
Page 1 of 35

DESIGN REPORT

FOR

THE PROJECT

INVENTORY CONTROL SYSTEM FOR

CALCULATION AND ORDERING OF

AVAILABLE AND PROCESSED

RESOURCES
(November 12, 2012)

GROUP 9

 SIMANT PUROHIT

 AKSHAY THIRKATEH

 BARTLOMIEJ MICZEK

 ROBERT FAIGAO

Page 2 of 35

INDEX

1. Introduction

1.1 Purpose of the system……………………………………………………… 4

1.2 Design goals………………………………………………………………… 4

1.3 Definitions, acronyms, and abbreviations……………………………….. 6

1.4 References………………………………………………………………….. 6

2. Current software architecture……………………………………………………… 7

3. Proposed software architecture

3.1 Overview……………………………………………………………………. 7

3.2 Subsystem decomposition…………………………………………………. 8

3.3 Hardware/software mapping……………………………………………… 10

3.4 Persistent data management……………………………………………… 11

3.5 Access control and security……………………………………………….. 12

3.6 Global software control…………………………………………………… 13

3.7 Boundary conditions……………………………………………………….. 14

4. Subsystem services…………………………………………………………………… 16

5. Database System……………………………………………………………………… 17

6. Object design trade-offs……………………………………………………………… 18

7. Interface documentation guidelines……………………………………………....... 19

8. Packages………………………………………………………………………………. 21

9. Class interfaces……………………………………………………………………….. 23

Bibliography…………………………………………………………………………….. 34

Glossary…………………………………………………………………………………. 35

Page 3 of 35

List of Figures

Figure 1: Subsystem Decomposition .. 8

Figure 2: Hardware/Software Mapping .. 10

Figure 3: Services Diagram ... 15

Figure 4: Database Schema ... 16

Figure 5: Access Specifiers .. 18

Figure 6: Packages Diagram ... 20

Figure 7: Class Diagram (Overview) ... 22

Figure 8: Ingredient Class Diagram... 23

Figure 9: AddIngredient Class Diagram ... 24

Figure 10: Recipe Class Diagram ... 25

Figure 11: Vendor Class Diagram .. 26

Figure 12: Prediction Class Diagram ... 27

Figure 13: AddRecipe Class Diagram .. 28

Figure 14: RemoveRecipe Class Diagram ... 29

Figure 15: UpdateRecipe Class Diagram ... 30

Figure 16: Updates Class Diagram ... 31

Figure 17: Occasion Class Diagram ... 32

Figure 18: Orders Class Diagram .. 33

List of Tables

Table 1: Subsystem Description ... 9

Table 2: Access Matrix ... 12

Table 3: Boundary Exception Cases .. 14

Page 4 of 35

1. Introduction

1.1 Purpose of the System

A case study at “Guckenheimer” (an on-site corporate restaurant management and catering

company) cited issues regarding a basic resources requirement list that has to be

maintained manually by the staff. To keep track of their inventory levels they have to calculate a

list of the groceries utilized during a course of time, calculate and analyze the requirements for

the future, and place their next order to the vendors if needed. This process takes up a lot of time

and human effort, and is also prone to human error.

This poses a problem of a situation that the staff at “Guckenheimer” as well as many

other restaurants faces. It takes up a lot of time to manually keep track of sales and place correct

orders to vendors, wasting useful labor in trivial works. A product which would assist in tackling

the above mentioned problems would prove to be fruitful to clients such as

“Guckenheimer” and similar enterprises as this product would help convert the unproductive

time to something more useful, by removing the unnecessary error prone complications and

efforts.

1.2 Design Goals

 Low Response Time: The main functionality of the system involves updating and

reading the data from the database for different entities such as ingredients, recipes

vendor etc. Thus the time required to retrieve/ update/ add data to the database should be

minimum and preferably should be in the range of 2-5 seconds or lesser.

 High Robustness: The system should constantly check the user input at all instances that

could generate errors in the program. For instance-

o The system should be able to check input values for the amount of ingredients

required for the recipe and should make sure the user enters a numeric value in

the input box and the system shows an error and asks the user to re-input if in a

perfectly validated field an improper data type is inputted.

o The System should have validated input data fields and must put a constraint on

the inputted names of recipe, ingredient, vendor, occasion etc. to ensure no

duplicate entries are added in the database. This ensures the robustness of the

maintained database.

