A. Prasad Sistla University Of Illinois at Chicago

Symmetry Reductions.

Model-Checking

- Approach
 - Build the global state graph
 - Algorithm to check correctness
- Applications
 - Concurrent Programs.
 - Protocols.
 - Circuits.

Bottleneck: State Explosion

Has only been used for small size problems.

• number of states grows exponentially.

• Techniques to contain state explosion

- Symbolic Model Checking (BDDs)
- Stubborn Sets/Sleep Sets
- Symmetry

 (Due to identical/similar processes)

Outline

Symmetry & Quotient Structure

- Program Symmetry
- Formula Symmetry
- Quotient Structure
- State Symmetry
- Annotated Quotient Structure.
 - Fairness
- <u>SMC An implemented system</u>
- <u>Reduced Symmetry & Assymetry.</u>
 - Guarded quotient Strucure.
 - Formula Decomposition
 - Subformula tracking.

Model : Shared Variable

- Notation
 - Variable name- X_{i,j}

 (denotes a variable shared by processes i, j)
- <u>Program</u> : A set of processes.
- <u>Process</u> : A set of guarded commands.
- <u>Process $\mathcal{K}_{\underline{i}}$ </u>:: • [$LC_{\underline{i}} = 0 \land F_{\underline{i},\underline{i+1}} = 1 \rightarrow F_{\underline{i},\underline{i+1}} := 0, LC_{\underline{i}} := 1;$ • $LC_{\underline{i}} = 1 \land F_{\underline{i},\underline{i-1}} = 1 \rightarrow F_{\underline{i},\underline{i+1}} := 0, LC_{\underline{i},\underline{i+1}} := 2;$ • $LC_{\underline{i}} \rightarrow F_{\underline{i},\underline{i+1}} := 1, F_{\underline{i},\underline{i+1}} := 1, LC_{\underline{i}} := 0;$]

• <u>Program \mathcal{K} </u> :: $\mathcal{K}_1 \parallel \mathcal{K}_2 \parallel \ldots \parallel \mathcal{K}_n$

Program Symmetry

- $\mathcal{K}:: \mathcal{K}_1 \parallel \mathcal{K}_2 \parallel \ldots \parallel \mathcal{K}_n$
- I is commutative and associative
- $\mathcal{I} = \text{Index set} = \{1, 2, ..., n\}$
- For a permutation π on \mathcal{I} ,
- define π(κ_i) Process obtained by changing indices of variables according to π
 (X_{i,j} changed to X_{π(i), π(j)})

• Aut
$$\mathcal{K} = \{\pi \mid \pi(\mathcal{K}) = \mathcal{K}\}$$

- <u>Global State s</u> : Assignment of values to variables.
- <u>Globlal State Graph</u> : $\mathcal{M} = (S, \mathcal{R})$ S - Set of global states $(s,t) \in \mathcal{R} \text{ iff } t \text{ is obtained from s by}$ executing a single step of some process. (interleaved semantics)
- Interested in Symmetry of \mathcal{M} :

- s: global state.
- π : permutation on \mathcal{I} ,
 - $\mathcal{I} = \{0, 1, ..., n-1\} =$ Process Indices.
- π(s) is a global state in which
 variable X_{π(i), π(j)} gets the value of X_{i,j} in s
- Aut(\mathcal{M})={ π | $\pi(\mathcal{M}$)= \mathcal{M} }
 - Aut \mathcal{M} is a group
- Lemma: Aut $\mathcal{K} \subseteq$ Aut \mathcal{M}

Examples:

For Symmetric soln of Dining Phil. Problem :

Aut $\mathcal{M} = \{\pi : \pi \text{ is a circular perm.}\}$ Aut $(\mathcal{K}) = \text{Aut}(\mathcal{M})$

Logics of Programs

CTL*:

Temporal operators: F, G, X, U

- *F* P : eventually P
- G P : always P
- *X* P : *nexttime* P
- $P \ \mathcal{U} Q : P \ \textit{until} \ Q$

Path Quantifiers:

- A for all paths
- E for some path
- AG(P): Invariance
- *AF*(P) : Inevitability of P
 - P : Basic assertion, uses indexed variables.

