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Abstract—Keeping silence is a behavior that widely exists in
human society and has been studied in social science for a long
time. After a new event occurs, instead of expressing opinions
towards it immediately, individuals may choose to remain silence.
Similar to a real social network, in online social networks, after
observing an interesting event from their friends, users may not
decide whether to share it at once due to different reasons. In
influence propagation process, we observe that there are three
states regarding to one’s reaction on an event: activated state
(shared), inactivated state (not shared) and silent state (take longer
than usual time to make decisions). Silent state is an intermediate
status before turning into inactivated or activated state. In this
paper, we provide a mathematical definition of “silence” based
on the length of hesitating time before a user makes decisions.
However, during the hesitation period, silent users behave exactly
like those users who already entered the inactivated state. In
order to differentiate them in this case, we develop an iterative
algorithm, Similarity Interest (SI) model, to identify possible
silent users by quantifying the interest of users toward the
event. Furthermore, comparing to real social networks, we reveal
different behavior of silent users in online social networks and
use the Transient Influence Principle to explain it. At last, based
on experimental results, we design a new model (Diffusion with
Silence (DS) model) incorporating Similarity Interest model and
two widely used diffusion models (Independent Cascade (IC)
model and Linear Threshold (LT) model), in order to capture
the silence behavior. Our experiment shows that DS model can
more accurately depict the process of information propagation
than IC model and LT model do.
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I. INTRODUCTION

On the Internet, sharing and commenting are major ways to

express a person’s opinion towards a certain event. Once an

individual observes an interesting event from news websites

or sharing lists of his/her friends, s/he may share or comment

on it. Such behavior may further impact his/her other friends

and is one of the primary reasons resulting in the flourishing

of online social network service. It not only increases the

potential business opportunities in online social networks, but

also makes them become testbeds for the research on human

behavior. Previously, researchers have done reasonable amount

of studies on the sharing propagation and social influence

analysis [1]–[3]. Most of them assumed that there were only

two states of a user’s attitude towards a certain event: activated

state and inactivated state. However, we believe that it is

necessary to introduce and analyze another neglected state,

which is the silent state. Fig. 1 uses a finite state automata

(FSA) graph to show the difference between a traditional

model and a model containing a silent state.

Fig. 1: Traditional Model and the Model with Silent State

A. Motivation

Studies on the silence behavior have many interesting

applications in real-life. For example, during the presidential

election, there are many swing voters, who are exactly those

individuals taking a longer time to make decisions. Discov-

ering them as soon as possible and designing stratagies to

win their votes may change the result of the election. In

our opinion, introducing the silent state into diffusion models

also has both practical and theoretical values. In practice, it

may improve the performance of viral marketing strategy. For

example, by differentiating silent users with normal inactivated

users, we can shrink the advertising cost by only focusing

on the silent users. Theoretically, the diffusion model with

the silent state is more consistent with empirical studies on

sociology or other areas related to the silence behavior [4],

[5]. Thus, such model should be more accurate in depicting

the information process in real world.

B. Challenges and Solutions

Definition of Silence. Intuitively, one can define those cases

when a user has longer hesitating time than his/her average

responding time as “silence”. Approximately, the hesitating

time in the online social network, is the difference between

the time when an event firstly appears in the sharing lists of



a user’s friends and the time when the user decides to share

it or not. Unfortunately, even though we can directly observe

the time when a user shares an event, we cannot be aware

of the time when a user decides not to share it. To solve this

problem, given the fact that a user does not share an event, we

use the time when the user shares another event from his/her

friends as the approximated time point when the user decides

not to share the event. With such approximation, we will be

able to provide a mathematical definition of “silence” in the

online social network.

Fig. 2: Identifying Silence Behavior

Discovering Silent Users. Although we can define the silent

state based on the length of time before making a decision,

such post-hoc definition is not useful in real applications, due

to the fact that we often need to identify silent users before

they make decisions. More specifically, since silent users

behave exactly like inactivated users, how to differentiate them

still remains a challenge. During such period, the time when

a user makes its decision is unknown, we therefore cannot

directly adopt the definition of “silence” to discover a silent

user. In this article, we believe the user’s interest towards the

event is a reasonable indicator to differentiate inactivated users

and silent users (in Fig. 2), since silent users may have higher

interests to the event than normal inactivated ones. If we can

develop a method to quantify the interest of a user towards the

event, we may further use these “interest scores” as the feature

to classify whether a user is silent or inactivated. We propose

an iterative algorithm, (Similarity Interest model), based on

similarity measures to achieve that. In the experiments, we

formulate a binary classification problem using two real online

social network datasets to evaluate this algorithm.

Diffusion Model to Capture Silence Behavior. In order

to design a reasonable diffusion model to capture the silence

behavior. There are two questions to be answered: (1) given

an event, how can we judge whether a user is in the silent

state? (2) Knowing a user is in the silent state, how to depict

a silent user’s evolving process? For the first question, instead

of assigning uniform probability for users to become silent,

we can utilize the classification results based on Similarity

Interest model to be more reasonable. For the second question,

we examine the factors causing silent user to transit into

activated or inactivated state later. During our analysis of the

relationship between activated neighbors and a silent user’s

final decision, we reveal a unique phenomenon (Transient In-
fluence Principle) in online social networks. Such phenomenon

is related to, but different from the statistical foundations

in Social Threshold model [6]. Such discovery implies that

when we depict a silent user’s evolving process, some popular

models (Linear Threshold model [1]) are more suitable than

the others (like Voter model [7]). At last, we incorporate

two widely used models (Independent Cascade and Linear

Threshold) to describe the information propagation process

that includes the silent state and its evolving process. The

proposed Diffusion with Silence (DS) model preserves sub-

modularity, which inherits from traditional diffusion models.