Page 5 of 35

o The system should verify all the inputs by the user by using a confirmation dialog

box before processing and making changes to the data.

 High Reliability: The reliability of the system depends upon its ability to replicate the

specified behavior. The safekeeping of the data is essential so as a result a backup of the

levels is generated and stored in the warehouse. There are numerous factors on which

reliability can be defined as for example, the specifications mention that the updating of

database or the notification of a successful update must be carried out within 2-5 seconds

of initiation and the system must adhere to these specifications to be called a reliable

system. Similarly, the system should be able to achieve performance in lieu with the

specifications mentioned.

 Low fault tolerance: The system works on sensitive data and therefore any fault in the

functioning of the system will hinder accurate updating or reading of data. This could

lead to invalid entries in the database. Thus, the system should have low fault tolerance.

This is in tandem with the design goal of high robustness as the validation checks to

ensure correct inputs from the user implies that the fault tolerance of the system is low.

 Security: The system must provide a login functionality to the Manager as the manager

is the authenticated controller of the system and any other user is not permitted to use the

system functionality and make changes in the database. Thus proper user authentication

should be necessary before system launch.

 High Extensibility: The design of the system should be such that any future

improvement can be added with no or minimum improvements. It is in one‟s best interest

to always give space for future enhancements. For instance, right now there is no class

that will help the user to manipulate prediction of values and the current system only

predicts the ingredient usage for a certain date, but a feature can easily be added to

incorporate prediction of recipe usage, order prediction etc.

 Low Adaptability: The system is designed to work on the domain of inventory control

and management in the restaurant and catering industry. The functioning of this project is

limited only to these particular businesses which have similar functioning and thus it

would then be subject to structural re-modification in order to to apply it in some other

application domain.

 High Readability: The system code should be properly commented so as to explain the

functionality of the code fragments. The code comment should explain the function or

Page 6 of 35

task the code fragment performs and the result and the return value of the corresponding

function or task should also be mentioned.

 High Traceability: The coding scheme of the system should be such that it could be

traced back to its requirements specifications. This will enable high traceability of the

code of the system.

1.3 Definitions, acronyms, and abbreviations

 Manager: The manager implies the manager of the restaurant/company who handles all

the administrative works.

 Recipe: This is the menu item that the restaurant/company provides to its customers.

 Ingredient: This is the entity that the recipe is composed of.

 Vendor: This is the company that provides the restaurant/company with the

required ingredients.

 Order: Order is the list of ingredients and the quantities that is or is to be requested from

the vendor.

1.4 References

 Project proposal document: Submitted on 21
st
 September 2012.

 Software Requirements Specification Document: Submitted on 19
th

 October 2012.

Page 7 of 35

2. Current Software Architecture

“Guckenheimer” (an on-site corporate restaurant management and catering company) follows a

system where the basic resources list needs to be manually calculated at the end of a certain time

period by the staff. They must accordingly check the inventory levels for determining if they are

below the threshold level then orders are processed to the vendors. This sort of system not only

leaves a lot of room for human error, but is also incredibly time consuming. The lack of

a centralized database also creates an issue when it comes to keeping track of inventory levels as

well as past trends in ingredient requirements. The system also relies on human intuition and

guesswork to place the correct orders for the following week, which will not be as precise as an

algorithm designed for this purpose.

3. Proposed System Architecture

3.1 Overview

We propose to develop software that keeps track of inventory in the “back of house”, or kitchen,

and updates it according to daily sales. Each food item is linked to respective resources (or

ingredients) and as each product is sold the ingredients utilized in making that product are also

utilized. These changes in inventory are kept track of through utilizing a database.

We propose to keep track of each and every ingredient by dynamically linking it to the product

and as a result create a dependent relationship to that product. At a specific time period (typically

the end of the week); if the inventory is below the threshold level, order forms to the specific

vendors are generated in order to restock the required items for the next week. The project also

makes smart predictions on required inventory for the following week based upon the predicted

climate and possible occasions or events that may influence near future sales. At the end of the

week, the software takes into account all threshold levels, predictions, and other factors

to generate an order form, which after being verified by the manager is sent out to the vendors.

Page 8 of 35

3.2 Subsystem Decomposition

Figure 1

Page 9 of 35

Subsystem Description

ManagerInterface This subsystem defines an interface between the user and the system. The user

through this interface can access and execute different functions on the various

subsystems.

