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1 Introduction

1.1 Set Covering Problem: Preamble

The Set Covering Problem (SCP) is one of the most studied mathematical
programming models in combinatorial optimization for several important real
world applications (see the survey by Balas [4] and the annotated bibliog-
raphy by Ceria et al. [21]). Practical applications of the SCP include crew
scheduling [3,9,20,23,39,41], emergency facility location [43,45], assembly line
balancing [40], production flow-lines optimization [17], political redistricting
and boolean expression simplification [18]. The SCP has been proven to be
NP -complete [29]. A more detailed discussion on the problems of this class
can be found in [19].

The SCP is a problem of covering the rows of a m× n zero-one matrix by a
subset of the columns at the minimal cost. In other words, given a m×n zero-
one matrix A, the SCP is to select the minimum weight subset of columns
while ensuring that every row has at least one non-zero entry in the sub-
matrix induced by the columns. Each entry of the matrix A is represented by
aij , where aij = 1 when column i covers row j, aij = 0 otherwise. In the SCP,
the decision variables xi = 1 if column i is selected to be in the solution and
xi = 0 otherwise. The SCP can be formulated as the following:

min
n
∑

i=1
cixi (1)

s.t.
n
∑

i=1
aijxi ≥ 1 j = 1, . . . m (2)

xi ∈ {0, 1} i = 1, . . . n. (3)

The constraint set (2) guarantees that each row j must be covered by one
column. The set partitioning problem is a special case of the SCP when the
inequalities in the constraint set (2) are replaced by equalities, which ensure
that each column can only cover one row (no over-covering). When ci = 1 ∀i,
the problem is called the unicost SCP.

There have been numerous optimal and heuristic solution approaches for
the SCP presented in the literature [5–8,13,19,36]. Many exact solution tech-
niques for the SCP can be found the literature, including branch-and-bound
approach [5, 13, 19, 36] and cutting plane algorithm [6–8]. As the SCP is an
NP -hard problem, the proposed exact solution techniques to large-scale in-
stances are very time-consuming. A large number of heuristic approaches have
been developed for solving large-scale problems with relatively short computa-
tional time. Greedy construction algorithms with a randomized technique were
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proposed in [22], in which the approximation ratio of the greedy algorithm is
ln m+1. Later on in the 80’s, most of optimal algorithms for SCP proposed are
typically based on tree-search procedures, which have been used to solve SCPs
with up to 50 rows and 500 columns at considerable computational cost [6,10].
An approach based on a dual heuristic algorithm was proposed and used to
solve SCPs with up to 200 rows and 2,000 columns [28]. A new solution tech-
nique based on Lagrangian heuristic, feasible solution exclusion constraints,
and an improved branching strategy was proposed to solve SCPs with up to
400 rows and 4,000 columns [11, 13]. Recently, a simulated annealing heuris-
tic approach was proposed to solve SCPs with up to 1,000 rows and 10,000
columns [32]. Other robust heuristic approaches found in the literature include
Lagrangian heuristics [11,19], neural networks [30], genetic algorithms [12,26]
and ant colony algorithms [1]. The performance of nine different heuristic al-
gorithms on the unicost SCP was studied in [30]. Most of the algorithms were
based on LP rounding techniques, construction-based approaches, and neural
network algorithms.

1.2 SCP: Complexity Issues

The SCP can be shown to be NP -complete by polynomially reducing the
well known NP -complete Vertex Cover Problem (VCP) to the SCP. The VCP
(often called Node Cover Problem) is considered to be a special case of the
SCP, where each node in a graph covers the edges incident to it. The dif-
ference is that in VCP every element (edge) appears in exactly two sets (its
endpoints), which yields better approximation guarantees. In other words, if