Therefore, it guarantees the constant-factor approximation of

greedy algorithm solving problems such as influence maxi-

mization. In order to show the value of the proposed DS model,

we use it and the traditional diffusion models to simulate the

propagative process of a most shared event in our dataset. The

result shows that the proposed DS model is more accurate in

describing the information propagation process.

C. Contributions

Compare to former work on social influence papers, we

summarize our main contributions as follows:

• To the best of our knowledge, we are the first one to

introduce the concept of silence from sociology into

the computational research of online social networks.

Moreover, we provide a formal mathematical definition

of “silence”.

• In order to identify possible silent users before they make

decisions, we try to use user’s interest towards the event

to differentiate silent users from usual inactivated users.

We propose an iterative algorithm, Similarity Interest

model, based on similarity measures to achieve this and

evaluate its performance on two real-world datasets.

• Comparing to offline social networks, we discover a

unique behavior associated with silent users in online

social networks. We use the Transient Influence Principle

to explain the reason of such difference.

• We extend the traditional diffusion model by incorporat-

ing the silent state and its evolving process. The proposed

model combines Similarity Interest model and two tradi-

tional diffusion models, which preserves submodularity.

Additionally, we use experiment on the real event to

demonstrate its value.

The rest of the paper is organized as follows. In Section

2, we propose the definition of silent users, as well as the

Similarity Interest model. In Section 3, we explain our work

to study the evolving process of silent users and the proposed

Transient Influence Principle in online social networks. In Sec-

tion 4, we introduce the proposed diffusion model, Diffusion
with Silence model. Section 5 will present the experimental

results to evaluate our work. Section 6 explains previous work

in related areas. At last, Section 7 offers the conclusion.

II. DEFINITION OF SILENCE AND SIMILARITY INTEREST

MODEL

A. Silent State

Before starting everything, we need to present the formal

definition of the activated state, inactivated state and silent

state:

Definition 2.1: (Activated State) For each user v and any

event e that appears in the sharing lists of v’s neighbors, we



say that the final state of user v to event e is activated, if e
appears in v’s sharing list as well.

Definition 2.2: (Inactivated State) For each user v and any

event e that appears in the sharing lists of v’s neighbors, we

say that the final state of user v to event e is inactivated, if e
does not appear in v’s sharing list.

Definitions 2.1 and 2.2 are very straightforward. We further

denote a user’s response to an event the same as sharing the

event. We define silent users as follows: on the one hand, for

users who are activated to an event, a silent user takes itself

a longer than usual time to respond. On the other hand, for

users who are inactivated to an event, a silent user takes itself

a longer than usual time to change its focus and respond to

another event. Formally, we define the response duration and

focus-changing duration as follows:

Definition 2.3: (Response Duration) Given the fact a

user’s final state to an event is activated, response duration

d is the difference between the first time when a user’s friend

shares it and the first time when the user responds to it.

Definition 2.4: (Focus-changing Duration) Given the fact

a user’s final state to the event is inactivated, focus-changing

duration d′ is the difference between the first time when a

user’s friend shares it and the first time when the user responds

to another event.

At last, we can have the definition of silent states:

Definition 2.5: (Activated Silent State) For each

user v we construct a response duration vector (RDV)

DR={d1, d2, d3...dn}, which includes all of v’s response

durations, where di is the response duration to the ith event

that v’s final state is activated. Using RDV, we define that

before becoming activated, a user was in the activated silent

state to the event, if the corresponding response duration, say

d, satisfies d > D̄R, where D̄R =
∑

di

n . Let AS(i) denote

the set of activated silent users to the event i.
Definition 2.6: (Inactivated Silent State) For each user

v we construct a focus-changing duration vector (FDV)

DF ={d′1, d′2, d′3...d′n′}, which includes all of v’s focus-

changing duration, where d′i is the response duration to the ith

event that v’s final state is inactivated. Using FDV, we define

that before becoming inactivated, a user was in the inactivated

silent state to the event, if the corresponding focus-changing

duration, say d′, satisfies d′ > D̄F , where D̄F =
∑

d′
i

n′ . Let

IS(i) denote the set of inactivated silent users to the event i.
Definition 2.7: (Silent State) For each event i, the users in

the silent state is defined as: S(i) = AS(i) ∪ IS(i).
One thing to mention is that if an event is never shared

by the user’s friend, we do not take it into consideration. In

other words, we only consider the internal influence among

users. The external influence is omitted, since it is usually

intractable. From the Def. 2.7, it is obvious to see that during

the hesitation period of a silent user, its behavior is the same

as any other inactivated one. That is why we need an approach

to identify them in advance. As stated previously, our solution

is to use users’ interest to identify possible silent users.

Before introducing the Similarity Interest (SI) model, we

present a topological graph, User-Event Graph in the next

subsection. User-Event graph is an abstract model on which

our study is based. In the subsection C, we are going to

Notation Definition

U set of user nodes

V set of event nodes

EUV {uv|u ∈ U, v ∈ V }
EUU {uu′|u, u′ ∈ U}
s(x, y) SimRank score between node x and y
N (x) {y|xy ∈ EUV }
i(u, v) SI score representing user u’s interest towards event v

R iteration times of SI algorithm

TABLE I: Notations in Similarity Interest Model

Fig. 3: User-Event Graph

introduce how to use Similarity Interest model to quantify a

user’s interest towards each event. Finally, we will provide

the analysis of the SI model. TABLE I lists all the important

notations we use in this section.