IngredientsManagement This subsystem provides services to manage the ingredients inventory of the

system. This subsystem provides services such as providing list of available

ingredients, providing details of individual ingredients in terms of the current

inventory levels, threshold levels etc. This subsystem requires the services of

Database subsystem to retrieve required details.

RecipeManagement This subsystem provides services to manage the Recipes in the inventory. This

subsystem provides services such as adding/updating/removing a recipe

to/from the inventory. This subsystem requires the services of Database

subsystem to retrieve the list of ingredients that make up the recipe.

VendorManagement This subsystem provides services to manage the vendor that deliver

Ingredients. This provides services such as providing details of the vendor,

providing list of ingredients that the vendor supplies. This subsystem

communicates with the Database subsystem to retrieve the list of vendors and

the ingredient list to match them with the vendor names.

PredictionManagement This subsystem provides prediction of usage per ingredient to the user. This

subsystem communicates with the Database subsystem to access past data of

used resources from the database and then apply prediction algorithm on the

retrieved data to give estimates of usage to the user.

OrderManagement This subsystem provides services to generate orders for vendors for the

ingredients that are below threshold levels. This subsystem also provides like

editing a generated order and cancelling an generated order.

OccasionManagement This subsystem provides services to the user to add an occasion date to the

system so that the system prepares itself for an upcoming event on which day

the sales will be more than usual day sales. This subsystem requires the

services of Database subsystem to update/remove occasion days from the

database.

CorrectionManagement This subsystem provides services to the user to correct the levels of inventory

and avoid inventory slips. The user here uses this service to match the actual

inventory levels with the inventory levels in the system.

UpdatesManagement This subsystem provides services to the user to perform updates on the

database.

DatabaseSubsystem This subsystem connects to the database and provides requested database to the

other subsystems that request data from it.

Table 1

Page 10 of 35

3.3 Hardware Software Mapping

The system runs on a standalone system without the need of any external server connection or

internet connection. Thus the hardware requirement of the product is a personal computer which

meets the requirements mentioned in the specifications. The product is programmed in Java

programming language and uses MySQL for database service. Thus the client computer requires

the installation of JDK 1.6 and MySQL server on its machine. The mapping between the

hardware and the software can be interpreted by the following diagram.

Figure 2

Page 11 of 35

3.4 Persistent Data Management

Persistent Objects

The main data entity that is persistent in the system is objects of class Ingredients. The objects of

class Ingredients are used by various classes to function. For example, the class Recipe uses the

objects of Ingredients class to define the contents of recipe with the name of ingredients that are

accessed by the objects of the class of Ingredients.

The object of the class Recipe have also to be classified as persistent objects even though the

class derives some of its properties from the Ingredients class. The reason for this is the classes

AddRecipe, RemoveRecipe, UpdateRecipe and Occasion are derived from the Recipe class and

require the object of the recipe class for their functionality.

Similarly, the objects of class Vendor have to be persistent as it also forms a building block of

the whole database system. The Vendor class objects give the list of vendor along with the

ingredients they provide. Thus the Vendor class uses the objects of the Ingredients class for its

functionality.

In short, the objects of classes Ingredients, Recipe and Vendor are connected and depend highly

upon each other for their functionality. Additionally, other classes defined in the class diagram of

the system depend upon the data provided by the above mentioned classes for their functionality.

Storage Strategy

The database is created and maintained in the open source environment MySQL. The subsystems

connect to the database via JDBC API. Using an open source database management system

enables us to reduce cost of development of the system plus it allows us to maintain the database

on the same machine on which the other subsystems are functioning. The only thing required is a

JDBC connector driver to setup and maintain connection to the database. The type of database

used is Relational database, as using a flat file database would prove tedious if used on such

highly connected data entities that we use in our system.

Page 12 of 35

3.5 Access Control and Security

Access Matrix

Orders Actors  Manager

Recipe addRecipe()

removeRecipe()

updateRecipe()

Ingredients getIngredientsList()

addIngredient()

updateIngredient()

Vendor getVendorDetails()

getIngredientListFromVendor()

Prediction getPredictedUsage()

Updates updateAfterSales()

updateAfterReceiving()

Occasion addOccasion()

Order sendOrder()

editOrder()

cancelOrder()

Table 2

Page 13 of 35

3.6 Global Software Control

The type of global control flow used here is „Event driven‟. The system works on the services

requested by the Manager. As a result the system waits for some activity on the part of the

Manager to initiate any process. Until then the system waits on the main user interface that

provides the manager access to various functions on the system.

