
Awakening the Web’s Sleeper Agents:
Misusing Service Workers for Privacy Leakage

Soroush Karami, Panagiotis Ilia, Jason Polakis
University of Illinois at Chicago, USA

skaram5@uic.edu

February 2021

abstract

• What are service workers?
• A measurement study on Service Workers
• A Security issue on service workers
• Novel attacks vectors

2

A new powerful technology

Service workers run independently of the web application

Fill the gap between native and web apps
o Push notifications functionality
o Syncing in the background
o Pre-caching for optimization
o Working offline

3

Service workers

Chromium instrumentation

Content

Blink

V8 Skia

Chromium Opera WebView …

…

//third_party/blink/renderer

platform/

core/

modules/

controller/

4

Chromium instrumentation

Content

Blink

V8 Skia

Chromium Opera WebView …

…

//third_party/blink/renderer

platform/

core/

modules/

controller/

service_worker

cache_storage

background_sync

notifications

push_messaging

5

Service workers in the wild

Among top 1M Alexa websites we identify SWs on 30,229 sites

6

Provided functionality

7

Functionality Domain

Caching 8,559

Fetch 8,895

Web push 23,227

Sync 90

SW to Client Message 8,339

Client to SW Message 10,593

Service workers - Provided functionality

8

Functionality Domain

Caching 8,559

Fetch 8,895

Web push 23,227

Sync 90

SW to Client Message 8,339

Client to SW Message 10,593

A programmable client side proxy
Intercepts requests from pages inside the SW’s scope

9

Feature: Fetch API

Service Worker

Outside WorldWeb Application

Fetch

10

Feature: Fetch API

Cache
Storage

Service Worker

Outside WorldWeb Application

Fetch

Use cases:
• Controlling the caching behavior
• Providing offline pages

Browser Cache (HTTP cache) vs. Service Worker Cache Storage

1. Populating the cache

○ Browser Cache: during navigation of websites

○ SW Cache Storage: A programmable cache

11

this.addEventListener('install', function(event) {
event.waitUntil(

caches.open('v1').then(function(cache) {
return cache.addAll([

'index.html',
'offline.html',
'static/style.css',
'static/app.js',
'images/logo.jpg',
'images/icon.png'

]);
}));

});

Browser Cache (HTTP cache) vs. Service Worker Cache Storage

2. Managing the cached resources

○ Browser Cache:

• HTTP headers

• Browser’s built-in heuristics

○ SW Cache Storage: A code-driven approach

■ Resources will persist until SW code explicitly removes them

■ No automatic, built-in expiration algorithms or freshness checks

12

Last-Modified: Mon, 08 Sep 2020 19:23:51 GMT
ETag: "5485fac7-ae74"
Cache-Control: max-age=533280
Expires: Sun, 10 Oct 2020 23:02:37 GMT

Cache
Storage

Service
Worker

example.com

Navigating an in-scope page

13

scope: example.com

server

Cache
Storage

Service
Worker

example.com

Navigating an out-of-scope page

1414

COR-website.comscope: example.com

server

Cache
Storage

Service
Worker

example.com

Activation by an out-of-scope page

1515

COR-website.com

<iframe src="example.com/img.jpg">
</iframe>

scope: example.com

server

Cache
Storage

Service
Worker

example.com

Activation by an out-of-scope page

1616

COR-website.com

<iframe src="example.com/img.jpg">
</iframe>

scope: example.com

server

How an attacker can infer that the iframe that
are served by the service worker or not?

Performance API

Response

startTime

redirectStart redirectEnd

fetchStart

domainLookupStart domainLookupEnd

connectStart connectEnd

secureConnectionStart

requestStart responseStart responseEnd

workerStart

duration

Provides detailed timing data regarding the loading of a website’s resources

17

<iframe src="example.com/image.jpg">
</iframe>

Performance API
Provides detailed timing data regarding the loading of a website’s resources

18

<iframe src="example.com/image.jpg">
</iframe>

performance.getEntriesByName('https://example.com/image.jpg')

initiatorType: "iframe"
nextHopProtocol: ""
workerStart: 4849.369999952614
redirectStart: 0
redirectEnd: 0
fetchStart: 4849.459999939427
domainLookupStart: 4849.459999939427
domainLookupEnd: 4849.459999939427
connectStart: 4849.459999939427
connectEnd: 4849.459999939427
secureConnectionStart: 0
requestStart: 4849.384999950416
responseStart: 4853.985000052489
responseEnd: 4865.110000008717
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://example.com/image.jpg"
entryType: "resource"
startTime: 4849.225000012666
duration: 15.884999996051192

initiatorType: "iframe"
nextHopProtocol: ""
workerStart: 964.830984719462
redirectStart: 0
redirectEnd: 0
fetchStart: 54824.54000005964
domainLookupStart: 0
domainLookupEnd: 0
connectStart: 0
connectEnd: 0
secureConnectionStart: 0
requestStart: 0
responseStart: 0
responseEnd: 54832.16000010725
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://a.com/img.jpg"
entryType: "resource"
startTime: 54815.060000051744
duration: 17.100000055506825

initiatorType: "iframe"
nextHopProtocol: "h2"
workerStart: 0
redirectStart: 0
redirectEnd: 0
fetchStart: 39142.29782008391
domainLookupStart: 0
domainLookupEnd: 0
connectStart: 0
connectEnd: 0
secureConnectionStart: 0
requestStart: 0
responseStart: 0
responseEnd: 39404.91671091608
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://a.com/img.jpg"
entryType: "resource"
startTime: 39135.019810008719
duration: 269.8969009073553