B. User-Event Graph

Definition 2.8: (User-Event Graph) Let U , V denote the

sets of two different types of nodes, which represent the users

and events in an online social network, respectively. In other

words, U = {u|u is a user in the online social network} ,

V = {v|v is an event in the online social network}. EUV

denotes the set of edges crossing between U and V , while

EUU denotes the set of directed edges inside U . Formally,

EUV = {uv| if user u shares event v} and EUU = {uu′|
if user u′ follows u}. A User-Event graph is a graph G =
(U, V,EUV , EUU )

Fig. 3 shows a user-event graph. In such a graph, edges

in the EUV have no directions, while the edges in EUU

are directed, and the direction implies how information flows

between two users. Such difference between EUV and EUU

is due to that a user shares an event is equivalent to the event

shared by the user, yet the relationship between two users are

usually asymmetric. For example, in Fig. 3, uj has followed

ui, while ui does not follow uj . In this case, uj can receive

influence from ui, while ui cannot receive influence from uj .

This assumption is reasonable, since in a real online social

network, friendship between users are usually directed as well.

For example, in the Twitter network, if user A follows user B,

s/he would see the tweets of B, but user B could not see the

tweets of A unless B follows A as well.

C. Similarity Interest Model

Similarity Interest (SI) model is inspired by the framework

of nearest neighborhood model [8] and used to quantify a

user’s interest towards events. However, being different from

neighborhood model, we cannot observe the user’s initial inter-

est towards the event (a.k.a. user-item rate in the neighborhood

model), and non-iterative neighborhood model fails to depict

the propagative essence of information diffusion. We fix the



first problem by using similarity measurement to approximate

the initial interest and extend the model to an iterative one

to fix the second problem. The results can be used to identify

possible silence behavior in the online social network. In order

to ensure the computational efficiency, the similarity measure

here is only based on the topology of the User-Event Graph,

which does not incorporate other factors (like [9]).

The intuition of the SI model is straightforward: a user’s in-

terest towards an event is determined by the similarity between

this event and his/her previously shared events. Moreover, a

neighbor’s interest towards the same event can also influence

this user, and the power of such influence is determined by

the similarity between the user and its neighbor. One should

notice that such influence can be a cascade, which implies that

an iterative computation must be used in order to obtain the

final interest between a user and an event.

Before the model computes a user’s interest towards events,

we need the similarity between each user pair, as well as

each event pair on G. We use SimRank algorithm [10] to

compute these similarity scores. Obviously, the similarity score

between two nodes of different types should be zero, since

it is unreasonable to talk about the similarity between a

user and an event. In fact, this can naturally be achieved by

removing edges in EUU when we compute the similarity score.

After removing EUU , G becomes an undirected, bipartite

graph, resulting that the neighborhoods between two nodes

of different types will never have overlap. Therefore, the

similarity score between them will always be zero. As a result,

combining with the SimRank algorithm, the final similarity

s(x, y) between two nodes x and y (x, y ∈ U ∪ V ) equals to

limt→+∞ st(x, y), while st(x, y) is the tth iteration value of

s(x, y) and calculated as follows:

st(x, y) =

∑
i∈N (x),j∈N (y) st−1(i, j)

|N (x)||N (y)| (1)

where N (x) = {x′|x′x ∈ EUV }. The initial case of st(x, y)
is

s0(x, y) =

{
1 if x = y

0 otherwise

SimRank algorithm will usually stop around 10 to 20

iterations [10]. However, it is still very time consuming if

we compute every pair of users or events. Therefore, similar

to the original SimRank, we also apply pruning during the

computation. When two nodes can only be connected through

a path having more than two edges, we directly assign the

similarity score between them to be zero.

After obtaining similarity scores between users and those

between events, respectively, SI model can start to compute

user u’s interest towards an event v. Unlike measuring the

similarity scores, we take EUU into account in this step, since

we need to consider individual’s interest influences his/her

friends. User u’s interest towards event v, which is a score

i(u, v) calculated according to the following equations:

i0(u, v) =

∑
vi∈N (u) s(v, vi)

|N (u)|
it(u, v) =

∑
uui∈EUU

it−1(ui, v)s(u, ui)∑
uui∈EUU

s(u, ui)

i(u, v) =
∑

t=0...R

it(u, v)

(2)

In Eq. (2), R is the iterative times of the algorithm. Eq. (2)

can be interpreted as follows: a user’s initial interest towards

an event (i0(u, v)) is the normalized sum of the similarity

between this event and the previously shared events of this

user. Moreover, the neighbors can further influence a user’s

interest at step t, which is the normalized weighted sum of

the neighbors’ interest at step t−1. The weight exactly equals

to the similarity of the user and this neighbor. A user’s final

interest towards the event is the sum of each step’s influence

and its initial interest.

The final scores obtained from SI model are used to train

classifiers to differentiate silent cases and inactivated cases.

In the Evaluation section, we demonstrate that the final clas-

sifiers using this feature can achieve an overall accuracy of

around 70%. This is much higher than a random classification

baseline.

D. Analysis of Similarity Interest Model

There are several interesting points that can be raised after

presenting the SI model. The first one is that when a brand

new user or event just joined the network, can the SI model

approximate this new user’s interest or the interest of existing

users towards the new event immediately? Unfortunately, the

answer is negative. We cannot connect the new user/event to

our existing User-Event Graph, if we do not have any previous

historical or related information of them. As a result, we are

unable to use SimRank to compute its similarity with the

other users or events, a.k.a. all the similarity scores related

to this new user or event will always be zero. However, if we

can approximate these similarity scores by using other related

features rather than topological information, we will be able to

apply the SI model to further estimate the “interest”. By only

using the topological features, SI model is used to approximate

the interest of existing users towards existing events.