Ex: $LC_i = L, X_{i,j} > 0$

f: a formula in CTL* $\pi(f)$ obtained by changing indices of variables according to π . Symmetry of formulas: Aut $f = \{\pi : \pi(f) \equiv f\}$ We use a subgroup of Aut f called Auto f. Auto $f = \cap$ (Aut p) p is a maximal

prop. subformula of *f*.

Examples:

$$f = AG ((\mathbf{T_1} \lor \mathbf{T_2}) \rightarrow AF(\mathbf{C_1} \lor \mathbf{C_2}))$$

Global liveness for a mutual exclusion problem with two processes.

 T_i : Process i is in trying mode.

 C_i : Process i is in critical section.

Auto(f) = Sym \mathcal{I} = Set of all permtns. \mathcal{I} = {1, 2}

$$g = \bigwedge_{i=1,2} AG (T_i \rightarrow AF C_i)$$

Aut(g) = Sym \mathcal{I} , Auto(g) = {Id}

Quotient Structure:

 $\mathcal{M} = (\mathcal{S}, \mathcal{R}) - \text{structure}$

f – CTL* formula G \subseteq Aut $\mathcal{M} \cap$ Auto f

Equivalence relation \equiv_G on S s \equiv_G t *iff* $\exists \pi \in G$ such that $\pi(s) = t$

 $\mathcal{M}/G = (\mathcal{S}^+, \mathcal{R}^+) : \text{Quotient Structure.}$ $\mathcal{S}^+ \text{ has one representative for each equiv. class.}$ $(s^+, t^+) \in \mathcal{R}^+ \text{ iff for some } s^{\scriptscriptstyle |} \equiv_G s^+, \ t^{\scriptscriptstyle |} \equiv_G t^+$ $(s^{\scriptscriptstyle |}, t^{\scriptscriptstyle |}) \in \mathcal{R}$

Correspondence Lemma

• There is a bidirectional correspondence between paths of \mathcal{M} and \mathcal{M}/G

• $(s_0, s_1, \dots, s_i \dots) \in \mathcal{M} \Rightarrow (s_0^+, s_1^+, \dots, s_i^+, \dots) \in \mathcal{M}/G$ • $(s_0^+, s_1^+, \dots, s_i^+, \dots) \in \mathcal{M}/G \Rightarrow \forall s_0^+ \equiv_G s_0^+, \exists \text{ path in } \mathcal{M}$ $(s_0^+, s_1^+, \dots, s_i^+, \dots) \text{ such that } s_i^+ \equiv_G s_i^+$

Main Theorem

- For any $s \in S$,
- $\mathcal{M}, s \vDash f iff \mathcal{M}/G, s^+ \vDash f$
- (Ip &Dill 93,CFG 93,ES 93)
- <u>Proof</u> : Uses induction on *f* and the *corr*. Lemma.
- Examples
 - Dining Phil. Problem
 - f = AG(EXTrue) (absence of deadlock)
 - Auto $f = \operatorname{Sym} \mathcal{I}$
 - Auto $\mathcal{M} \cap$ Auto f = all circ. permutations

Example

Example contnd.

Quotient Structure.

Fairness

- Correctness under group fairness is preserved
- $G \subseteq Aut \mathcal{M} \cap Auto f$
- Define index $i \equiv j$ *iff* $\exists \pi \in G$ such that $j = \pi(i)$
- $C_1, C_2, ..., C_k$ are the equivalence classes of indices
- Group fairness: for $\ell = 1, ..., k$ some process $\in C_{\ell}$ executed infinitely often

- (M, s) satisfies f under group fairness iff
 (M/G, s⁺) satisfies f under group fairness
- Example:
 - $f = AG (((\mathbf{T}_1 \lor \mathbf{T}_2) \to AF (\mathbf{C}_1 \lor \mathbf{C}_2)))$

in the mutual exclusion example.

