
Online Consensus and Agreement of Phylogenetic Trees.

Tanya Y. Berger-Wolf1

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.
tanyabw@cs.unm.edu

Abstract. Computational heuristics are the primary methods for reconstruction of phylogenetic trees
on large datasets. Most large-scale phylogenetic analyses produce numerous trees that are equivalent
for some optimization criteria. Even using the best heuristics, it takes significant amount of time to
obtain optimal trees in simulation experiments. When biological data are used, the score of the optimal
tree is not known. As a result, the heuristics are either run for a fixed (long) period of time, or until
some measure of a lack of improvement is achieved. It is unclear, though, what is a good criterion
for measuring this lack of improvement. However, often it is useful to represent the collection of best
trees so far in a compact way to allow scientists to monitor the reconstruction progress. Consensus and
agreement trees are common such representations. Using existing static algorithms to produce these
trees increases an already lengthy computational time substantially. In this paper we present efficient
online algorithms for computing strict and majority consensi and the maximum agreement subtree.

1 Introduction

Reconstruction of the evolutionary history (phylogeny) of a set of organisms is one of the fundamental
problems in biology. Computational heuristics are the primary methods of phylogeny reconstruction on
large datasets (for example [3, 6, 7, 16, 22, 23, 26]). Most large-scale phylogenetic analyses (including Bayesian
methods) produce numerous trees that are equivalent for some optimization criteria (such as maximum
parsimony or maximum likelihood). Even using the best heuristics, it takes significant amount of time to
obtain optimal trees in simulation experiments. As the number of taxa increases, the running time of various
heuristics increases substantially. When biological data are used, the score of the optimal tree is not known.
Therefore, at any given point in running the heuristic, we do not know whether the current best score can
be improved if the program is run for longer time. As a result, the heuristics are either run for a fixed (long)
period of time, or “long enough” until some measure of a lack of improvement is achieved (e.g. tree scores do
not improve). It is unclear, though, what is a good criterion for measuring this lack of improvement (one such
recently proposed criterion is the small topological difference between the majority consensus of the best and
the second best trees so far [28]). However, to allow scientists to monitor the reconstruction progress, often
it is useful to represent the collection of the best trees so far in a compact way. Consensus and agreement
trees are common such representations.

The existing static consensus and agreement methods take time polynomial in the number of input trees,
multiplied by the number of taxa, to compute a single tree. Repeating this computation at every iteration of
a phylogeny reconstruction heuristic, when a new tree is added to the set of best-scoring trees, is impractical.
Such approach would significantly slow down an already lengthy computation. The only way to avoid this
repetitive computational penalty is to update the consensus tree iteratively, using an on-line algorithm. This
paper introduces on-line algorithms for computing the two most common types of consensus trees, strict and
majority, and the maximum agreement subtree. The consensus and binary tree agreement algorithms are
efficient, robust, and are simple to implement. To the best of our knowledge, this is the first paper explicitly
addressing the issue of designing on-line algorithms for computing consensus and agreement of phylogenetic
trees.

The rest of this paper is organized as follows. Section 2 provides basic definitions and a description of
consensus and agreement techniques. The algorithms for on-line strict and majority consensus are given in
Sections 3 and 4, respectively. The algorithm for online maximum agreement subtree is given in Section 5.
Conclusions and directions of future work are discussed in Section 6.

2 Definitions

Taxon is the representation of the biological entity for which a phylogeny is desired. We denote the set of
taxa by S = {s1, ..., sn} and let n denote the number of taxa.

A (rooted) phylogenetic or evolutionary tree is a (rooted) tree with every internal (non-leaf and non-root)
node of degree at least three and the leaves labeled by taxa. We denote a particular tree by T . Unless
otherwise specified, a “tree” refers to a “phylogenetic tree”. A tree is binary or fully resolved if every internal
node has degree exactly three.

A bipartition is a pair of subsets of taxa defined uniquely by the deletion of an edge in a tree. We denote
a bipartition by A|B where A, B ⊆ S, B = S −A, and the set of all the bipartitions of a tree T by C(T).