Secondly, one may ask whether we can use other methods

to compute similarity scores instead of SimRank. In fact,

the Similarity Interest Model we are presenting here is a

framework, so the definition of “similarity” may vary from

different perspectives. However, the fundamental idea behind

the SI model is well described in our model: a user tends

to share the events, which are similar to its previous shared

events. Furthermore, its interest towards an event can influence

its neighbors’ interests.

Thirdly, it(u, v) is usually a monotonically decreasing func-

tion in term of t. This actually has a real world meaning: the

influence of a user’s interest will decay with the increase of

the steps. However, mathematically, we can only prove that

it(u, v) is a monotonic function with mathematical induction.

Unless we make a strict assumption, such as that i1(u, v) ≥
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Fig. 4: X axis is the proportion of activated neighbors for

silent users. Y axis shows the probability of silent users

becoming activated (the proportion of activated silent users

among all silent users who have the same proportion of

activated neighbors). Missing points are filled by linear

interpolation.

i0(u, v) holds for any u and v, we will be unable to prove that

it(u, v) is always monotonically decreasing. Therefore, in real

world application, we usually use a exponential dampening

factor to force it(u, v) decreases with the increment of t. We

do not apply it here, since we found that in our experiment,

most of it(u, v) are already monotonically decreasing, and the

the results obtained by adding such dampening factor are very

similar to the original one.

III. TRANSIENT INFLUENCE AND SILENCE EVOLUTION

After using the SI model to identify silent cases, we attempt

to address the second question that bothers us: except for

interest, what will further influence a silent user’s final state?

We believe that one of the reasons causing them silence

is the insufficient number of activated neighbors to draw

their attentions. In other words, will the number of activated

neighbors influence the activation probability of silent users?

We use statistical study and experiment based on our datasets

to find the answer.

Intuitively, with the increase of the proportion of activated

neighbors, the activated probability of silent users should

also increase. This is consistent with models and findings

in sociology [4], [6]. Inspired by these previous work, we

conduct a statistical study on the silent cases from two datasets

(the details of datasets will be introduced in the Evaluation

section). We draw two figures to show the relation between the

proportion of activated neighbors and the probability of a silent

user to become activated in Fig. 4. Surprisingly, we can see

that the curves are very unstable (especially in the first dataset).

These are different from the same type of curves in sociology,

which implies that in our settings, online social networks may

be different from traditional real social networks.

We then draw the same figures on these two datasets. Instead

of indicating the proportion of activated neighbors, X axis

here means the absolute number of activated neighbors. The

results are shown in Fig. 5. It is obvious to see that these

two curves are much smoother and can serve a better job to

show the relationship between activated neighbors and a silent

user’s activation probability. We use the following principle to

explain such phenomenon.

Definition 3.1: (Transient Influence Principle) In online

social networks, the influence of an activated neighbor towards
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Fig. 5: X axis is the number of activated neighbors for silent

users. Y axis shows the probability of silent users becoming

activated (the proportion of activated silent users among all

silent users who have the same proportion of activated

neighbors). Missing points are filled by linear interpolation.

a silent user is transient, i.e. the accommodated influence

from neighbors depends upon the total number of activated

neighbors instead of the fraction of activated neighbors.

In real-world social networks, the contacts between two

individuals are usually multiple times. It implies that a

silent/inactivated user’s exposure times to an event are propor-

tional to the percentage of activated neighbors. For example,

the spread of virus is a perfect example to illustrate this. Once

a person becomes a virus carrier, s/he will try to infect his/her

friend every time when they make contact until his/her friend

becomes a virus carrier as well. However, in online social

networks, when an individual becomes activated to an event,

s/he usually only impact his/her friends once. For example,

if someone posted a new event in Twitter, it usually only

appeared in the updated feed list of his/her friends for a short

time and drew their attention once. Then it will be quickly

overwhelmed by other newer feeds. This explains that the

influence of an activated neighbor to a silent user in online

social networks is transient. As a result, the exposure times to

the event are approximately the same to the exact number of

activated neighbors. Therefore, comparing to the proportion of

activated neighbors, the exact number of activated neighbors

are more related to the activation probability.

The Transient Influence Principle is important in our re-

search for two reasons: (1) it instructs us what feature should

be chosen to build the classifiers in the next paragraph to

further study the factor influencing a silent’s user’s evolving

process; (2) it also gives us the hint of choosing the appropriate

model to depict silent user’s behavior when we design our

diffusion model in the Section 4.

In order to further demonstrate the influence of number

of activated neighbors towards a silent user’s final decision,

we apply classification experiments on the datasets. We use

the decision tree [11] algorithm to test whether the generated

decision tree supports us. Intuitively, because of the Transient

Influence Principle, we prefer to use the exact number instead

of the fraction of activated neighbors as a feature to train

the classifiers to predict the final state of a silent user.

However, in order to be more persuasive, we also trained

the classifiers based on the proportion of activated neighbors,

and the prediction accuracy is lower than the ones using the

number of activated neighbors. Therefore, the final reported

decision trees are based on the exact number of activated



neighbors. More details will be presented in the Evaluation

section.

IV. DIFFUSION WITH SILENCE MODEL

With the help of the previous section’s work, we can face

our final task: how to extend the traditional diffusion models so

that they can depict the silent user’s behavior? In this section,

we firstly introduce our Diffusion with Silence (DS) model and

then present the analysis to demonstrate both of its practical

and theoretical value.

