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1 Introduction

New technologies for collecting genotypic data from natural populations open the possibilities of investigating
many fundamental biological phenomena, including behavior, mating systems, heritabilities of adaptive traits,
kin selection, and dispersal patterns. The power and potential of genotypic information often rests in our
ability to reconstruct genealogical relationships among individuals. These relationships include parentage,
full and half-sibships, and higher order aspects of pedigrees [5,6,10]. In this paper we are only concerned
with full sibling relationships.

Some areas of genealogical inference, such as parentage, have been studied extensively [10]. While several
methods for sibling reconstruction have been proposed [13,8,2,1,4,12,14], most have not been ‘ground-
truthed’ (but see [6]) and have received relatively limited application. We build on our earlier work [3,
7] and propose a new algorithm for sibship reconstruction using combinatorial optimization. There have
been no truly combinatorial methods for kinship reconstruction problems [2,4]. Combinatorial methods have
been very successful in closely related molecular genetics questions, such as haplotype reconstruction [9,
11]. Our approach uses the simple Mendelian inheritance rules to impose constraints on the genetic content
possibilities of a sibling group. We formulate the inferred combinatorial constraints and, under the parsimony
assumption, use a provably correct algorithm to construct the smallest number of groups of individuals that
satisfy these constraints. We test our approach on both simulated and real biological data.

1.1 Problem Statement
We now define the sibling reconstruction problem. Given a genetic (microsatellite) sample from a population
of n diploid individuals of the same generation, U, the goal is to reconstruct the full sibling groups (groups
of individuals with the same parents). We assume no knowledge of parental information.

Formally, we are given a set U of n individual microsatellite samples from [ genetic loci

U = {Xl, Xn}, where X,; = (< ail,bﬂ >, < ail,bil >)

and a;; and b;; are the two alleles of the diploid individual ¢ at locus j. The goal is to find a partition of
individuals P, ...P,, such that

V1<k<m, VX,,X, € P,: Parents(X,) = Parents(X,)

Notice, here that we have not defined the function Parents(x). This is a biological objective. We will
discuss computational approaches to achieve a good estimate of the biological sibling relationship.

1.2 2-Allele Property

Mendelian genetics introduce two overlapping necessary (but not sufficient) constraints on full siblings groups:
4-allele property and 2-allele property [3]. The 4-allele property states that a group of siblings can have no
more than 4 alleles at any locus and the 2-allele property takes into account the fact that an individual must
inherit one allele from each parent. It was proven in [3] that the 2-allele property is equivalent to a simple
constraint that we restate here without the proof.

Theorem 1 (Berger-Wolf et al [3]). Let R be the number of alleles that are homozygous or appear with
8 other distinct alleles and A be the total number of distinct alleles at a locus. Then A+ R < 4.

The constraint above reduces the possible combinations of alleles at a locus in a group of siblings down
to a few canonical options. Assuming the alleles are numbered 1 through 4, Table 1 lists all different types
of sibling groups possible with the 2-allele property. We do this by listing all possible pairs of parents whose
alleles are among 1,2.3, and 4 and all the offspring they can produce. However, in any sibling group with a
given set of parents only a subset of the offspring types from the table may be present.



2 Minimum 2-Allele Set Cover Algorithm

We now present our algorithm for solving the sibling reconstruction problem. As we have mentioned, the
biological function Parents(z) cannot be defined mathematically. We model the objective of reconstructing
the sibling relationships by assigning individuals parsimoniously into the smallest number of (possibly over-
lapping) groups that satisfy the necessary 2-allele constraint. To achieve this, our algorithm uses the 2-allele
and 4-allele properties (specifically, Table 1 see Appendix A) to generate all maximal potential sibling sets.
We then restate the problem as a minimum set cover to find the minimum number of sibling sets containing
all the individuals.

DATA STRUCTURES.

