Symmetry Reductions.

A. Prasad Sistla
University Of Illinois at Chicago
Model-Checking

Approach
- Build the global state graph
- Algorithm to check correctness

Applications
- Concurrent Programs.
- Protocols.
- Circuits.
Bottleneck: State Explosion

Has only been used for small size problems.

- number of states grows exponentially.

Techniques to contain state explosion

- Symbolic Model Checking (BDDs)
- Stubborn Sets/Sleep Sets
- Symmetry
 (Due to identical/similar processes)
Outline

- **Symmetry & Quotient Structure**
 - Program Symmetry
 - Formula Symmetry
 - Quotient Structure
 - State Symmetry
- **Annotated Quotient Structure.**
 - Fairness

- **SMC – An implemented system**

- **Reduced Symmetry & Assymetry.**
 - Guarded quotient Structure.
 - Formula Decomposition
 - Subformula tracking.
Model : Shared Variable

Notation
- Variable name- $X_{i,j}$
 (denotes a variable shared by processes i, j)

Program : A set of processes.
Process : A set of guarded commands.

Process $K_i ::
- $[\text{LC}_i = 0 \land F_{i,i+1} = 1 \rightarrow F_{i,i+1} := 0, \text{LC}_i := 1; \]
- $\text{LC}_i = 1 \land F_{i,i-1} = 1 \rightarrow F_{i,i+1} := 0, \text{LC}_{i,i+1} := 2; \]
- $\text{LC}_i \rightarrow F_{i,i+1} := 1, F_{i,i+1} := 1, \text{LC}_i := 0;]$

Program $K :: K_1 || K_2 || \ldots || K_n$
Program Symmetry

- $\mathcal{K} :: \mathcal{K}_1 \parallel \mathcal{K}_2 \parallel \ldots \parallel \mathcal{K}_n$
- \parallel is commutative and associative
- $\mathcal{I} = \text{Index set} = \{1, 2, \ldots, n\}$
- For a permutation π on \mathcal{I},
- define $\pi(\mathcal{K}_i)$ - Process obtained by changing indices of variables according to π
 ($X_{i,j}$ changed to $X_{\pi(i), \pi(j)}$)

- $\text{Aut } \mathcal{K} = \{ \pi \mid \pi(\mathcal{K}) = \mathcal{K} \}$
Global State s: Assignment of values to variables.

Global State Graph: $\mathcal{M} = (S, R)$

- S - Set of global states
- $(s, t) \in R$ iff t is obtained from s by executing a single step of some process.
 (interleaved semantics)

Interested in Symmetry of \mathcal{M}:
s: global state.

\(\pi \): permutation on \(\mathcal{I} \),
- \(\mathcal{I} = \{0, 1, \ldots, n-1\} = \) Process Indices.

\(\pi(s) \) is a global state in which
- variable \(X_{\pi(i), \pi(j)} \) gets the value of \(X_{i,j} \) in \(s \)

\(\text{Aut}(\mathcal{M}) = \{\pi | \pi(\mathcal{M}) = \mathcal{M}\} \)
- \(\text{Aut} \mathcal{M} \) is a group

Lemma: \(\text{Aut} \mathcal{K} \subseteq \text{Aut} \mathcal{M} \)
Examples:

- For Symmetric solution of Dining Phil. Problem:
 \[\text{Aut } \mathcal{M} = \{ \pi : \pi \text{ is a circular perm.} \} \]
 \[\text{Aut } (\mathcal{K}) = \text{Aut } (\mathcal{M}) \]

- For the Resource controller Prog:
 \[\text{Aut } \mathcal{M} = \{ \pi : \pi(0) = 0 \} \]
 \[\pi \text{ can permute the users.} \]
 \[0 \text{ is the controller process} \]
Logics of Programs

CTL*:

Temporal operators: F, G, X, U

- $F P$: eventually P
- $G P$: always P
- $X P$: nexttime P
- $P U Q$: P until Q

Path Quantifiers:

- A – for all paths
- E – for some path
- $AG(P)$: Invariance
- $AF(P)$: Inevitability of P

P : Basic assertion, uses indexed variables.

Ex: $LC_i = L$, $X_{ij} > 0$
f: a formula in CTL*

$\pi(f)$ obtained by changing indices of variables according to π.

Symmetry of formulas:

$\text{Aut } f = \{\pi : \pi (f) \equiv f\}$

We use a subgroup of $\text{Aut } f$ called $\text{Auto } f$.