A. Definition of Diffusion with Silence Model and its Practical
Value

Our proposed diffusion model, Diffusion with Silence (DS)
model, is based on the Independent Cascade (IC) model [1]

supplemented by the Linear Threashold (LT) model [1]. DS

model focuses on how to depict the silence evolution process,

which is neglected by traditional diffusion models. The exten-

sion has two different questions need to be answered: how to

identify silent users at first and what extra factors can motivate

silent users turning into activated ones. For the first question,

we can utilize the results generated by Similarity Interest

model. As for the second one, according to the findings in the

Section 3, it is reasonable if we combine LT model to simulate

the behavior of silent users. Due to the introduced Transient

Influence Principle, we do not incorporate other models like

Voter model [7] to simulate such behavior. More specifically,

in the Voter model, a user’s activation probability is propor-

tional to the faction of its activated neighbors. However, in the

LT model, a user’s activation probability is directly related to

the number of activated neighbors. As a result, our model is

described as follows.

Diffusion with Silence model: Before the information

propagation starts, each user v to the event e can have two

different labels: silent or inactivated. The label of v to e,

is determined by the classification result using the SI score

i(v, e). The classifier is trained on all SI scores except i(v, e)
and used to predict the label of v to e according to i(v, e).
Furthermore, there is an edge between every two connected

users v and w, and the edge has two different weight bv,w
(bv,w ≥ 0,

∑
v bv,w ≤ 1) and pv,w (0 ≤ pv,w ≤ 1). If v

becomes activated at time step t, it will be given one chance to

try to activate each of its non-activated (including inactivated

and silent) neighbor w. The probability to succeed equals to

pv,w. If the trial is successful, w will become activated as well

at the next time step, which is t+1. Otherwise, w stays in the

same state in t+1. If the neighbor w′ is a silent user, despite

that v can try to activate w′ directly, v will also contribute

bv,w′ to s(w′). s(w′) is the accumulated influence from all

w’s activated neighbors. Formally, s(w′) =
∑

u∈A(w′) bu,w′

and A(w′) = {u|u is an activated neighbor of w′}. Once

s(w′) ≥ θw′ , w′ will also be activated at time step t+ 1. θw′

is a real number in (0,1] assigned to w′. In the end, all the

remaining silent nodes become inactivated.

We use Fig. 6 to explain the Diffusion with Silence model

more vividly. In these figures, red nodes are the activated

(a) Initial Situation (b) Information Propagation to Inacti-
vated User

(c) Information Propagation to
Silent User

(d) The end

Fig. 6: Diffusion with Silence Model

nodes, white ones are silent nodes, and black ones are in-

activated nodes. Fig. 6(a) shows that before simulating an

influence process, these three types of nodes all exist. Fig.

6(b) demonstrates that an inactivated user can only be directly

activated by another active user with a certain probability. On

the other hand, in Fig. 6(c), a silent user can become activated

in two situations: directly activated by active neighbors or

s(w′) ≥ θw′ , where s(w′) is directly dependent on the number

of activated neighbors around w′. As shown in Fig. 6(d), in

the end of propagation process, there are no more silent users,

since they either become activated (v′) or inactivated (v).

Diffusion with Silence (DS) model combines the IC model

and the LT model in a natural way. This model describes that

a silent user can be activated through two different ways.

Firstly, it can be immediately activated by its surrounding

activated neighbors’ attempts. In addition, it can also become

activated directly under the influence of the number of its

activated neighbors. The former process is well depicted by

the Independent Cascade part of our model, while the second

case is modeled by the Linear Threshold part.

Another thing needs to be mentioned is that the value of

each pv,w, bv,w′ and θw′ is not directly defined by the DS

model. This is similar to the definition of the original IC model

and LT model. In [1], pv,w, bv,w′ and θw′ are all dependent

on the history of the successful propagative process related to

these nodes. We use the same definition of pv,w, bv,w′ and θw′

in the proposed DS model.

The practical value behind DS model is that unlike the

original IC and LT model, we will be able to identify the

silent users according to their interest towards the event before

simulating an event’s propagation process. Actually, these

silent users usually have higher interest score (related results

are demonstrated in Evaluation section), and they are directly

influenced by the increasing number of activated neighbors

around them. Therefore, they have a higher chance to be

activated than other usual users. As a result, DS model should

depict the influence process in a more accurate way than the



IC or LT model. In order to show that, we simulate a real

event’s propagation process, which has the most shared users

in our dataset. The experiment show that starting from the

same seed set (early shared people), the final activated set

generated by DS has higher precision and recall than the

activated set generated by IC and LT. More details of this

case study will be presented in the Evaluation section.

B. Analysis of the Diffusion with Silence Model and its The-
oretical Value

One of the best properties DS model has is that it pre-

serves the submodularity, which the original IC and LT model

have. Submodularity is important, since it guarantees that

when solving the influence maximization problem on the DS

model, the greedy algorithm will always have a constant-factor

approximation [1]. Such property let the DS model can be

directly used in the influence maximization problem. Formally,

we present submodularity as follows:

Definition 4.1: If we have a function f(∗) which maps from

a set to a real number, f(∗) has submodularity property if and

only if for any sets S, T , S ⊆ T and any node v, the following

equation always holds: f(S∪{v})−f(S) ≥ f(T∪{v})−f(T )
The reason why the submodularity is important is that for

problems like social influence maximization, it can guarantee

that the result of the greedy algorithm has a lower bound of

(1− 1/e) of the optimal solution [1].

In order to prove DS model preserves submodularity, we

first need to prove that it is equivalent to two sequential

processes. Moreover, the second process is dependent on the

first one and they are running on two different networks.

Formally, we have:

Lemma 1: Diffusion with Silence model is equivalent
to two sequential and dependent parts. First part is a
Independent Cascade model running on a network having
the same structure as the Diffusion with Silence model does.
And the second part is a Linear Threshold model running
on a derived subnetwork.