k = max
i

n
∑

j=1
aij is defined as the maximum number of ones appearing in any

row, then the SCP having exactly k = 2 ones in every row becomes the VCP.
The VCP can be defined as follows. Let G be an undirected graph. A set S
of nodes covers an edge if at least one of its endpoints lies in S. The set S is
a vertex cover if it covers every edge. The VCP is to find a vertex cover of
minimum weight, given a graph G and weights wi ≥ 0 on vertices. It is well
known that, given a graph G, a clique of G, an independent set of Ḡ, and a
node-cover of Ḡ are equivalent. As we all know that clique is NP -complete,
node cover is also NP -complete. It is simple to show that a graph G has a
clique of size k if and only if Ḡ has a node-cover of size |V | − k, if and only
if Ḡ has an independent set of size k. Therefore, all three problems can be
polynomially transformed to each other [38].

Another proof of NP -completeness of the SCP can be derived from a 3-
exact cover problem, which can be defined as follows. Given a family F =
{S1, . . . , Sn} of n subsets of S = {u1, . . . , u3m}, each of cardinality three,
is there a subfamily of m subsets that covers S? 3-exact cover is a special
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case of set cover. The 3-exact cover problem is proven to be NP -complete by
demonstrating that tripartite matching is a special case of 3-exact cover (as
well as set cover). It is worth noting that 3-exact cover can be polynomially
transformed to 0-1 knapsack problem. This fact has been used to illustrate the
NP -completeness of the 0-1 knapsack problem.

The optimization of the SCP, Minimum Set Covering problem (MSCP), is
NP -hard and not approximable within a constant factor. The MSCP is approx-
imable within 1 + ln |S| and is hard to approximate within (1 − ǫ) ln n time
(only when NP ⊆ DTIME(nO(log log n))) [27]. Subsequently, for the MSCP
with the maximum set size of B, the lower bound has been proven to be
ln B − O(ln ln B) [44]. The Minimum Node Cover problem is also NP -hard
and approximable within 2 − (log log n/2 log n) [35].

1.3 MSCP: Application in Sibling Group Reconstruction

In this paper, we consider applications of the MSCP that have relevance for
genetic epidemiology, molecular ecology, population genetics, and conservation
biology. Specifically, we have employed combinatorial optimization techniques
to solve MSCPs for reconstructing sibling relationships based on single gen-
eration genetic data without parental information. This problem is extremely
important because knowledge of familial relationships is needed for many bi-
ological applications including the estimation of heritabilities of quantitative
characters, studies of mating systems and fitness, and managing populations
of endangered species. Typically, biologists have used parental data to estab-
lish sibling groups indirectly through parentage assignments (e.g., see [33]).
Reconstructing sibling relationships without parental data is a much more
difficult problem, but one that faces many investigators who sample and geno-
type cohorts of offspring rather than parent/offspring groups. In these cases, a
reliable method of reconstructing family structure in the population would be
extremely useful for studying inheritance patterns, natural selection, breeding
biology, and gene flow parameters [14].

In recent years, there has been a growing interest in developing compu-
tational methods for reconstructing sibling relationships without the parental
data [15]. Most of those use statistical population parameters to find maximum
likelihood clusters [16,25,37,42,46]. There are, thus far, only two methods in
the literature developed to incorporate combinatorial optimization approaches
to solve the sibling relationship reconstruction problem. Graph clustering algo-
rithms were used to form groups from pairwise likelihood distance graph [14].
The Mendelian inheritance rules were used to enumerate all possible potential
full-sibling groups and subsequently a heuristic approach was used to construct
a maximal (but not necessarily optimal) partition of the individuals into those
groups to reconstruct sibling relationships [2].