Incremental Computation of \mathcal{M}/G : $\mathcal{M} = (\mathcal{S}, \mathcal{R})$

 $\mathcal{S}^+ = \{ \mathbf{s}_0 \},$ s_0 -init. State $Q = \{ s_0 \}$ While $Q \neq$ empty s:= dequeue (Q); for each successor t of s if $(\exists u \in S^+ \text{ such that } u \equiv_G t)$ then add (s, u) to \mathcal{R}^+ else $\mathcal{S}^+ = \mathcal{S}^+ \cup \{t\},\$ add (s, t) to \mathcal{R}^+

end for.

end while.

Checking $u \equiv_G t$ is a difficult problem.

Savings in the size of state space.

We can obtain exponential savings in some cases.

Resource Controller problem:

n- # of users

m - # of states of the controller

Assume each user has 3 states

 \mathcal{M} has $\mathcal{O}(m.3^n)$ states.

 \mathcal{M}/G has $\mathcal{O}(m . n^3)$ states

Finding suitable G

- Largest possible $G \subseteq Aut \mathcal{M} \cap Auto f$ gives maximum compression.
- Difficulties:
 - Computing Aut *M* is difficult, as hard as graph isomorphism
 - use Aut \mathcal{K} (can be determined from syntax)
 - Computing Auto *f* can be hard
 - Many times Aut \mathcal{K} , Auto f are known in advance
 - For isomorphic processes, Aut \mathcal{K} = Aut CG

Automata Theoretic Approach & AQS

Don't need to consider formula symmetry.

Use an Annotated Quotient Structure. (AQS)

Take $G \subseteq Aut \mathcal{M}$

 $t=\pi(t^+)$

edges are labeled with permutations if $(s^+,t) \in \mathcal{R}$ then there is an edge from s^+ to t^+ labeled with π where $t = \pi(t^+)$

Annotated Quotient:

$$G = {Id, Flip}$$

Correctness under fairness.

Want to check if $\mathcal{M}, s_0^+ \vDash E(\phi \land f_i)$ where ϕ expresses weak fairness. \mathcal{A} – Automaton for f. $\mathcal{B}^+ = \mathcal{M}^+ \times \mathcal{A} \times \mathcal{I}$ Defn: $(s^+,q,i) \xrightarrow{\pi} (t^+,r,j)$ iff $s^+ \xrightarrow{\pi} t^+ \in \mathcal{M}^+$. $q^+ \stackrel{(s^+ \downarrow i)}{\rightarrow} r \in \mathcal{A}$ and $\pi^{-1}(i) = i$

Defn: A SCC C^+ of \mathcal{B}^+ is green if $\exists (s^+, q, i) \in C^+$ such that $q \in \text{GREEN}$.

Theorem:

 $\mathcal{M}, \mathbf{s}_0^+ \models \mathrm{E}(\phi \land f_i)$ *iff* \mathcal{B}^+ contains a subtly fair and green *SCC* C^+ that is reachable from $(\mathbf{s}_0^+, q_0, \mathbf{i})$.

How to check if C⁺ is subtly fair ?

use a threaded graph C*.

Alg to mark all states in \mathcal{M} that satisfy: E($\phi \wedge f_i$)

- 1. Construct \mathcal{A}
- 2. Construct $\mathcal{B}^+ = \mathcal{M}^+ \times \mathcal{A} \times \mathcal{I}$
- 3. For each *SCC* C^+ of \mathcal{B}^+

Check if C^+ is subtly fair

Construct C

Check if C* is plainly fair.

4. For each $s^+ \in \mathcal{M}$

mark s⁺ if a subtly fair and green *SCC* is reachable from (s⁺, q_0 ,i) in \mathcal{B}^+

Complexity : $\mathcal{O}(|\mathcal{M}^+|.|\mathcal{A}|.n^2)$

Above approach can be extended to strong fairness Complexity: $\mathcal{O}(|\mathcal{M}^+|.|\mathcal{A}|.n^3)$ On-the-Fly Algorithm is more subtle.