Proof: Firstly, let us define G = (V,E) is the online

social network used in DS model, where V is the set of

nodes representing the users, and E is the set of edges

representing the connections among users. Furthermore, we

define G′ = (V ′, E′), where V ′ = {v′|v′ is a silent user}∪
{u′|v′ is a silent user and u′v′ ∈ E} and E′ = {u′v′|u′v′ ∈
E, u′ ∈ V ′, v′ ∈ V ′, and v′ is a silent user}. To put it in

a simpler way, V ′ contains all silent users and their neighbors

in G, while E′ contains each edge between one silent user and

one of its neighbors. We define that the direction of edge in E
and E′ is exactly the direction how the information propagate.

For example, uv ∈ E means that v “follows” u so that v
can receive influence from u. We should notice that given a

set of initial activated users, S, the information propagation

process depicted by the original DS model is equivalent to

the following processes: (1) Running IC model on G started

from S, and the resulting set of final activated users is S′.
(2) Running LT model on G′ started from S′ ∩ V ′ , and

the resulting set of final activated users is S′′. (3) The final

activated users are S′ ∪ S′′.

We believe that after we derived G′ from G, it is straight-

forward to see that the DS model is equivalent to the above

processes. This is because that in the DS model, LT part only

works on silent users and their neighbors. In other words, we

are giving a “second chance” for those silent users to become

activated. Therefore, it is natural to extract this process from

DS model. Of course, after such extraction, the remaining part

is exactly the original IC model.

Theorem 1: (Submodularity) Diffusion with Silence
model preserves submodularity property.

Proof: In order to prove this theorem, let us first define

σ(∗) as a function, which maps a set of nodes to a real

number. More specifically, σ(S) is the expected number of

activated users at the end of influence process, given S as the

set of initial activated users. Our job is to prove that under

the DS model, σ(∗) has the submodularity property. To avoid

confusion, let us denote σDS(∗) as the function on the DS

model, while σIC(∗) is on the IC model and σLT (∗) is on the

LT model. Then we have:

σDS(S ∪ {v})−σDS(S) = (σIC(S ∪ {v})− σIC(S))+

(σLT ((S
′ ∩ V ′) ∪ {v})− σLT (S

′ ∩ V ′))
(3)

Eq. (3) holds because of Lemma 1. From Lemma 1, we

can get that the margin gain of adding a node v into the

initial set S is always equal to the sum of the margin gains

of the corresponding IC model and LT model. We should also

notice that for any S ⊆ T , we have S′ ⊆ T ′. As same as the

previous definition, S′ and T ′ are the final activated sets from

the IC model starting from the initial set S and T , respectively.

Therefore, we also have S′∩V ′ ⊆ T ′∩V ′. The submodularity

of σIC(∗) and σLT (∗) have already been proved in [1]. As a

result, we have:

σIC(S ∪ {v})− σIC(S) ≥ σIC(T ∪ {v})− σIC(T )

and

σLT ((S
′ ∩ V ′) ∪ {v})− σLT (S

′ ∩ V ′) ≥
σLT ((T

′ ∩ V ′) ∪ {v})− σLT (T
′ ∩ V ′)

Thus, we have σDS(S∪{v})−σDS(S) ≥ σDS(T ∪{v})−
σDS(T ). The DS model therefore preserves the submodularity.

V. EVALUATION

In this section, we present the experiment results obtained

from two real-world datasets. These two datasets are generated

from the raw data we crawled from the Twitter network.

A. Description of Datasets

Our datasets are retrieved through API provided by Twitter.

The statistics of them are presented in Table II. The first

network has users who followed the news account of a

university. Unsurprisingly, most of the users are the current

students, employees and alumni of the university. The second

network contains all the users that the Twitter’s official account



Dataset1 Dataset2
Users 1,113 748

Tweets 17,075 14,432

Friendship connections 10,546 53,639

Silent User-Event Pairs 103,357 905,500
(759 activated silent) (3,892 activated silent)

Activated User-Event Pairs 863 10,021
(excluded activated silent pairs)

Inactivated User-Event Pairs 226,515 2,689,198
(excluded inactivated silent pairs)

TABLE II: Statistical Results of Datasets

has followed. Most of these users are the employees or closely

related people to Twitter company. Taking a look at the number

of edges between these users, we can see the connections

among them are very dense. In addition to the relationship

network, we also collect all the tweets they have published in

the year of 2011 and the time stamps associated with them.

In order to check how an event propagates through the

network, we use the URL at the end of each tweet as the

identifier of the tweet’s content. This is the same as the method

used in [12]. In other words, we consider if two tweets have the

same URL, they are both talking about the same event. Those

tweets containing a URL that only appears in the dataset once

are removed, since there is no successful propagation related

to them. In the first dataset, we have 1,113 users and 17,075

tweets. As for the second one, we have 748 users and 14,432

tweets.

B. Case Study of Diffusion with Silence Model

First of all, let us use an experiment on the datasets to

show that the that the proposed Diffusion with Silence model

can depict the real-world information propagation with higher

accuracy than the Independent Cascade model and Linear

Threshold model. We use the three models to simulate the

propagation process of a real event and compare the results.

In order to include as many users as possible, we select an

event having the most shared users in our dataset and use

different ratio of the first shared users as initial seeds. The

event we have chosen is shared by several hundreds of users

in our first dataset. In the experiment, we use the first 10,

15, 20, 25, 30 users who shared this event as the different

initial seed set to generate the cascading process through the

three different models, separately. For each seed set and each

model, we compare the generated set of final activated users

with the real set of activated users in the network. The results

presented here are the average ones of 50 times simulations.