5

Despite the increasing research efforts in sibling group reconstruction, to
our knowledge, the approach based on the MSCP has not been addressed
elsewhere. In this paper, we present a systematically combinatorial optimiza-
tion approach to solve the sibling relationship reconstruction problem based
on single generation genetic data with no parental information by reducing it
to a MSCP. Specifically, we propose a proper formalization of the algorithm
by Almudevar and Field [2] by using the Mendelian inheritance rules to im-
pose constraints on the genetic content possibilities of a sibling group. From
single generation genetic data, we formulate MSCPs based on the inferred
combinatorial constraints and use a provably correct algorithm to construct
the smallest number of groups of individuals that satisfy these constraints.
The advantages of our method are as follows: the proposed algorithm allows
half-sibling relationships to exist in the population, and it does not require a
priori knowledge of the allele frequency, number of loci sampled, mating sys-
tem, or the size of the family groups. This method can be easily extended to
incorporate null-allele type errors. In this experiment, we tested our algorithm
on simulated data with known parents and sibling groups. After our algorithm
reconstructs sibling groups, we assess the accuracy of our approach by using
an extension of an accuracy measure (partitioning distance) presented in [31].
The accuracy assessment of our algorithm can be accomplished by solving a
maximum linear assignment problem.

This paper is organized as follows. Section 2 discusses the problem of how
to reconstruct sibling relationships based on single generation genetic data.
Section 3 introduces the 4-allele algorithm used to formulate the sibling group
reconstruction as a MSCP. Section 4 describes the design of simulation experi-
ments to assess the accuracy of the proposed algorithm. Section 5 discusses the
results obtained from our experiments. The final section provides a discussion
of the implications and results of our methods, difficulties still remaining, and
plans to address remaining issues in future research.

2 Reconstruction of Sibling Relationships

2.1 Basic Definitions

A group of individuals is called full siblings if they have the same parents. A
group of individuals is called half siblings if exactly one of the two parents is
the same for every individual in the group. A group of individuals is called
siblings if they are either full or half siblings. Gene is the fundamental physical
and functional unit of heredity, which carries information from one generation
to the next. Locus is a specific location on a chromosome. Allele is one of the
different versions of the same gene found at the same locus on homologous
chromosomes or in different individuals. Allele frequency is the fraction of all
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the alleles of a gene in a population that are of one type. Genetic markers
are loci where individuals can be experimentally sampled. A Homozygous in-
dividual is one having two identical alleles at a particular genetic locus. A
Heterozygous individual is one having two different alleles at a particular ge-
netic locus. A diploid individual has two sets of chromosomes; one set from
the father and one from the mother.

2.2 Sibling Relationship Reconstruction Problem

The sibling relationship reconstruction problem can be formally stated as fol-
lows. Given a set U of n diploid individuals of the same generation, the goal is
to reconstruct the existing sibling relationships among them. Each individual
1 ≤ i ≤ n is represented by a genetic marker of l loci 〈(aij , bij)〉1≤j≤l. The
numbers aij and bij represent a specific allele. Mendelian inheritance rules
impose two necessary (but not sufficient) constraints on a group of diploid
individuals S ⊆ U to be full siblings:

Definition 2.1 A set S ⊆ U has the 4-allele property if |
⋃

i∈S

{aij , bij}| ≤ 4 for

1 ≤ j ≤ l.

Definition 2.2 A set S ⊆ U has the 2-allele property if |
⋃

i∈S

aij | ≤

2 and |
⋃

i∈S

bij| ≤ 2 for 1 ≤ j ≤ l.

Clearly, the 2-allele property in the definition 2.2 is stronger (tighter) than
the 4-allele property in the definition 2.1. Assuming that the order of the
parental alleles is always the same in the offspring (i.e., the maternal is al-
ways on the same side), the 2-allele property is theoretically equivalent to a
biologically consistent full sibling relationship. In addition, we propose the fol-
lowing theorem to present a relationship between the definition 2.2 and the
definition 2.1.

Theorem 2.3 Let a be the number of distinct alleles presented in a given locus
and R be the number of distinct alleles that either appear with three different
alleles in this locus or are homozygous (appear with itself). Then, given a set
of individuals with the 4-allele property, there exists a series of allele switches
within some of the loci resulting in a set that satisfies the 2-allele property if
and only if for all the loci in the set

a + R ≤ 4.