Cross Origin without SW Cross Origin with SW

19

<iframe src="example.com/image.jpg">
</iframe>

attacker.com

<iframe src="example.com/image.jpg">
</iframe>

attacker.com

Service Worker
Scope:
example.com

initiatorType: "iframe"
nextHopProtocol: ""
workerStart: 964.830984719462
redirectStart: 0
redirectEnd: 0
fetchStart: 54824.54000005964
domainLookupStart: 0
domainLookupEnd: 0
connectStart: 0
connectEnd: 0
secureConnectionStart: 0
requestStart: 0
responseStart: 0
responseEnd: 54832.16000010725
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://a.com/img.jpg"
entryType: "resource"
startTime: 54815.060000051744
duration: 17.100000055506825

initiatorType: "iframe"
nextHopProtocol: "h2"
workerStart: 0
redirectStart: 0
redirectEnd: 0
fetchStart: 39142.29782008391
domainLookupStart: 0
domainLookupEnd: 0
connectStart: 0
connectEnd: 0
secureConnectionStart: 0
requestStart: 0
responseStart: 0
responseEnd: 39404.91671091608
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://a.com/img.jpg"
entryType: "resource"
startTime: 39135.019810008719
duration: 269.8969009073553

Cross Origin without SW Cross Origin with SW

20

initiatorType: "iframe"
nextHopProtocol: ""
workerStart: 964.830984719462
redirectStart: 0
redirectEnd: 0
fetchStart: 54824.54000005964
domainLookupStart: 0
domainLookupEnd: 0
connectStart: 0
connectEnd: 0
secureConnectionStart: 0
requestStart: 0
responseStart: 0
responseEnd: 54832.16000010725
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://a.com/img.jpg"
entryType: "resource"
startTime: 54815.060000051744
duration: 17.100000055506825

initiatorType: "iframe"
nextHopProtocol: "h2"
workerStart: 0
redirectStart: 0
redirectEnd: 0
fetchStart: 39142.29782008391
domainLookupStart: 0
domainLookupEnd: 0
connectStart: 0
connectEnd: 0
secureConnectionStart: 0
requestStart: 0
responseStart: 0
responseEnd: 39404.91671091608
transferSize: 0
encodedBodySize: 0
decodedBodySize: 0
serverTiming: []
name: "https://a.com/img.jpg"
entryType: "resource"
startTime: 39135.019810008719
duration: 269.8969009073553

Cross Origin without SW Cross Origin with SW

21

nextHopProtocol: "h2"
workerStart: 0

nextHopProtocol: ""
workerStart: 964.830984719462

The workerStart and nextHopProtocol attributes can be used for inferring if a
resource was fetched through the SW.

Resource profiling

22

● Instrumented Chromium browser (version 79):
○ Log URLs of resources fetched through SW’s FetchEvent
○ Log URLs of resources stored in the website’s cache storage

● Use Selenium to launch our instrumented browser - visit a website
○ Installs a SW during the visit

● Log URLs of all resources (and filter out 3rd-party resources)
● Visit our own website that uses iframes to load these resources

○ Inspect value of workerStart and nextHopProtocol attributes

Privacy-invasive Attacks

23

● Registration inference

● Application-level inference

● Fine-grained history sniffing

24

● Websites insert additional resources into their cache after login

● Examples:
○ Tinder - a popular dating application/website
○ Gab - a social networking website that attracts “alt-right users, conspiracy theorists, and

trolls, and high volumes of hate speech” [Zannettou et al., WWW ‘18]

1. Registration inference

Our attacks reveal not only that the user has visited a website at some point,
but that they also have an account on that service

25

● Example: web application of WhatsApp (https://web.whatsapp.com/)
○ Attacker can (partially) reconstruct the victim’s social graph
○ Attacker can infer group memberships

○ SW stores in the cache photos of the victim’s contacts and groups
■ web.whatsapp.com/pp?t=s&u=<phonenumber>&i=<timestamp>

It reveals that particular individuals are among the victim’s contacts, or that
the victim is a member in specific groups

2. Application-level inference

26

● Example: https://spokeo.com
○ Aggregates information about people and allows to search

■ stores all user’s search queries into the cache storage
■ allowing an attacker to infer whether the victim has searched for specific

individuals

3. Fine-grained history sniffing

Provides fine-grained information about the navigation of the user within the
visited website

● Some websites store additional resources when the user navigates
different pages on that domain

● Safari is not vulnerable to our attacks
○ it installs new SW for iframes

● Chrome has fixed the performance API issues
○ workerStart issue in version 80
○ nextHopProtocol in version 83

27

Vulnerable Browsers

Browser Version
Performance API

Timing
workerStart nextHopProtocol

Firefox 72.0.2

Brave 1.3

Chrome 79

Edge 79

Opera 66

Safari 12.1.2

Attack Mitigation

● Root Cause: improper isolation of Service Workers in browsers

● Our solution: implementing access control logic inside Service Workers

28

self.addEventListener('fetch', function(event){
referrer = (new URL(event.request.referrer)).host;
if(referrer==self.location.hostname || referrer.match()!=null){

/*Remaining SW functionality goes here*/
}

});

Conclusion

29

● Conducted a large-scale measurement on Service Workers
○ At least 30,000 websites currently use Service Workers
○ At least 6% of the top 100K websites

● Service Worker isolation issue
● Privacy-invasive attacks

○ Registration inference
○ Application-level inference
○ Fine-grained history sniffing

● We disclosed our findings to affected vendors
○ Facebook fixed the issue
○ Chromium fixed the performance API issue and explores

redesigning of its site isolation mechanism

Questions?

Feel free to contact me:
skaram5@uic.edu

30