An ItemSet (a potential sibling group) is a set of individuals. It maintains the individuals assigned to a
potential sibling group as well as the corresponding set of canonical possibilities at each locus from Table
1. ItemSets are maintained uniquely (using a hash table) in TtemSetsMap. ItemSetsMap implicitly tracks
what can possibly be accommodated in the set without changing the corresponding canonical possibilities
from Table 1. This is done by comparing the AlleleMap and PossibilitiesSet at each locus. AlleleMap is a
mapping of alleles encountered at each locus onto numbers 1 through 4. PossibilitiesSet is the set of entries
from Table 1 with which the mapped alleles at the locus conform.

ALGORITHM 2-ALLELE.

It can be shown that any pair of individuals necessarily satisfies the 2-allele property. Thus, initially we use all
(’2’) pairs of n individuals to generate the candidate sets in the form of ItemSets. Each ItemSet is generated
with the initial possible canonical sets from Table 1 for each locus j. Each allele is assigned a number between
1 and 4 based on the order of its occurrence and stored in the AlleleMap. Then, for each pair of individual
alleles we search for all matching canonical sets in Table 1 to determine the PossibilitiesSet;. To avoid
duplicate potential sets we query ItemSetsMap hash table. After generating the initial sets based on pairs
of individuals, the algorithm repeatedly iterates through all the individuals, testing each set for a possible
assignment of the individual to the set. In each iteration, only the sets that were present at the beginning
of the cycle are considered for each individual. An individual is assigned to a set if its alleles match the
possibilities of the set as defined by the extended Table 1 (see Appendix A).

The validity of the new ItemSet is determined by the Table 1. The alleles at every locus of the new indi-
vidual must match at least one of the canonical patterns that collectively satisfy all the previous individuals
assigned to the set. Once we determine that the ItemSet can be expanded (and its set of possible matching
parents reduced) to accommodate the new individual in a valid way, we create a modified copy of the set.
The individual is then checked against this new set for all the remaining loci. After we have verified that
the new individual does not violate the 2-allele property of the new ItemSet at every locus, ItemSetsMap
is checked to verify that the new set has not been previously created and the set is finally added to the
ItemSetsMap. However, for the remainder of the iteration cycle all the individuals are checked only against
the sets that were present in the ItemSetsMap at the beginning of the cycle. This ordering ensures that
each individual is checked against each ItemSet that could accommodate it exactly once.

We repeat this process, cycling through all the individuals in the population. Once a set present at the
beginning of the cycle has been inspected against all the individuals, the set is marked as done and is not
revisited. This ensures that all sibling pairs that could possibly occur are evaluated, and that no sibling sets
are generated that never occur in data.

The cycles of iterations over the individuals continues until all sets are marked as done. As the last step
a set for each of the elements is added containing just that element.

After all the potential sibling sets are generated we apply the minimum set cover to find the minimum
number of sibling groups whose union contains all the individuals. While the minimum set cover problem is
NP-complete, modern mixed integer program solvers can solve it to optimally in most instances. Thus, it is
not meaningful to discuss the theoretical computational complexity of the algorithm.

In order to solve set cover we use a standard integer programming solver, MIP solver CPLEX 9.0 ! to
solve the set cover problem to optimality.

! CPLEX is a registered trademark of ILOG



3 Results

We now present the experimental results of the evaluation of the 2-allele algorithm on simulated and biological
data. We generated simulated data using the methodology from [3].

3.1 Biological Data

We use Scaptodrosophila hibisci dataset [15] for testing our algorithm on real data. The sibling groups for this
dataset were reconstructed optimally, with O error. This accurate reconstruction despite the some missing
data shows the robustness of our approach. However, more tests are necessary to accurately assess the
sensitivity of the algorithm to missing and mistyped data.

3.2 Random Data

Random uniform data provides a baseline for the accuracy estimate of our algorithm. With the given number
of alleles, loci, and offspring, the uniform distribution is the worst case scenario for the set cover algorithm.
The uniform distribution of alleles makes many sets equivalent for the set cover problem. Therefore, the
optimal solution may contain one of the equivalent sets rather than the “true” set. Any addition of structure
to the genetics of the set of individuals only improves the performance of the algorithm.