To ensure a robust design of the system, we define some strategic goals for the system as

mentioned below:

1. Boundary objects do not define any of the fields in the System, instead they are only

associated with creation of control objects upon request of access to specific functions by the

Manager.

2. Control Objects must not be shared among functions, instead if one function on the interface

is activated the other functions must not be accessible by the Manager until the current

function complete its operation. This will avoid any other control object being made by the

user when some other control object exists.

3. Entity objects must not allow direct access to its fields to any other class or object, instead it

should use getter and setter method to get and set the values of its attributes for better

encapsulation. Also, the attributes of the class must be declared private for access control and

avoiding accidental changes by other objects.

4. Database connection must not be open all the time, instead the connection to the database

should be made only when any functions requests data or wishes to update data. This will

ensure that the data is not manipulated by the system without any explicit requests made.

5. Entity data validation should be conducted at point where data is written into the database,

this will ensure that no invalid data is entered into the database avoiding any serious

inventory slips in the future.

6. The system will require an authenticated login and password for accessing the main

interface and hence all the functions, this will prevent any unauthorized login into the system

and hence make the system secure. The master login and password will also ensure that the

user is enabled to connect to the database subsystem with any explicit login into the database

management system.

Page 14 of 35

3.7 Boundary Conditions

StartSystem: The Manager initiates the system using this function. At the startup, the Manager

is asked for authentication and if the authentication is successful, the main interface becomes

visible to the manager. There are no database connections established at in this phase hence

meeting our global control flow specification mentioned earlier. The Manager can now access

and perform various services accessible from the main interface. Any function accessed opens a

database connection to the desired database and closes the connection on termination of the

function.

ExitSystem: The Manager can stop the system using the exit function on the main interface. This

action terminates the system. It is assumed that there are no active database connections at this

point of time as the Manager is at the main interface windows of the system and the design goals

define no database connectivity at this instance. Database connections are opened and closed at

the initiation and termination of the certain

Defining Exceptions

The scenarios of failure of the system can be stated as follows:

 The database connection cannot be established.

 Incorrect data is entered into the database in spite of the validations being carried out.

 The system crashes in the middle of an update process being carried out.

To deal with the above mentioned exceptions, we define two use-cases that will be used to

overcome or at least reduce the effects of the exception.

CheckDataIntegrity This use case can be invoked in the event of the one of the last two

exceptions occurs. This use-case will run through the whole database

and check for non-related data entries, incorrect data entries and

incomplete data-entries. It will then delete these irrelevant data entries

from the database and provide the Manager with an error free database

to work with.

ResetDataConnectivity This use case can be invoked in the event the first exception occurs.

This use case with restart/re-establish all the database connectivity for

the application, invoke the CheckDataIntegrity use case mentioned

above and then provide the user with fresh error free database

connectivity.

Table 3

Page 15 of 35

4. Subsystem services

The subsystem services diagram can be shown below

Figure 3

Page 16 of 35

5. Database System

Figure 4

The above figure displays the database schema of the system. The total inventory is stored and

maintained using this schema of the database. The schema contains six tables with relationships between

them as shown. The entries in the boxes represent the column names. The primary keys are unique and

any relationship line from the primary key to a non-primary entity is one to many relationships.

Page 17 of 35

6. Object Design Tradeoffs

 Space vs. Speed: The product is based on data inventory management and thus requires a

lot of space for the storage of data. Thus to make the system read and write data at a

faster speed we need more memory space.

 Build vs. Purchase: This product mostly uses open source products as development

tools, so the scope of purchase is minimized of off the shelf products required for this

product. Also this product uses open source libraries and source codes for some parts thus

avoiding the Build vs. Buy dilemma.

 Delivery time vs. Functionality: As this project is running on a tight schedule, it will be

difficult to produce a system with all the functionalities that are mentioned in the

specifications by the date of delivery but a prototype system with the important

functionality must be ready by the requested date. Functionalities such as prediction of

data can be delivered at a later time.