$\text{Auto } f = \cap (\text{Aut } p)$

p is a maximal prop. subformula of f.
Examples:

\[f = AG \left((T_1 \lor T_2) \rightarrow AF(C_1 \lor C_2) \right) \]

Global liveness for a mutual exclusion problem with two processes.

T_i: Process i is in trying mode.

C_i: Process i is in critical section.

Auto(f) = Sym I = Set of all permutations. \(I = \{1, 2\} \)

\[g = \bigwedge_{i=1,2} AG \left(T_i \rightarrow AF C_i \right) \]

Aut(g) = Sym I, \hspace{1cm} Auto(g) = \{Id\}
Quotient Structure:

\[M = (S, \mathcal{R}) - \text{structure} \]

\[f - \text{CTL}^* \text{ formula} \]

\[G \subseteq \text{Aut } M \cap \text{Auto } f \]

Equivalence relation \(\equiv_G \) on \(S \)

\[s \equiv_G t \iff \exists \pi \in G \text{ such that } \pi(s) = t \]

\[M/G = (S^+, \mathcal{R}^+) : \text{Quotient Structure.} \]

\(S^+ \) has one representative for each equiv. class.

\[(s^+, t^+) \in \mathcal{R}^+ \iff \text{for some } s^i \equiv_G s^+, \ t^i \equiv_G t^+ \]

\[(s^i, t^i) \in \mathcal{R} \]
Correspondence Lemma

- There is a bidirectional correspondence between paths of \mathcal{M} and \mathcal{M}/G

$$(s_0, s_1, \ldots, s_i \ldots) \in \mathcal{M} \Rightarrow (s_0^+, s_1^+, \ldots, s_i^+ \ldots) \in \mathcal{M}/G$$

$$(s_0^+, s_1^+, \ldots, s_i^+ \ldots) \in \mathcal{M}/G \Rightarrow \forall s_0^\equiv_G s_0^+ \text{, } \exists \text{ path in } \mathcal{M}$$

$$(s_0^\equiv, s_1^\equiv, \ldots, s_i^\equiv \ldots) \text{ such that } s_i^\equiv \equiv_G s_i^+$$
Main Theorem

- For any \(s \in S \),
- \(M, s \models f \iff M/G, s^+ \models f \)
- (Ip & Dill 93, CFG 93, ES 93)

Proof: Uses induction on \(f \) and the corr. Lemma.

Examples

Dining Phil. Problem

- \(f = AG(EX True) \) (absence of deadlock)
- Auto \(f = \text{Sym } \mathcal{I} \)
- Auto \(M \cap \text{Auto } f = \text{all circ. permutations} \)
Example

Two process Mutual Excl. $AG(\neg(C_1 \land C_2))$
Example contnd.

Two process Mutual Excl. $AG(\neg (C_1 \land C_2))$
Quotient Structure.

\[N_1 N_2 \ t=0 \]

\[T_1 N_2 \ t=1 \]

\[C_1 N_2 \ t=0 \]

\[T_1 T_2 \ t=1 \]

\[C_1 T_2 \ t=0 \]
Fairness

- Correctness under group fairness is preserved

- $G \subseteq \text{Aut} \mathcal{M} \cap \text{Auto} f$

- Define index $i \equiv j \iff \exists \pi \in G$ such that $j = \pi(i)$

- C_1, C_2, \ldots, C_k are the equivalence classes of indices

- Group fairness: for $\ell = 1, \ldots, k$ some process $\in C_\ell$ executed infinitely often
Fairness Theorem

- \((\mathcal{M}, s)\) satisfies \(f\) under group fairness \iff\
 \((\mathcal{M}/G, s^+)\) satisfies \(f\) under group fairness

- Example:

 \[f = AG ((T_1 \lor T_2) \rightarrow AF (C_1 \lor C_2))\]

in the mutual exclusion example.
Incremental Computation of \mathcal{M}/G: $\mathcal{M} = (\mathcal{S}, \mathcal{R})$

$\mathcal{S}^+ = \{ s_0 \}$, s_0 - init. State

$\mathcal{Q} = \{ s_0 \}$

While $\mathcal{Q} \neq$ empty

\begin{align*}
 \text{s:= dequeue (} \mathcal{Q} \text{);} \\
 \text{for each successor t of s} \\
 \quad \text{if (} \exists u \in \mathcal{S}^+ \text{ such that } u \equiv_G t \text{)} \\
 \quad \quad \text{then add (s, u) to } \mathcal{R}^+ \\
 \quad \text{else } \mathcal{S}^+ = \mathcal{S}^+ \cup \{ t \}, \\
 \quad \quad \text{add (s, t) to } \mathcal{R}^+
\end{align*}

end for.

end while.