We measure the reconstruction error of the 2-allele algorithm as the function of the number of loci, alleles
per each locus, juvenile population size, and the maximum family size. First, we compare the error rate of
the 2-allele algorithm to that of the 4-allele algorithm. Figure 1 shows selected results of the comparison. As
expected, the 2-allele algorithm is more accurate than the 4-allele algorithm. In most cases, the error rate is
reduced by about 10 percent, achieving a maximum of about 30 percent for families of size 5. The improvement
is better in the lower ranges of the number of offspring per female since those are the parameter value ranges
where the 4-allele algorithm did not perform well. No other clear trend of the accuracy improvement as a
function of any data parameters emerges. Thus, we expect that the overall trends of the 4-allele and the
2-allele algorithms are similar, while the latter is more accurate.

Figure 2 (Appendix B) shows representative results for the accuracy of the 2-allele algorithm. As is the
case with the 4-allele algorithm, the main factor for the decrease of the error of the 2-allele algorithm is
the increase of the number of offspring per female. Similar to the 4-allele algorithm, the error rate decreases
slightly as the number of alleles per locus increases. The number of sampled loci for the random data is not
a strong factor in the accuracy of reconstruction. However, we believe that for real biological data where the
allele distributions within a locus are much more structured, the number of sampled loci will be important.
As the total number of juveniles increases, while the number of adults and the maximum family size remain
the same, many more of the juveniles are half-siblings sharing many of their alleles. Thus, when the rest of
the parameters are fixed, as the number of juveniles increases the error rate increases as well.

4 Conclusions

We have proposed a new combinatorial algorithm for the problem of reconstruction of sibling relationships
from single generation genetic data. We have implemented and tested our approach on both real biological
and simulated data. The simulated data provides a base line for the accuracy estimate of our algorithm, with
real biological data likely to have better reconstruction accuracy.

The main advantage of the combinatorial approach is its lack of reliance on a priori knowledge about
various population parameters, such as allele frequency and the degree of inbreeding. However, Mendelian
constraints do not provide any basis for distinguishing between family groups when the groups are small,
or when individuals share many common alleles. Additional information, such as relative allele frequency
within the sample can be easily added to generate combinatorial constraints on the potential sibling sets.
Unlike likelihood methods, combinatorial approaches use that information only for comparison purposes, and
do not require a background data model or an accurate estimate value for any of the parameter. Thus, we
believe that combinatorial approaches are particularly appropriate for analysis of natural animal and plant
populations where background information is difficult to obtain.
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5 Appendix A: Possibilities Table

Parents Offspring
allele a allele b

Set parents (1, 2) (3, 4)

1 3 Parents Offspring
allele a allele b
2 4
1 4
9 3 Set parents (1, 1) (1, 1)
3 1 1 1
i % Set parents (1, 1) (1, 2)
3 2 -
2 1
Set parents (1, 2) (1, 3)
é :1)) Set parents (1, 1) (2, 3)
Lo -
2 L 2 1
3 2 3 1
3 1
1 2
Set parents (1, 1) (2, 2)
Set parents (1, 2) (1, 2) é 1
1 1
1 2
2 1
2 2

Table 1. Canonical possible combinations of parent alleles and all resulting offspring allele combinations



6 Appendix B: Results
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Fig. 1. Error rate comparison between the 4-allele algorithm from [3] and the 2-allele algorithm implemented in this
paper. The y-axis shows the decrease of the error rate, or the improvement in the accuracy rate, from the 4-allele
algorithm to the 2-allele algorithm on the same random data.
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Fig. 2. Accuracy of the sibling group reconstruction using the 2-allele algorithm on randomly generated data. The
y-axis shows the error rate as a function of various simulation parameters.