Page 18 of 35

7. Interface Documentation Guidelines

Below are mentioned guidelines for the interface documentation:

 The names of the class should start with an uppercase letter and if the class name consists

of more than one word then CamelCasing should be used.

Example: Public class Ingredient{}

 The class methods begin with a lowercase and if the method name consists of more than

one word, camelCasing should be used.

Example: public boolean addIngredient()

 The class attributes start with uppercase letter and for attributes with multiple words,

CamelCasing must be used.

Example: int IngredientID

 The Package names should start with and uppercase letter and use CamelCasing when

package names consist of multiple names. Also the package names must end with the

word „Package‟

 Example: package IngredientsPackage

 Constants are represented by all uppercase letters and constant names with multiple

words should be separated with underscores („_‟).

Example: TOTAL_NUMBER_OF_RECIPES

 The class diagrams represent the access specifiers using symbols that can be summarized

in the image shown below

Figure 5

Page 19 of 35

 The method and attribute names should be such that they are self-explanatory of their

context of use.

Example: If the method adds a new recipe to the database the name of the method should

be addRecipe.

If an attribute holds the value of the name of the ingredient, the name of the attribute

should be IngredientName.

 Comments must be used extensively to make the code easily understandable. All the

classes must have preface comments, all the methods must have the functionality

commented in the code and the attributes must have their usage comments too.

Page 20 of 35

8. Packages

The figure below gives an overview of the package composition of the system.

Figure 6

Page 21 of 35

Package Description

IngredientPackage: This package constitutes of two classes namely the Ingredient and Add

Ingredient which forms the basis of the system. This package provides functionalities to the user

for adding new ingredients in the database. It also provides the current list of ingredients in the

database and the corresponding details. These functions act as a basic functionality for the

classes that inherit the classes in the IngredientPackage. For instance, the Recipe class requires

the list of ingredients to assign ingredients to the recipe that is being added, the list of ingredient

is required for creating orders for the corresponding recipe. Thus in short this package has

classes that provide vital functionality to the classes in the other two packages.

MiscPackage: This package constitutes of five classes which perform tasks quite different to

each other and are linked to the other two packages by the connections differing in functionality.

The classes namely are Prediction, Orders, Updates, Vendor and Occasion. The Prediction and

Occasion classes can be considered as a special feature wherein ingredients are constantly being

used and if any occasion is near, then the prediction is done in accordance with the existing

levels and past history of usage. The Vendor and Orders are intertwined amongst themselves as

in the usage. If low inventory levels are sensed then the orders of required ingredients are passed

by to the manager and an order form is generated which is given to the vendor for the

replenishing the inventory. Once the stock levels are more than the threshold level then the

update can be performed and the new levels are taken into consideration.

RecipePackage: This Package Constitutes the Recipe, AddRecipe and RemoveRecipe which

forms its classes. The AddRecipe classes is usually used so as to include a new row in the recipe

table and which in turn is linked to the ingredients as when the following is utilized it indirectly

uses up the ingredients involved. So along with the recipe, all the links to the ingredient are

mandatory. Removing the recipe from the recipe list may not affect the ingredients as the one to

many relation for the recipe and ingredients is still preserved. This package acts as an interface

for the user, usage in order to make changes into the inventory with perspective to usage. The

recipe details usually include the recipe name, recipe ID and the associated Ingredient ID as well.

These classes mentioned above are inter linked so as to form a cohesive output.

Page 22 of 35

9. Class Interfaces

The figure below shows the class diagram of the whole system.

Figure 7

Page 23 of 35

The figure above gives an overview of the class structure of the system. The details of the

attributes and functions along with access specifiers, return types and parameters are listed in the

diagrams below.

 Class Ingredient

Figure 8

Contracts for class Ingredient

a. Context Ingredient :: getIngredientList() pre:

!isIngredientAdded(i : Ingredient)

b. Context Ingredient :: getIngredientDetails(IngredientsID) pre:

!isIngredientAdded(i:Ingredient)

Page 24 of 35

 Class AddIngredient

Figure 9

Contracts for class AddIngredient

a. Context AddIngredient :: addIngredientToInventory(a:AddIngredient) pre:

!isIngredientAdded(a)

b. Context AddIngredient :: updateIngredientValues(a:AddIngredient) pre:

