator and connect them together. In the coordinator,
a transition T matches a place P if and only if T is created
from a local plan transition that connects to a potential arc,
whose PI contains the resource represented by the place P.
Since a PI may contain variables, T may match multiple
places in the coordinator. Connect T to different matching
places will lead to different coordinators. If a transition in
the coordinator is created for a source transition of a
potential arc in a local plan, an arc will be drawn in the
coordinator from transition to place, while place to
transition arc will be drawn for the transition created for a
destination transition of a potential arc in a local plan.
Figure 8 provides two different coordinators
(Coordinator1 and Coordinator2) for the local plans in
Figure 7. Transition AP1.T1 matches both places (Car,
blue), and (Car, red), and it’s connected to (Car, blue) in
Coordinator1 and (Car, red) Coordinator2. The step-by-
step coordinator generation procedure is omitted due to
lack of space.

Figure 8. Two different Coordinators for local plans in

Figure 7.

Concatenation of local plans and a coordinator can be
realized by merging corresponding transitions from the
coordinator and local plans. When two transitions are
merged, the arcs connected to a transition in a local plan
would be connected to the corresponding transition in the
coordinator. Also, the agent id is added as a prefix for
those places and transitions in local plans to ensure the
unique naming in the resulting global plan. For instance,
Figure 9 shows the global plan generated by merging
transitions from Coordinator1 in Figure 8 and local plans
in Figure 7.

5. CASE STUDY

To put the pieces together, and illustrate our design
procedure, we now apply the procedure discussed in
Section 4 to a simple scenario and show the final result.

5.1 A Simple Scenario

A family lives in the suburb of Chicago. The father
needs to work on every weekday morning, so he needs to
commute from home to office, and in the afternoon, the
father may go to the park for sports if the weather allows.
In the case of bad weather, the father returns home directly
from the office when the weather doesn’t permit out-of-
door sports. The son is a college student, and he needs to
work part time every evening in a hospital to earn some
money for his tuition. He sleeps in the morning, and goes
to school every afternoon for class. The office, the school
and the hospital locate downtown, while the park lies in
the suburb of the city. The home locates in the other side
of the city, also a suburb area.

For the transportation between two locations, there’re
three choices: by car, by train, or by CTA bus. However,
not all the three options are available between every two
locations. For example, there is no train between the
school and the hospital. The family has only one car, so
that if the father drives the car to work, the son can’t use
the car before his father drive the car back. The

availability of trains and buses isn’t fully predictable,
although it roughly follows some schedule.

Based on the scenario above, we can develop a MAS
model to describe the commuting behavior of the family,
helping them to choose an appropriate approach at a
specific moment. Here the car, trains and CTA buses are
described as external resources, and their availability
changes dynamically in the runtime. We assume that the
weather conditions are not reliably predictable. These
impact on the father’s behavior, and the availability of the
car consequently. Therefore, the resource availability is
unknown at the design stage.

5.2 System Design

We design four agent types in our system: father, son,
train dispatcher and bus dispatcher. The father agent

models the father’s commuting behavior. The son agent is
responsible for modeling the son’s behavior. The bus
dispatcher agent and the train dispatcher agent model the
dispatching of buses and trains at different locations
according to some mechanism, respectively. For this
simple example, we use one agent of each type and we
adopt the color set RESOURCE, defined in Section 4, as
the communication language. We follow the design
procedure in Section 4 to generate a MAS system,
including local plans for each agent, a coordinator, and a
global plan. The detailed design procedure is omitted due
to the lack of space, but Figure 10 to Figure 13 illustrate
the local plans for the four different agents. Remember,
inscriptions below arcs are potential inscriptions, while
inscriptions above arcs are regular inscriptions.

The train dispatcher’s local plan has only one action
with one path: dispatch a train to a location specified by
variable x. Similarly, we get the Bus Dispatcher’s local
plan. Since the coordinator is quite large, we only show
parts as an example. Figure 14 shows the transitions
connected to the resource (car, home), and Figure 15
shows transitions connected to the resource (bus, home).
From Figure 14 and Figure 15, we can clearly capture the
interactions surrounding a specific resource without
concern for other parts of the model. Finally, generating
the global plan means merging the transitions from local
agents and the coordinator. We also omit the global plan
due to the lack of space and the size of the global plan.

6. CONCLUSION

Briefly speaking, the potential arc concept expands
the modeling power of CPN to distinguish the
representation of potential conflicts from real conflicts in
MAS design. This feature also leads to a modular design
procedure where individual agent designs are independent.

REFERENCES
[1] K. S. Barber, T. H. Liu and A. Goel C. E.

Martin.1999.“Conflict Representation and
Classification in a Domain Independent Conflict
Management Framework.” Proceedings of the Third
International Conference on Autonomous Agents.

[2] K. S. Barber, T. H. Liu and S. Ramaswamy.2001
“Conflict Detection During Plan-Integration for Multi-
Agent Systems.” IEEE Transactions on Systems, Man,
and Cybernetics, Volume 31, Number 4, August.

[3] International Standard. 2000. “High-level Petri Nets -
Concepts, Definitions and Graphical Notation. Final
Draft.” International Standard ISO/IEC 15909,
Version 4.7.1, October 28.

[4] Tom Holvoet, 1995.”Agents and Petri Nets.“ Petri Net
Newsletters, Number 49.

[5] David Kinny, Michael Georgeff, and Anand Rao.
1996. “ A methodology and modeling technique for
systems of BDI agents.” Proceedings of the Seventh
European Workshop on Modeling Autonomous Agents
in a Multi-Agent World.

[6] Iouri Loutchko and Frank Teuteberg. 2005. “An agent-
based electronic job marketplace: conceptual
foundations and fuzzyMAN prototype.” International
Journal of Computer Systems Science & Engineering.

[7] Robin Milner, Mads Tofte, Robert Harper and David
MacQueen.1997.” The Definition of Standard ML –
Revised. “The MIT Press, May.

[8] Daniel Moldt and Frank Wienberg. 1997. “Multi-
Agent-Systems based on Coloured Petri Nets.” 18th
International Conference on Application and Theory of
Petri Nets.

[9] Pavlos Moraïtis and Alexis Tsoukiàs. 1996. “A Multi-
criteria Approach for Distributed Planning and
Conflict Resolution for Multi-Agent Systems.” 1996
International Conference on Multi Agent Systems.

[10] T. Murata.1989. “Petri Nets: Properties, Analysis and
Application.” Proceeding of the IEEE, Volume 77,
Number 4, April, pp. 541-580.

[11] Yaov Shoham.1993. “Agent-Oriented Programming.”
AI, Vol. 60, 51-92.

[12] John A Sillince. 1994. “Multi-agent conflict
resolution: a computational framework for an
intelligent argumentation program.” Knowledge Based
Systems, Volume 7, Number 2, June.

[13] Haiping Xu and Sol M. Shatz.2003 “A Framework
for Model-Based Design of Agent-Oriented Software.”
IEEE Transactions on Software Engineering, Volume
29, Issue 1, January.