Proof Necessity: Let us assume that there exists a series of switch operations
that result in a set that satisfies the 2-allele property. Consider any locus j in



7

the set after the switches have been performed: 〈aij , bij〉i∈S . Since the 2-allele
property is satisfied, each allele apj appears with no more than two different
alleles bqj among all the individuals and vice versa.

• If the number of different alleles a ≤ 2 then, clearly, the number of distinct
alleles R ≤ 2 and a + R ≤ 4.

• If a = 3 and there is no allele apj = bpj, then either |∪aij| = 1 or |∪ bij| = 1
and each allele appears with no more than two other alleles; that is, R = 0
and a + R < 4. If there is apj = bpj, then this allele may appear with three
other alleles in the individuals (itself and the remaining two alleles). The
two other alleles appear with at most two alleles each. Thus, we have R = 1;
therefore, a + R = 4.

• Consider the loci with a = 4. In this case, if all aij differ from all bij then
R = 0. Therefore, a + R ≤ 4 is satisfied. If some allele apj = bqj, then there
is only one more allele that can be on the left side and one more allele that
can be on the right side. Therefore, a = 3, which contradicts the assumption
that a = 4.

Sufficiency: Assume, for all the loci, a + R ≤ 4. We consider each locus
independently at different values of a for a given locus j.

• If a = 2 then the 2-allele property is satisfied trivially.

• If a = 3, then R ≤ 1. Note that if there is an allele appearing with three
other alleles, then it necessarily appears with itself. Let apj and aqj be the
alleles that do not appear with itself. We can switch the alleles so that apj

is on the left and aqj is on the right in all the individuals that contain
them. If all the individuals contain either of the two alleles (R = 0), then
he union on the left side is {apj , bij} while the unions on the right side is
{aqj , bij} (where bij is the third allele). Consequently, the 2-allele property
is satisfied. If there are individuals that do not contain apj or aqj , then they
must contain the pair (bij , bij), which does not change the unions.

• If a = 4, then R = 0 implying that no allele appears with more than three
other alleles in this locus and no allele can appear with itself. Consider the
case of individuals with allele apj. As R = 0, apj appears with at most
two other alleles. Therefore, there must exist another allele aqj that does
not co-appear with apj in any individuals. Each individual must have either
apj or aqj and

⋃

i∈S

aij = {apj , aqj}. As the rest must contain the remaining

two other alleles, the 2-allele property is then satisfied. Consider the case of
individuals with neither allele apj or aqj. All the remaining individuals must
contain another allele pair (bsj , btj). Since R = 0, these alleles bsj and btj

could not appear with both apj and aqj. Then the 2-allele property is also
satisfied.
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To reconstruct such a sibling relationship for each genetic dataset of a single
generation, we can formulate the sibling relationship reconstruction problem
as a Minimal 2-allele Set Covering Problem (M2SCP). The M2SCP is defined

as follows: Given a collection U of n l-tuples
{

Ai = 〈(aij , bij)〉 1≤i≤n

1≤j≤l

}

, find a

minimum number of subsets S1, ..., Sm in U that satisfy the 2-allele property
and whose union is U . The mathematical formulation of the M2SCP is given
by

minm (4)

s.t.
m
⋃

i=1
St = U, for 1 ≤ t ≤ m,St ⊆ U, (5)

|
⋃

Ai∈St

{aij , bij}| + Rj ≤ 4, for 1 ≤ t ≤ m, 1 ≤ j ≤ l, (6)

where Rj is the number of distinct alleles that either
(1) are homozygous ⇒ (x, x) ∈

⋃

Ai∈St

{(aij , bij)}; or

(2) appear with 3 different alleles in the locus ⇒ |[(x, y) ∈
⋃

Ai∈St

{aij , bij}] ∨

[(y, x) ∈
⋃

Ai∈St

{aij , bij}]| = 3.