A collection of bipartitions is compatible if there exists a tree T such that the set of its bipartitions, C(T),
is exactly the given collection. A set of bipartitions is compatible if and only if it is pairwise compatible
[10, 11]. A pair of bipartitions A1|B1 and A2|B2 is compatible if and only if at least one of the intersections
A1∩A2, A1∩B2, B1∩A2, or B1∩B2 is empty [5, 19]. A pair of clades A1 and A2 is compatible if and only if
A1 ∩A2 ∈ {A1, A2, ∅}. Determining whether a collection of m bipartitions over a set of n taxa is compatible
can be done in O(mn) time [15, 27].

A consensus method is a technique that combines a collection of trees (called a profile) on the same set
of taxa into a single tree representative of the profile for some criteria. We denote the number of trees in a
profile by k.

Strict consensus [20] is the most conservative of the consensus methods and produces a tree with only
those bipartitions that are common to all the trees in the profile. That is, given a profile T1, ..., Tk over a
set of taxa S, the strict consensus tree SC(T1, ..., Tk) is the tree uniquely defined by the set of bipartitions
C(SC) = ∩k

i=1C(Ti). The strict consensus tree of k trees can be computed in time O(kn) [9].
A majority rule [2, 18, 20, 25], consensus tree is defined by the set of bipartitions that appear in more

than half of the trees in the profile. That is, given a profile T1, ..., Tk over a set of taxa S, the majority
rule consensus tree MRC(T1, ..., Tk) is the tree uniquely defined by the set of bipartitions C(MRC) =
{π, s.t. |{π ∈ C(Ti), 1 ≤ i ≤ k}| > k/2}. The majority consensus tree always exists and is unique. The
majority consensus tree of k trees can be computed in time O(kn) [21].

A subtree of T induced by a subset of taxa R ⊆ S is a phylogenetic tree on the leaves labeled by R that
contains only the paths in T between the leaves in R and the degree 2 nodes removed. We denote such a
subtree T |R.

Given a collection of k trees T1, T2, ..., Tk with the leaves labeled by S1, S2, ..., Sk respectively, an agreement
subtree is a subtree induced by a set L ⊆ S = ∩k

i=1Si such that T1|L = T2|L = ... = Tk|L. Maximum agreement
subtree, denoted MAST (T1, ..., Tk) is an agreement subtree with the maximum size of the set L [13]. There
can be exponentially many (in the number of leaves) MAST for a given collection of trees [17].

A rooted triple is a binary subtree of a rooted phylogenetic tree induced by three leaves. If the leaves are
labeled by a, b, c and a and b have a common ancestor which is not the root of the subtree, it is denoted by
ab|c. The set of all the rooted triples of a tree T is denoted by r(T). A subtree induced by three leaves in
which all the leaves have the subtree root as their least common ancestor is called a fan and is denoted by
(abc). The set of all the fans of a tree T is denoted by f(T).

A quartet is a binary subtree of an unrooted phylogenetic tree induced by four leaves. We denote the
quartet by its (unique) bipartition. The set of all the quartets of a tree T is denoted by q(T). A subtree
induced by four leaves with a single internal node is called a star and is denoted by (abcd), The set of all
the stars of a tree T is denoted by s(T).

3 Online Strict Consensus

First, for the sake of completeness, we present the simple online algorithms for the strict consensus. The strict
consensus tree contains bipartitions common to all the source trees. That is, if SC is the strict consensus
tree of the set of source trees T1, T2, ..., Tk, then

C(SC) = ∩k
i=1C(Ti).

2

We formulate the on-line strict consensus problem as follows.

Input: A set of evolutionary trees T1, T2, ..., Ti, ..., Tk arriving online one at a time. All the trees are over
the same set of leaves S = {s1, ..., sn}.

Output: At each step i we wish to maintain the strict consensus tree SCi of the trees T1, ..., Ti.

Solution: The strict consensus tree contains only those bipartitions that appear in all the source trees.
Hence, given a strict consensus tree of the first i− 1 trees, SCi−1, the strict consensus tree of the first i trees
is the strict consensus of SCi−1 and Ti. That is,

C(SCi) = ∩i
j=1C(Tj) = ∩i−1

j=1
C(Tj) ∩ C(Ti) = C(SCi−1) ∩ C(Ti).

The intersection of the sets of bipartitions of SCi−1 and Ti can be computed in Θ(n) time.

Since it takes O(n) time to process the tree Ti, this solution is time-optimal. A tree is uniquely defined by
a set of its (compatible) bipartitions and can be computed in linear time [15, 27]. Thus, there is no additional
space requirements beyond storing the set of O(n) bipartitions of the current consensus tree.