Of course, before the simulation, we need to first generate

each pv,w for the IC model, and bv,w, θv for the LT model.

Firstly, according to the original models described in [1], we

set pv,w = 1−(1−rv,w)
t, where rv,w is a randomly generated

small number between (0, 0.005], and t is the number of

former successful transitions from v to w. According to the

definition of pv,w, if node v has activated w more often in

the history, node v can have more powerful influence on w,

which means its trial to activate w in the future will have

a higher probability to succeed. The interval that we use to

generate rv,w is the one that can generate the best result that

the IC model can reach among all the different ranges we

have tried. Nonetheless, since the DS model uses the same

pv,w generated in this step, the range of rv,w is not relevant to

the comparing result of the DS model and IC model. Secondly,

bv,w = 1/|N (w)|, where N (w) is the set of neighbor w
has followed. Under this definition, we consider each person

followed by w has the same impact on w. Furthermore, θv
is randomly generated from (0,1]. Similarly, we can also

change the values of bv,w and θv , but since the DS model

uses the same bv,w and θv , the changes will not influence

the comparison results. At last, the DS model is generated

according to our description in Section 4. Whether a user is

in the silent state at the beginning is classified by the C4.5

algorithm using the Similarity Interest score. The pv,w, bv,w
and θv are the same as those in the IC and LT.

Our comparison is on the quality of the generated final

activated users starting from different initial seed set and under

the simulation of three diffusion models. We compare the

precision and recall of each set of generated activated users

given the ground truth of the final activated users. According

to the detailed results shown in Table III, starting from every

initial seed set, the DS model always generate final activated

users with the highest precision and recall. This is especially

the case for smaller number of initial seeds. For example, with

10 seeds, the recall under DS is 25% higher than the IC model

and 64% higher than the LT model. The reason behind this

is already explained in the previous section: the silent user

identified by the DS model has a potential interest towards

the event, so that they can be more easily activated than

normal users. The improvement of DS model comes from two

parts: SI model to identify silent cases, and transient influence

principle to discover that silent users can be directly activated

because of the number of its activated neighbors. Therefore,

we further introduce the experiments to evaluate these two

parts separately.

C. Evaluation of Similarity Interest Model

In order to evaluate whether the SI model can be used to

identify silent cases, we train classifiers using i(u, v) obtained

by the SI model as a feature to predict the label of user-

event pair u, v (silent or inactivated). Obviously, we need to

first extract two kinds of user-event pairs: silent user-event

pairs according to Def. 2.7 and inactivated user-event pairs

excluding inactivated silent case (for simplicity, we refer them

as inactivated user-event pairs later). It is straightforward to get

all silent user-events, since we already have the timestamp of

each tweet. As for the inactivated cases, we initially extract all

the user-event pairs according to Def. 2.2, and then exclude

the inactivated silent pairs among them according to Def.

2.6. As shown in Table II, the number of activated silent,

inactivated silent, inactivated cases, and activated cases are

highly unbalanced. This is caused by a common phenomenon

in the online social network datasets, which is the observable

successful propagations among users are rare comparing to

the unsuccessful ones. Therefore, in order to demonstrate

reasonable prediction results, we have to control the number

of the three types of cases to prevent silent cases being

overwhelmed by inactivated ones or the activated silent cases



10 Seeds 15 Seeds 20 Seeds 25 Seeds 30 Seeds

Precsion Recall Precsion Recall Precsion Recall Precsion Recall Precsion Recall
DS model 0.481 0.512 0.466 0.496 0.486 0.523 0.485 0.571 0.478 0.534

IC model 0.440 0.409 0.439 0.429 0.447 0.442 0.452 0.454 0.446 0.459

LT model 0.379 0.312 0.382 0.332 0.405 0.382 0.417 0.386 0.409 0.486

TABLE III: Comparison Results of the Final Activated Sets of Different Diffusion Models

Precision Recall F-Measure
Dataset #1 #2 #1 #2 #1 #2

Silent cases 0.829 0.89 0.533 0.445 0.649 0.593

Inactivated cases 0.631 0.629 0.879 0.945 0.735 0.755

Weighted Average 0.735 0.76 0.698 0.694 0.69 0.674

TABLE IV: Detailed Prediction Results of Two Datasets
Dataset 1 Dataset 2

Mean Median Mean Median

Silent cases 0.968 0.337 0.214 0.173

Inactivated cases 0.171 0.083 0.138 0.137

TABLE V: Statistics of SI Scores of the Datasets

being overwhelmed by the inactivated silent ones. Thus, we

use down-sampling to force the number of inactivated silent

user-event pairs to be approximately the same as activated

silent ones. Similarly, we down sample the inactivated user-

event pairs to be approximately equal to the silent ones (union

of inactivated and activated silent cases).

In the experiment, we set R, the iterations of Similarity

Interest algorithm, to 30, since the results obtained by in-

creasing R are similar to what we present here. We use the

decision tree (C4.5) and the obtained SI score as the sole

feature to predict the label of user-event pairs. Since we do

not have any previous models to compare with, we use the

random classifier as the baseline. The results are obtained by

using 10-fold cross validation, and the accuracy in the first

Dataset is 69.77%, while 69.43% in the second dataset. Other

details of this prediction task are shown in Table IV. From

these details, we can see that the weighted precisions, recalls

and F-Measures are all around 70%. Moreover, the results

demonstrate that we obtain higher precision than recall for the

silent cases. However, the recall is higher than the precision

for inactivated ones.