!isIngredientAdded(a)

c. Context AddIngredient :: addIngredientToInventory (a:AddIngredient) post:

isIngredientAdded(a)

d. Context AddIngredient :: updateIngredientValues(a:AddIngredient) post:

isIngredientAdded(a)

Page 25 of 35

 Class Recipe

Figure 10

Contracts for class Recipe

a. Context Recipe :: getRecipeList() pre:

isRecipeAdded(Recipe)

b. Context Recipe :: getRecipeDetails(r : Recipe) pre:

isRecipeAdded(r)

Page 26 of 35

 Class Vendor

Figure 11

Contracts for class Vendor

a. Context Vendor :: addVendorToDatabase(v:Vendor) pre:

!isVendorAdded(v)

b. Context Vendor :: addVendorToDatabase(v:Vendor) post:

isVendorAdded(v)

c. Context Vendor :: getListOfIngredientsFromVendor(v:Vendor) pre:

isVendorAdded(v)

Page 27 of 35

 Class Prediction

Figure 12

Page 28 of 35

 Class AddRecipe

Figure 13

Contracts for class AddRecipe

a. Context AddRecipe :: addRecipe(r : AddRecipe) pre:

!isRecipeAdded(r)

b. Context AddRecipe :: addRecipe(r : AddRecipe) post:

isRecipeAdded(r)

Page 29 of 35

 Class RemoveRecipe

Figure 14

Contracts for class RemoveRecipe

a. Context RemoveRecipe :: deleteRecipe(r : Recipe) pre:

isRecipeAdded(r)

b. Context RemoveRecipe :: deleteRecipe(r : Recipe) post:

!isRecipeAdded(r)

Page 30 of 35

 Class UpdateRecipe

Figure 15

Contracts for class UpdateRecipe

a. Context UpdateRecipe :: updateRecipe(r : Recipe) pre:

isRecipeAdded(r)

b. Context UpdateRecipe :: updateRecipe(r : Recipe) post:

isRecipeAdded(r)

Page 31 of 35

 Class Updates

Figure 16

Contracts for class Updates

a. Context Updates :: updateAfterSales(srl: SoldRecipeList, srq: SoldRecipeQuantity,

up: UpdateDate) pre:

!isUpdateAfterSalesDone(up)

b. Context Updates :: updateAfterSales (srl: SoldRecipeList, srq: SoldRecipeQuantity,

up: UpdateDate) post:

isUpdateAfterSalesDone(up)

c. Context Updates :: updateUponRecievingIngredients(ril: ReceivedIngredientList, riq:

ReceivedIngredientQuantity, up: UpdateDate) pre:

!isUpdateAfterSalesDone(up)

d. Context Updates :: updateUponRecievingIngredients(ril: ReceivedIngredientList, riq:

ReceivedIngredientQuantity, up: UpdateDate) post:

isUpdateAfterSalesDone(up)

Page 32 of 35

 Class Occasion

Figure 17

Contracts for class Occasion

a. Context Occasion :: addOccasion(oc : Occasion) pre:

!isOccasionAdded(oc)

b. Context Occasion :: addOccasion(oc : Occasion) post:

isOccasionAdded(oc)

Page 33 of 35

 Class Orders

Figure 18

Contracts for class Orders

a. Context Orders :: createOrder(i:Ingredient, o:OrderDate) pre:

!isOrderAlreadyCreated(i,o)

b. Context Orders :: createOrder(i:Ingredient, o:OrderDate) post:

isOrderAlreadyCreated(i,o)

c. Context Orders :: cancelOrder(o:Orders) pre:

isOrderAlreadyCreated(o)

d. Context Orders :: updateOrder(o:Orders) pre:

isOrderAlreadyCreated (o)

Page 34 of 35

Bibliographical References

 Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering Using UML, Patterns,

and Java, Third Edition, 2005.

 Object design tradeoffs for Project, Anonymous.

http://www.scribd.com/doc/38302828/29/Object-design-trade-offs

 Technical Design Document. www.in.gov/fssa/files/QualCheck.pdf

 Union Design Pattern: Inheritance and Polymorphism. http://cnx.org/content/m11796/latest/

http://www.scribd.com/doc/38302828/29/Object-design-trade-offs
http://www.in.gov/fssa/files/QualCheck.pdf
http://cnx.org/content/m11796/latest/

Page 35 of 35

Glossary