We then propose the following algorithm to solve the M2SCP:

(i) For each locus, independently, create all possible 2-allele sets of individuals.
Note that for a alleles in the locus of R distinct alleles, there are at most
(

a
4

)

+
(

R
3

)

+
(

R
2

)

= O(a4) sets.
(ii) Find the sibling sets that are consistent with all the loci. Note that such

sibling sets must exist as each pair of individuals forms a consistent sibling
set.

(iii) Find a smallest size set cover of all the individuals from the sets found in
previous step.

Although the proposed M2SCP algorithm will generate a sibling relation-
ship that is biologically consistent, it is computationally expensive. In this
paper, we postulate that we can under-approximate the sibling relationships
by exploiting the 4-allele property. The proposed approximation scheme is
considered to be as a heuristic approach to solve the M2SCP. Note that the
4-allele property is computationally much cheaper than the M2SCP. To under-
approximate the solution to the M2SCP, we propose a novel and much faster
algorithm using the 4-allele property to approximate the solution to the sibling
reconstruction problem. This algorithm, considered to be a relaxation version
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of M2SCP, is described in the next section.

3 Proposed Technique: Minimal 4-allele Set Covering Problem
(M4SCP)

We exploit the 4-allele property to identify sibling groups among a given group
of juveniles. First, we assume that the relationships may be promiscuous and
half siblings may be both paternal and maternal. Thus, an individual may
be in more than one sibling group. Note that we can consider the M4SCP
as a relaxation of the M2SCP. The M4SCP can defined as follows: Given a
collection U of n l-tuples

{

Ai = 〈(aij , bij)〉 1≤i≤n

1≤j≤l

}

, the M4SCP is to find a

minimum number of subsets S1, ..., Sm in U that satisfy the 4-allele property
and whose union is U . The formulation of the M4SCP is given by

minm (7)

s.t.
m
⋃

i=1
St = U, for 1 ≤ t ≤ m,St ⊆ U, (8)

|
⋃

Ai∈St

{aij , bij}| ≤ 4, for 1 ≤ t ≤ m, 1 ≤ j ≤ l. (9)

It is worth noting that the M4SCP always underestimates the M2SCP because
in the M2SCP, the last constraint will be |

⋃

Ai∈St

{aij , bij}| + Rj ≤ 4, for 1 ≤

t ≤ m, 1 ≤ j ≤ l. As we mentioned earlier, the difficulty of solving the M2SCP
is finding Rj for all the combinations (tuples) of alleles. In order to make the
problem more precisely defined, the M4SCP can be stated as follows: Given
a universe U = {1, 2, ..., n} and a collection of sets S = {S1, S2, ..., Sm} such
that Si ⊆ U , find the smallest number of sets in S whose union is the universe:

min
I⊆[m]

|I| s.t.
⋃

i∈I

Si = U. (10)

Let M be an n × m matrix whose elements mij = 1 if i ∈ Sj and mij = 0
otherwise. After stating the M4SCP above, we then formulate the M4SCP as
a mixed-integer 0-1 programming problem given by

min
m
∑

i=1
xi (11)

s.t. Mx ≥ 1 (12)

xi ∈ {0, 1}. (13)
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We propose the following algorithm to solve the M4SCP:

(i) For each pair of individuals Ap and Aq, form a set Spq that represents their
4-allele property. That is, Spq is a collection of l loci where each locus is a
union of alleles of the corresponding locus for p and q.

(ii) An individual belongs to a set Spq if, for each locus, the set of the alleles of
that individual for that locus is in the the corresponding locus set of Spq.

(iii) Find the minimum set covering of S. For each set in S define the corre-
sponding set of individuals covered by that set as a sibling group. Return
the group structure induced by S.

Note that the computational complexity of M4SCP to construct all possible
sibling groups is O(n2l) since the algorithm has to perform a one-step operation
for each sibling set (o) that is a pairwise combination of individuals p and q.
We can state the pseudo-code of the algorithm for the M4SCP as in Figure 1.