Checking $u \equiv_G t$ is a difficult problem.
Savings in the size of state space.

We can obtain exponential savings in some cases.

Resource Controller problem:

\[n - \text{# of users} \]

\[m - \text{# of states of the controller} \]

Assume each user has 3 states

\[\mathcal{M} \text{ has } \mathcal{O}(m \cdot 3^n) \text{ states.} \]

\[\mathcal{M}/G \text{ has } \mathcal{O}(m \cdot n^3) \text{ states} \]
Finding suitable G

- Largest possible $G \subseteq \text{Aut } \mathcal{M} \cap \text{Auto } f$
 gives maximum compression.

- **Difficulties:**
 - Computing $\text{Aut } \mathcal{M}$ is difficult, as hard as graph isomorphism
 - use $\text{Aut } \mathcal{K}$ (can be determined from syntax)
 - Computing $\text{Auto } f$ can be hard
 - Many times $\text{Aut } \mathcal{K}, \text{Auto } f$ are known in advance
 - For isomorphic processes, $\text{Aut } \mathcal{K} = \text{Aut } \mathcal{CG}$
Automata Theoretic Approach & AQS

Don’t need to consider formula symmetry.

Use an Annotated Quotient Structure. (AQS)

Take $G \subseteq \text{Aut} \ M$

edges are labeled with permutations
if $(s^+, t) \in \mathcal{R}$ then
there is an edge from s^+ to t^+
labeled with π where $t = \pi(t^+)$
Correspondence between \mathcal{M} & \mathcal{M}^+

Converse also holds

\mathcal{M}^+ is a succinct encoding of \mathcal{M}.

$\pi_1 \pi_2 \pi_3 (s_3^+) \\
\pi_1 \pi_2 (s_2^+) \\
\pi_1 (s_1^+) \\
s_0^+$

unwind(x)

$\pi_1 \pi_2 \pi_3 (s_3^+) \\
\pi_2 (s_2^+) \\
\pi_1 (s_1^+) \\
s_0^+$

$\pi_3 \\
\pi_2 \\
\pi_1 \\
s_3^+ \\
s_2^+ \\
s_1^+$

\mathcal{M}

\mathcal{M}^+

x
Annotated Quotient:

\[G = \{ \text{Id,Flip} \} \]
Correctness under fairness.

Want to check if $\mathcal{M}, s_0^+ \models E(\phi \land f_i)$

where ϕ expresses weak fairness. A – Automaton for f.

Defn: $\mathcal{B}^+ = \mathcal{M}^+ \times A \times I$

$$(s^+, q, i) \xrightarrow{\pi} (t^+, r, j) \iff$$

$s^+ \xrightarrow{\pi} t^+ \in \mathcal{M}^+$,

$q^+ (s^+\downarrow i) \xrightarrow{} r \in A$ and

$\pi^{-1}(i) = j$

Defn: A SCC C^+ of \mathcal{B}^+ is green

if $\exists (s^+, q, i) \in C^+$ such that $q \in$ GREEN.
Theorem:
\[M, s_0^+ \models E(\phi \land f_i) \iff B^+ \text{ contains a subtly fair and green SCC } C^+ \text{ that is reachable from } (s_0^+, q_0, i). \]

How to check if \(C^+ \) is subtly fair?
use a threaded graph \(C^* \).
Alg to mark all states in \mathcal{M} that satisfy: $E(\phi \land f_i)$

1. Construct \mathcal{A}
2. Construct $\mathcal{B}^+ = \mathcal{M}^+ \times \mathcal{A} \times \mathcal{I}$
3. For each SCC C^+ of \mathcal{B}^+
 - Check if C^+ is subtly fair
 - Construct C
 - Check if C^* is plainly fair.
4. For each $s^+ \in \mathcal{M}$
 - mark s^+ if a subtly fair and green SCC is reachable from (s^+, q_0, i) in \mathcal{B}^+
Complexity: $O(|M^+|.|A|.n^2)$

Above approach can be extended to strong fairness

Complexity: $O(|M^+|.|A|.n^3)$

On-the-Fly Algorithm is more subtle.
Implementation: SMC
(Symmetry based Model – Checker)

- Developed at Univ. of Illinois at Chicago
- Uses AQS based approach
- Employs a variety of symmetries:
 - Program symmetry, State symmetry
- Uses variety of on-the-fly options
 - (AQS and/or product structure constructed on-the-fly)
Implementation : SMC(cont’d)

- Allows different fairness specifications (weak/strong features)

- Used for checking real world examples, found bugs in the *Fire-Wire* protocol.
Reduced Symmetry

- Symmetric system with asymmetric constructs.
 Ex: resource controller with priorities.