Furthermore, we draw the generated decision trees from

these two datasets in Fig. 7. By looking at the details in these

two trees, we find that among all the instances contained in the

right node (who has higher SI score) of Fig. 7(a), 85.3% are

silent user-event pairs. Similarly, 91% of the cases contained

in the rightmost node (who has highest SI score) of Fig. 7(b)

are silent cases. Together with the statistical results in Table

V, we can conclude that user’s interest towards the event in

the silent case is usually higher than the one in the inactivated

case. This confirms the intuition that silent users may be more

interested to the incident than normal inactivated users.

D. Activated Neighbors and Silence Evolution

As introduced in the Section 3, other than the intrinsic

interest of the user towards the event, another factor motivating

a silent user to become activated is the increasing number of

the activated neighbors. In addition to the supporting statistical

result in Section 3, we use decision trees generated by a binary

classification task to further demonstrate that. In the datasets of

(a) Dataset 1 (b) Dataset 2

Fig. 7: Decision Tree Based on SI Score

(a) Dataset 1 (b) Dataset 2

Fig. 8: Decision Tree Based on Activated Neighbors’

Number

previous experiments to evaluate Similarity Interest model, we

already have the balanced number of activated silent user-event

pairs and inactivated silent ones. Actually, these two types of

cases are silent user-event pairs ending in different final states

(activated or inactivated) after the evolving process. Therefore,

we can directly use activated silent state and inactivated silent

state as the two different labels to formulate the classification

problem. Furthermore, according to the Transient Influence

Principle, we use the number of activated neighbors instead of

the proportion of activated neighbors (the prediction accuracy

is much lower) as the sole feature to train the decision tree.

The values of accuracy of both datasets in this prediction

task are around 70%, and the decision trees are drawn in Fig.

8. One should notice that the reason we do not have a branch

of activated neighbors equaling to 0 in Fig. 8 is that all the

events here are shared by at least one of user’s neighbors.

This is because of the data here are generated according to

the definitions in Section 2. The generated decision tree in

dataset 1 shows that 86.9% of the silent case in the rightmost

leaf (has the largest number of activated neighbors) will transit

to activated state later on, and the percentage in the second

dataset is 81.4%. This confirms that the number of activated

neighbors is one of the motivations that the silent user becomes

activated.

VI. RELATED WORK

Silence is a behavior that has been widely studied in man-

agement research and other areas [4], [5]. Some researchers

from these fields are very interested in the consequences of an

individual’s silence behavior [5], while articles like [4] focus

on the reason why people would choose to remain silence.



However, we have found no paper in the data mining area

explicitly modeling this behavior when describing the social

influence process. Different from the empirical studies in [4]

and [5], we focus on providing the quantifiable definition of

“silence” and how to incorporate the silent concept into social

influence process.

To identify the silence behavior in online social networks,

we need an algorithm to approximate the user’s interest to-

wards an event. Collaborative filtering is a major area that stud-

ies event recommendation for users. Generally speaking, these

algorithms can mainly be divided into user-based one [13],

item-based one [14], and the combination of them [15].

Unfortunately, none of them is suitable for our task because

these models do not contain the relationships among users.

Unlike these studies, Nearest Neighborhood model proposed

in [8] utilized rates from friends to predict a user’s own rate

to the same item. Its non-iterative calculation is suitable to

predict the rate, but it can not be directly applied in our setting.

This is due to that the cascading essence of interest diffusion

process can not be captured. Inspired by the neighborhood

model, we design an iterative algorithm named Similarity
Interest (SI) model to depict the user’s interest towards

the event, and the similarities in this model are computed by

SimRank [10].

The social influence process is a popular topic that has been

studied for many years. It inspired many valuable applications,

such as viral marketing [16]. Social Influence Maximization

problem is the key algorithmic problem behind the viral mar-

keting, which has been shown that several greedy or heuristic

methods can provide an approximately good result [1], [17],

[18]. The most widely used diffusion model in solving this

problem is Independent Cascade (IC) and Linear Threshold
(LT) [1]. However, their generality will not be able to depict

specific real-world phenomena, such as silence behavior. As

complementary work, there are several papers trying to ex-

tend these models to describe more specific phenomena in

the influence process. The model from [19] can depict the

responding delay after one user is activated by its neighbors.

In this model, after each user is activated, it will have a delay

of time t to actually respond to the event. However, this model

is unsuitable to depict the silence behavior, since all these

”delayed” users will still become activated later. Silent users,

on the other hand, can turn into inactivated state. We fix this

problem by introducing an extra silent state into diffusion

model and use the combination of the SI model, IC model,

and LT model to capture the silent user’s evolving process.

VII. CONCLUSION

In this paper, we introduce the silence concept from social

science into computational area by providing a mathematical

definition of “silence”. Furthermore, in order to extend dif-

fusion models, we accomplish two prerequisite tasks: silent

user identification and examination of silent users evolving

process. To accomplish the first task, we design the Similarity

Interest (SI) Model to estimate the interest of a user towards

the event and further use it to discover silent users. In order to

demonstrate how Similarity Interest Model identifies possible

silence behavior, we conduct experiments on two real-world

datasets. As for the second task, we use both statistical and

experimental results to show that the number of activated

neighbors can be a motivation to increase the activation proba-

bility of silent users. At last, based on the experimental studies

for these two tasks, we extend the traditional diffusion models.

The proposed Diffusion with Silence (DS) model, includes

an extra silent state and incorporates the Similarity Interest

model, Independent Cascade (IC) model and Linear Threshold

model. The proposed DS model preserves the submodularity

inherited from the IC and LT models. To show that it depicts

the actual social influence process more precisely, we use the

DS model and two baseline models (IC and LT) to simulate the

propagation process of a most shared real event in our dataset.

Starting from a same seed set, the set of final activated users

generated by DS model has a higher precision and recall.
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