Algorithm 4-alleleSets

FOR p = 0 . . . n − 1 DO
FOR q = p + 1 . . . n − 1 DO

Spq = ∅
FOR t = 0 . . . l − 1 DO

Spq = ({apt, bpt} ∪ {aqt, bqt})
FOR o = 1 . . . n2 − n DO

FOR p = 0 . . . n − 1 DO
FOR t = 0 . . . l − 1 DO

IF (apt 6∈ So ∨ bpt 6∈ So) THEN
break

individualp ∈ So

Find a minimum set cover S = {S1, ..., So}
RETURN the o sibling groups defined by S.

Figure 1. Pseudo-code of the proposed algorithm for M4SCP.

Proposition 3.1 Any set covers defined above induces a valid collection of
4-allele groups.

Proof Each set Spq is defined by a locus-by-locus union of two individuals.
Each individual has at most two alleles per locus; therefore, each set has no
more than four alleles per locus (4-allele property). Every 4-allele combination
for a collection of individuals is represented by some sets as there is a set
corresponding to every pair of individuals. In any feasible solutions, the set
cover contains all the individuals; that is, every individual belongs to some
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sets induced by the set cover. Each set in the set cover does not violate the
4-allele property; therefore, the entire sets in the set cover are a valid collection
of 4-allele groups. �

4 Experimental Design

In this study, we developed and assessed the accuracy of the M4SCP algo-
rithm on simulated data. To create a set of simulation data, we first generated
a number of adults (parents) with the full genetic information. Based on this
parentage information, a single generation of juveniles was then generated.
Note that as the parentage information is retained, the true sibling groups are
known. After developing a computer algorithm for the M4SCP, the M4SCP
algorithm was then used to solve SCPs and reconstruct the sibling groups. To
assess the accuracy of the proposed M4SCP algorithm, we use the extended
partition distance proposed in [31] to measure the precision of the reconstruc-
tion with respect to the true sibling groups (see Section 4.2 for more details).
In this study we assume that organisms are diploid and we simulate diploid
organisms.

4.1 Experiment Protocol and Parameters

The genetic data were simulated with a given number of adult males M and
females F , a given number of loci l, and a specified number of alleles per locus
a. Each individual was created by randomly choosing from an independent
identical uniform distribution (IID) 2l number of alleles from among a alleles,
which are matched up into l loci. Then, j×F juveniles are created, where j is
the factor of the number of juveniles as the number of females. A male and a
female is chosen randomly, independently and uniformly from the adult popu-
lation. A couple has a random number of offspring, up to a specified maximum
number of offspring o. Each offspring randomly gets one of the mother’s and
one of the father’s alleles per locus, which are assembled randomly. In short,
this protocol creates a population of juveniles with known parents and siblings
that is biologically consistent.

The parameter ranges for the study are as follows:

• The number of adult females F = 10 and adult males M = 10.

• The number of loci sampled l = 2, 4, 6, 10.
• The number of alleles per locus a = 2, 5, 10, 20.

• The factor of the number of juveniles as the number of females j = 1, 2, 5, 10.

• The maximum number of offspring per couple o = 2, 5, 10, 30, 50.

Each offspring was created with parental alleles in 2 manners: recombined
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Parameter Rows Columns Max-number of Density Number of
Settings (m) (n) ones per row (%) Problems

l=2 1602.5 45 993.14 58.7% 160
l=4 1602.5 45 825.21 51.9% 160
l=6 1602.5 45 764.27 51.7% 160
l=10 1602.5 45 721.54 51.8% 160
a=2 1602.5 45 1357.72 72.8% 160
a=5 1602.5 45 715.99 49.0% 160
a=10 1602.5 45 611.14 45.3% 160
a=20 1602.5 45 619.30 47.0% 160
j=1 45.0 10 36.54 72.7% 160
j=2 190.0 20 135.39 60.5% 160
j=5 1225.0 50 717.56 45.7% 160
j=10 4950.0 100 2405.67 34.7% 160
o=2 1602.5 45 576.29 26.5% 128
o=5 1602.5 45 629.26 38.1% 128
o=10 1602.5 45 711.13 51.1% 128
o=30 1602.5 45 999.40 71.1% 128
o=50 1602.5 45 1214.13 80.8% 128