This algorithm is essentially Day’s strict consensus algorithm [9] (assuming that the number of bits used
to store each bipartition is O(log n). It can also be viewed as a repetitive application of Day’s algorithm,
which takes O(kn) time to compute the strict consensus of k trees. Thus, we have shown that the following
statement is true.

Proposition 1. The time it takes to compute the strict consensus tree SCi with the arrival of each new tree
Ti is O(n) and the total time to compute the strict consensus tree of k trees online is O(kn) and is optimal.

4 Online Majority Consensus

The majority rule tree contains those bipartitions that appear in more than half of the source trees. That
is, if M is the majority consensus tree of the set of source trees T1, T2, ..., Tk, then

A|B ∈ C(M) if and only if |{C(Ti) s.t. A|B ∈ C(Ti)}| >
k

2
.

The solution for the on-line majority consensus is slightly more complicated than that for the strict
consensus.

Input: A set of evolutionary trees T1, T2, ..., Ti, ..., Tk arriving online one at a time. All the trees are over
the same set of leaves S = {s1, ..., sn}.

Output: At each step i we wish to maintain the majority consensus tree Mi of the trees T1, ..., Ti.

Solution: We maintain a set of bipartitions that have appeared in all the trees seen so far. For each
bipartition we keep a count of the number of trees it has appeared in up to this point. The majority tree
at any point, by definition, is the collection of bipartitions that have appeared in the majority of the trees.
When a new tree Ti arrives, we update the count on all the bipartitions that appear in that tree. If any of
these now make the majority, we add them to the majority tree Mi. We check the counts on the bipartitions
that were in the previous majority tree Mi−1. If any of the bipartitions now drop below the majority, then
we remove them from the majority tree. Below is the formal description of the algorithm.

3

Algorithm OnlineMajority

1 C = ∅
2 FOR each new tree Ti DO

3 FOR each bipartition c ∈ C(Ti) DO

4 IF c /∈ C THEN

5 C = C ∪ {c}
6 count(c) = 0
7 count(c) + +
8 IF count(c) > i/2 THEN

9 C(Mi) = C(Mi−1) ∪ {c}
10 FOR each bipartition c ∈ C(Mi−1) DO

11 IF count(c) ≤ i/2 THEN

12 C(Mi) = C(Mi−1)− {c}
13 Build the tree Mi from C(Mi)
14 RETURN Mi

Line 3 is a Depth First Search (DFS) traversal of the tree Ti. The FOR loop is executed in the order of the
finish times of the DFS for the nodes associated with the bipartitions. The set of bipartitions is maintained
using any efficient implementation of a set with a SEARCH operation (a dictionary). The correctness and
the time complexity of the algorithm are discussed below.

4.1 Correctness of the Online Majority Algorithm

Proposition 2. Given a majority tree Mi−1 and a new tree Ti, only the bipartitions inMi−1 or in Ti can
be in the new majority tree Mi:

C(Mi) ⊆ C(Mi−1) ∪ C(Ti)

Proof. The count of any bipartition which is not in Mi−1 was at most (i− 1)/2 < i/2. If this bipartition is
not in Ti then the number of trees it appears in has not increased with the arrival of Ti. Thus, it cannot be
in Mi.

With the arrival of a new tree T − i the algorithm checks the count of every bipartition in C(Mi−1)∪C(Ti)
and retains only those whose count is greater than i/2. Thus, at every step i the tree T contains only the
bipartitions that appear in the majority of trees, therefore, by definition, T is the majority consensus tree
of the trees so far.

4.2 Running Time of the Online Majority Algorithm

Lemma 1. The time it takes to compute the majority consensus tree Mi with the arrival of each new tree Ti is
O(n×f(n)), where f(n) is the time of the SEARCH operation of a dictionary data structure implementation.

Proof. We use several data structures to store the information. The underlying dictionary data structure is
discussed below. The bipartitions of the current majority tree in addition are stored in a linked list (although
not duplicated) with a pointer to the root (or the head of the linked list) which is null if the bipartition is
not in the current tree.