- Partially Symmetric system.

Introduce

1) Guarded Quotient Structures (GQS)
 Further extension of AQS

2) Two new techniques
 (a) Formula decomposition
 (b) Sub-formula tracking
Guarded Quotient Structures (GQS)

$G = (S, E)$ - reachability graph.

$\text{Aut}(G)$ – group of symmetries/automorphisms of G.

$\text{Aut}(G)$ – may be small. Not much compression

Add edges to G and obtain an expanded graph

$H = (S, F)$ so that

$F \supseteq E$

$\text{Aut}(H) \supseteq \text{Aut}(G)$
GQS – contd.

Construct the AQS of H

Add an edge condition with each edge of H (called guards)

Used during the unwinding process.

The resulting structure is GQS(G)
Example

Mutual Exclusion with priority for Process 1 (The Graph G)
Example

Mutual Exclusion with priority for Process 1
GQS for the system with priority.
Unwinding:

GQS:

φ,gi

s

t

GQS-Struct

\[(t, \phi^{-1}(P_1), \ldots, \phi^{-1}(P_k), \phi^{-1}(\theta_1), \ldots, \phi^{-1}(\theta_\ell))\]

\[(s, P_1, \ldots, P_k, \theta_1, \ldots, \theta_i, \ldots, \theta_\ell)\]

Correspond to & track atomic predicates in the formula

Track edge conditions

Correspond to & track edge
To Check f

- Unwind the GQS to get GQS-struct
 - unwinding done w.r.t. $P_1, P_2 \ldots P_k$ and the edge conditions.
 - use the edge conditions to consider only those edges in G.
- Check f in GQS-struct
- When optimized: GQS-struct has
 - no more nodes than as $G/\text{Aut}(G)$
 - fewer nodes in many cases

Important advantage of GQS:
- Can use formula decomposition
- Subformula tracking
Suppose $f = f_1 \land f_2$ \ (f_1, f_2 are state formulas)

Only P_1 appears in f_1

Only P_2 appears in f_2

Unwind GQS w.r.t. P_1 and check f_1

Unwind GQS w.r.t. P_2 and check f_2

Avoids unwinding w.r.t P_1 and P_2 simultaneously.
Generalization.

- Group Top level subformulas into classes
 - all subformulas in a class contain same atomic propositions
 - Sets of atomic propositions of different classes are disjoint.
 - Unwind GQS once for each class.

- Can achieve exponential reduction in size of state space.
Subformula Tracking

Unwind the GQS w.r.t. non atomic state subformulas

To check f

• Choose a good maximal independent set $R = \{R_1, R_2, \ldots, R_k\}$ of state subformulas of f

• Replace each R_i in f by a new atomic proposition r_i and obtain \overline{f}

• Unwind GQS w.r.t. R to obtain GQS-struct
 • recursively determine which states of the GQS satisfy the subformulas in R
 • label a node in GQS-struct with r_i if the corresponding GQS node satisfies R_i (for $i = 1, \ldots, k$)

• Check if \overline{f} is satisfied in GQS-struct
Example

Consider a Resource Controller where process 0 is the controller and others are user processes (i.e. processes 1, 2, … n)

\[f = E(P_1 \cup g) \]

where \[g = \bigwedge_{2 \leq i \leq n} E(h(i)) \]

\[R = \{ P_1, g \} \]

Unwind GQS w.r.t. \(R \) to obtain GQS-struct

Recursively determine states that satisfy \(g \) (use formula decomposition)

Check \(f \) in GQS-struct
In general, subformula tracking and formula decomposition are used recursively.

Good independent sets have symmetric or partially symmetric subformulas.
Implementation

- Extended SMC to PSMC
 priorities can be specified in PSMC
- Used GQS together with
 formula decomposition and
 sub-formula tracking
- Checked *Fire-Wire* Protocol with priorities.
Conclusions.

- Symmetry reductions help in tackling the state explosion.
- Can also be used for systems with less symmetry.
- Have been implemented and used for verifying real-life protocols.

Future Work.

- Need to effectively combine with other methods.
- Applications to software verification need to be explored.

Further Details @Home Page:

www.cs.uic.edu/~sistla