- Developed at Univ. of Illinois at Chicago
- Uses AQS based approach
- Employs a variety of symmetries:
 - Program symmetry, State symmetry
- Uses variety of on-the-fly options
 - (AQS and/or product structure constructed on-the-fly)

- Allows different fairness specifications (weak/strong features)
- Used for checking real world examples, found bugs in the *Fire-Wire* protocol.

Reduced Symmetry

- Symmetric system with asymmetric constructs. Ex: resource controller with priorities.
- Partially Symmetric system.

Introduce

Guarded Quotient Structures (GQS)
 Further extension of AQS
 Two new techniques

 (a) Formula decomposition
 (b) Sub-formula tracking

Guarded Quotient Structures (GQS)

```
G =(S,E) -reachability graph.
```

Aut(G) – group of symmetries/automorphisms of G.

Aut(G) – may be small. Not much compression

Add edges to G and obtain an expanded graph

H = (S,F) so that F ⊇ EAut (H) ⊇ Aut(G) Construct the AQS of H

Add an edge condition with each edge of H (called guards)

Used during the unwinding process.

The resulting structure is GQS(G)

Example

Mutual Exclusion with priority for Process 1 (The Graph G)

Example

Mutual Exclusion with priority for Process 1 Graph H

GQS for the system with priority.

Unwinding:

To $\operatorname{Check} f$

•Unwind the GQS to get GQS-struct

- •unwinding done w.r.t. $P_1, P_2 \dots P_k$ and the edge conditions.
- •use the edge conditions to consider only those edges in G.
- •Check f in GQS-struct
- •When optimized: GQS-struct has
 - no more nodes than as G/Aut(G)
 - fewer nodes in many cases
- Important advantage of GQS:
 - Can use formula decomposition
 - Subformula tracking

•Suppose $f = f_1 \wedge f_2$ (f_1, f_2 are state formulas) Only P_1 appears in f_1 Only P₂ appears in f_2 •Unwind GQS w.r.t. P_1 and check f_1 •Unwind GQS w.r.t. P_2 and check f_2 •Avoids unwinding w.r.t P_1 and P_2 simultaneously. • Group Top level subformulas into classes

-all subformulas in a class contain same atomic propositions

•Sets of atomic propositions of different classes are disjoint.

•Unwind GQS once for each class.

• Can achieve exponential reduction in size of state space.

Subformula Tracking

Unwind the GQS w.r.t. non atomic state subformulas

To check *f*

- •Choose a good maximal independent set $R = \{R_1, R_2, R_k\}$ of state subformulas of f
- •Replace each R_i in f by a new atomic proposition r_i and obtain \overline{f}
- •Unwind GQS w.r.t. R to obtain GQS-struct
 - •recursively determine which states of the GQS satisfy the subformulas in R
 - •label a node in GQS-struct with r_i if the corresponding GQS node satisfies R_i (for i = 1, ...k)
- •Check if \overline{f} is satisfied in GQS-struct

Example

Consider a Resource Controller where process 0 is the controller and others are user processes

```
(i.e. processes 1, 2, \ldots n)
```

 $f = E(\mathbf{P}_1 \mathcal{U} \mathbf{g})$

where $\{ g = \bigwedge_{2 \leq i \leq n} E(h(i)) \}$

 $\mathbf{R} = \{ \mathbf{P}_1, \mathbf{g} \}$

Unwind GQS w.r.t. R to obtain GQS-struct Recursively determine states that satisfy g (use formula decomposition) Check \overline{f} in GQS-struct • In general, subformula tracking and formula decomposition are used recursively.

• Good independent sets have symmetric or partially symmetric subformulas.

Implementation

Extended SMC to PSMC priorities can be specified in PSMC
Used GQS together with

formula decomposition and

sub –formula tracking

•Checked Fire-Wire Protocol with priorities.

Conclusions.

- Symmetry reductions help in tackling the state explosion.
- Can also be used for systems with less symmetry.
- Have been implemented and used for verifying real-life protocols.
- <u>Future Work.</u>
 - •Need to effectively combine with other methods.

•Applications to software verification need to be explored.

Further Details @Home Page:

www.cs.uic.edu/~sistla