As we mention above, each new arriving tree Ti is traversed using DFS and the bipartitions are processed
in the order of their completion times. When each new bipartition is processed, the time it takes to check
whether it is in the current set of bipartitions C (line 4) depends on the implementation of the dictionary
structure. Since the bipartitions in the majority tree have a pointer to the non-null root, it takes constant
additional time to check whether that bipartition is in the current majority tree as well. If the bipartition is
not in the current majority tree, we add it to the linked list (in constant time, after the head) and update its
root pointer. After we finish processing the Ti tree, we traverse the linked list of the majority tree, discarding

4

the bipartitions whose count is less than the majority. Again, we use a linear time algorithm [15, 27] to build
the tree in line 13. Thus, the total time for lines 7–14 is O(n). Therefore, the total time for each new tree is
O(n× f(n)), where f(n) is the time of the SEARCH operation for a dictionary data structure and depends
on the implementation.

Theorem 1. The time it takes to compute the majority consensus tree Mi with the arrival of each new tree
Ti is at most O(n) and the total time to compute the majority consensus tree of k trees online is O(kn) and
is optimal.

Proof. From Lemma 1 the time needed to compute the majority consensus with the arrival of each new tree
is O(n× f(n)), where f(n) is the time of the SEARCH operation of a dictionary data structure. A standard
implementation of a dictionary data structure is a hash table. Given a uniform universal hash function with
h keys, the expected SEARCH time to access a table with s items is at most O(1+s/h). In our case, s = |C|
is the total number of bipartitions in k trees, which is at most kn. Making h a constant fraction of s gives
a constant expected time SEARCH operation, albeit with a possibly high constant. Thus, the total running
time for recomputing majority consensus using a hash table is O(n) with O(|C|) space requirements. The
O(n) running time is optimal since it takes O(n) time process the input of a new tree and the O(|C|) space
is necessary. For a detailed implementation of a hashing table for bipartitions see Amenta et al. [21]. Notice
that for k trees the running time of our algorithm and Amenta et al.’s algorithm is the same O(kn). Thus
we provide yet another optimal linear time algorithm for majority consensus, either online or off line.

5 Online Maximum Agreement Subtree

Maximum agreement subtree (MAST) represents yet another valuable piece of information about a collection
of trees. It shows how much of the phylogenetic information is common to all the trees in the input. It looks
at all the phylogenetic relationships, not only the bipartitions. We formulate the online version of the MAST
problem as follows.

Input: A set of evolutionary trees T1, T2, ..., Ti, ..., Tk arriving online one at a time. All the trees are over
the same set of leaves S = {s1, ..., sn}.

Output: At each step i we wish to maintain a maximum agreement subtree MASTi of the trees T1, ..., Ti.
MAST of two arbitrary trees is polynomial [14, 24] and for two binary trees Cole et al. [8] present an

O(n lg n) algorithm. For an arbitrary collection of k ≥ 3 trees the offline MAST problem is NP-hard [1].
However, it is fixed parameter tractable. When the degree of even one tree in the input is bounded by d,
both Bryant [4] and Farach et al. [12] present an O(kn3 + nd) offline algorithm.

5.1 Greedy Online MAST

The simplest online algorithm is, of course, a greedy one:

MASTi = MAST (MASTi−1, Ti).

This algorithm is polynomial and for k trees its running time is O(kf(n)), where f(n) is the running time for
the MAST of two trees. However, when MASTi is not unique we must make a decision which tree to retain.
We cannot retain all the trees since there may be exponentially many of them. We show that retaining the
wrong tree may have a dramatic effect on the size of subsequent agreement subtrees.

Proposition 3. The greedy algorithm for the online MAST problem can produce trees with unbounded size
ratio with respect to the optimal tree.

Proof. Consider the following example described in Figure 1. The input trees T1, T2, T3 arrive in order. There
are three MAST (T1, T2) trees, all with 3 leaves. However, if the algorithm chooses MAST2 = ((13)4) then
MAST3 has three leaves (and is optimal), while if MAST2 = ((12)4) or MAST2 = ((23)4) then MAST3 is
empty. Now consider the case when instead of the leaves there are subtrees of size t each. In this case, all
the choices for MAST2 are of size 3t. However, one of them produces a MAST3 of size 3t, while the other

5

1 2 3 4 2

1T 2T 3T

MAST2

1 3 4 1 2 4 2 3 4

1 3 4

MAST3

1 2 3 4 1 43

Fig. 1. An example of a choice of MAST in earlier stages of the greedy algorithm affecting the outcome of the later
stages.