Table 1. Characteristics of Simulated Instances

and non-recombined alleles. Using the above parameter settings, we generated
a series of 640 test instances for every combination of each setting, whose
characteristics are described in Table 1. Note that these characteristics of test
instances generally give us information about the size, complexity, and degree
of difficulty of SCPs.

Based on the juvenile population of the simulated test instances, the M4SCP
algorithm was used to find the smallest number of 4-allele sets, which are
postulated to be the full sibling groups. Although the MSCP is NP-hard,
modern Mixed Integer Programming (MIP) solvers can solve our simulation
instances to optimality (even the largest instance of 1000 × 4950) in timely
manner. We formulated the M4SCP test instances as MIP problems. To solve
MSCPs, we used CPLEX 9.0 MIP solver by ILOG to obtain optimal solutions
to the M4SCP test instances. After the optimal solutions to the M4SCP test
instances were obtained, the groups reconstructed by the M4SCP algorithm
were compared with the true sibling groups. In recent years, several methods
have been used to assess the accuracy of the reconstructed sibling groups
comparing with the true groups. However, most of them are mathematically
inconsistent. To assess the accuracy of the solutions obtained from the M4SCP
algorithm, we use an extension of the partition distance measure described
in [31].



13

4.2 Solution Accuracy Measure

The minimum partition distance used to assess the accuracy of our algorithm
has been shown to be equivalent to the Maximum Linear Assignment Problem
(MLAP) [31] (also called maximum bipartite weighted matching problem),
which is a well known linear programming problem [24,34]. The MLAP can be
defined as follows: given two collections of sets {A1, ..., An} and {B1, ..., Bm},
let C be n × m cost matrix where cij is the cost of the assignment of Ai to
Bj. Then the MLAP is to find an assignment of the set A to the set B at the
maximum cost such that each element in set A is assigned to at most one in
set B vice versa. The MLAP can be formulated as a MIP problem given by

max
n
∑

i=1

m
∑

j=1
cijxij (14)

s.t.
m
∑

j=1
xij ≤ 1 for i = 1, . . . , n (15)

n
∑

i=1
xij ≤ 1 for j = 1, . . . ,m (16)

xij ∈ {0, 1}.

Generally, the accuracy measure can be formulated as a MLAP as follows:
given two partitions in U , {P1, ..., Pn} and {Q1, ..., Qm}, define cij = |Pi ∩
Qj|. Then, |U |−(maximum assignment) represents the minimum number of
elements to be deleted so that these two partitions are identical. This distance
measure will give the accuracy of our set covers reflected by the distance
between two sets.

5 Computational Results

In this section, we present computational results of the M4SCP algorithm on
the simulated test instances described in Table 1. After the M4SCP algorithm
had found the set cover of the single generation for each test instance, the
solution to the M4SCP (the set cover) were then compared with the real sib-
ling relationships (already known when the test instances were generated) by
formulating the problem as a MLAP to find the minimum distance (deletions)
between the two sets. The solution to the MLAP is considered to be an error
rate of the predicted sibling relationships constructed by the M4SCP algo-
rithm. Subsequently, we calculate the accuracy measure based on the error
rate (accuracy = 1-error rate). All the instances of the set cover problem in
our simulation were solved optimally under 0.3 seconds. The average CPU
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Parameter Avg. CPU Time Avg. Accuracy
Settings (seconds) (%)

l=2 0.256 54.18%
l=4 0.211 52.71%
l=6 0.191 54.78%
l=10 0.185 55.28%
a=2 0.155 36.98%
a=5 0.161 58.34%
a=10 0.387 60.71%
a=20 0.185 60.91%
j=1 0.010 70.50%
j=2 0.017 62.88%
j=5 0.113 49.56%
j=10 0.750 34.00%
o=2 0.218 18.19%
o=5 0.272 36.66%
o=10 0.218 53.98%
o=30 0.225 75.17%
o=50 0.237 87.17%

Table 2. Performance Characteristics of the M4SCP Algorithm on Simulated Instances

time to solve the test instances and the average accuracy of the predicted
sibling relationships are presented in Table 2.

We examine the accuracy behavior as a function of the number of loci, alleles
per each locus, juvenile population size, and maximum number of offspring,
illustrated in Figures 2-5. Figure 2 demonstrates that the accuracy increases
as the number of offspring per couple increases. On the other hand, Figure 3
illustrates that the accuracy decreases as the total number of juveniles in-
creases. Figure 4 shows that the accuracy is not strongly influenced by the
number of alleles. Similarly, Figure 5 shows that the accuracy is not strongly
influenced by the number of sampled loci. These observations demonstrate
that the numbers of offspring and juveniles heavily influence the accuracy of
our M4SCP algorithm. In contrast, these results surprisingly showed that the
number of alleles per locus and the number of sampled loci are not strong
factors for the M4SCP algorithm to reconstruct sibling relationships (except
when there are only 2 alleles per locus and the algorithm assumes that all
the juveniles are siblings). It is worth noting that the M4SCP algorithm has
found fewer sibling groups than those in the real population, merging the true
families into a reconstructed one. This observation supports the theoretical
definition of the M4SCP algorithm as an under-approximation algorithm for
the M2SCP as mentioned in Section 3. This study shows the tightness of the
solution by the M4SCP and the real solution. The accuracy of the prediction
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Figure 2. Accuracy (%) of the M4SCP as a function of the number of offspring (o) while fixing the
number of alleles (a = 10) and juveniles (j = 20).
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Figure 3. Accuracy (%) of the M4SCP as a function of the number of juveniles (j) while fixing the
number of alleles (a = 5) and offspring (o = 5).
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Figure 4. Accuracy (%) of the M4SCP as a function of the number of alleles (a) while fixing the
number of juveniles(j = 2) and offspring (o = 10).

of the sibling relationships can be improved with the M2SCP algorithm, which
we have shown to yield biologically consistent sibling relationships.

6 Conclusions and Prospects

In this paper, we present a set covering approach based on the M4SCP for re-
constructing sibling relationships in the absence of parental data. In contrast to
other existing methods in the literature, our approach does not require the im-
plementation of any statistical estimates of the relatedness among the individ-
uals. On the other hand, our approach directly employs a Mendelian constraint
on the possible genetic content of a sibling group. Such a constraint based on
Mendelian rules turns out to be sufficiently powerful to reconstruct the sibling
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Figure 5. Accuracy (%) of the M4SCP as a function of the number of loci (l) while fixing the
number of juveniles(j = 2) and alleles (a = 5).

relationships fairly accurately in our simulations. The stronger version of this
constraint from the M2SCP algorithm has the potential to accurately recon-
struct sibling groups without any prior knowledge of the population structure
and its genetic characteristics. Nonetheless, to validate this approach and its
applicability more extensive simulations and experiments are required, as well
as comparison to other known methods. In the future, we need to investigate
the computational complexity and better algorithmic solutions to the M2SCP
and M4SCP. We need to conduct simulations with the M2SCP algorithm and
run these for a wider range of parameters and parameter distributions, as well
as allow for errors in the data. We need to validate the results on real biolog-
ical datasets, especially where the sibling groups have been established using
other methods. Last but not least, we need to compare the performance of our
method to other methods of sibling reconstruction. Nevertheless, the overall
outcome of this study suggests that the proposed algorithm will pave our way
to a new approach in computational population genetics as it does not require
any a priori knowledge about allele frequency, population size, mating system,
or family size distributions to reconstruct sibling relationships.
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