1T 2T 3T

1 2 3 4 1 2 3 4 1 43 2
1234 1234 1324

Fig. 2. The input trees T1, T2, T3 with the structure of the tree recursively repeated at every leaf.

two result in a MAST3 of size 2t. We can now recursively build the subtrees 1, 2, 3, and 4, each a copy of
the structure of the larger tree. Figure 2 shows the first level of the recurrence. After j levels of the recursive
structure being repeated, there are 33

j
+1 possible MAST2 trees, each with 3j+1t leaves. However, only one

of them gives rise to the MAST3 with 3j+1t leaves, while others produce MAST3 with only 2j+1t leaves.
Thus the wrong choice of a MASTi by the algorithm at an earlier stage can arbitrarily badly affect the size
of MASTk.

5.2 Online MAST Algorithm

As we have mentioned, we cannot retain all the MAST trees at every stage of the algorithm. Recomputing
MAST in a straight forward way when every new tree Ti arrives is too expensive: it increases the computa-
tional time by a factor of k. Instead, we modify a MAST algorithm to maintain a structure that allows to
compute MASTi at every stage. Specifically, we will follow Bryant’s algorithm [4, page 180] for computing
MAST. The algorithm is a dynamic programming algorithm that relies on the following fact ([4], Lemma
6.6), which we restate here.

6

Lemma 2. A tree T is an agreement subtree of T1, ..., Ti if and only if

r(T) ⊆ Ri =

i⋂

j=1

r(Tj) and f(T) ⊆ Fi =

i⋂

j=1

f(Tj).

Note that using the property of intersection for any collection of sets A1, ..., Ai

i⋂

j=1

Aj =

i−1⋂

j=1

Aj ∩Ai,

it is easy to maintain the sets Ri and Fi online greedily.
For the simplicity of the discussion we also restate Bryant’s algorithm here.

Algorithm BryantMAST(a, b)

1 IF a = b THEN RETURN 1
2 Construct:

A← {x : ax|b ∈ R} ∪ {a}
B ← {x : by|a ∈ R} ∪ {b}
C ← {z : (azb) ∈ F}

3 Choose x∗ ∈ A that maximizes MAST (a, x∗)
4 Choose y∗ ∈ B that maximizes MAST (b, y∗)
5 FOR (each z ∈ C) DO

Choose z∗ ∈ {z′ ∈ C : zz′|a ∈ R} ∪ {z} that maximizes MAST (z, z∗)
6 Construct a weighted graph G = (V, E)

V = C, (v, w) ∈ E ⇔ (avw) ∈ F , w(v) = MAST (v, v∗)
7 Choose maximum weight clique Q in G
8 RETURN MAST (a, x∗) + MAST (b, y∗) +

∑
z∈Q MAST (z, z∗)

The algorithm fills in an n × n matrix of all leaf pairs with the sizes of the respective MASTs. The actual
MAST can be reconstructed from this matrix using the standard dynamic programming trace of computation.
The running time of Bryant’s algorithm is O(kn3 + nd), where all trees have the maximum degree at least
d. When even one tree is binary (a common case when the input trees are a result of a tree reconstruction
heuristic), then there is no set F and the algorithm reduces to steps 1, 2 (sets A and B only), 3, 4, and 8.
The running time in this case is O(kn3), which is the time it takes to construct the set R.

We are now ready to state and analyze the online MAST algorithm.

Theorem 2. Let the input trees T1, ..., Ti, ..., Tk have the corresponding maximum degrees d1, ..., di, ..., dk

and let mini = min1≤i≤k di. The MAST of these k trees can be maintained online in O(kn3 +
∑k

i=1
nmini)

time.

Before we prove Theorem 2, we state an important corollary.

Corollary 1. If the tth input tree is the first binary tree in the input then the MAST of these k trees can
be maintained online in O(kn3 +

∑t

i=1
nmini). Specifically, if the first tree of the input is binary, the MAST

of k trees can be maintained online in O(kn3).

Proof. To maintain MASTi online, we use Bryant’s algorithm stated earlier. When a new tree Ti with the
maximum degree di arrives we update the sets Ri and Fi of the common triples and fans using the intersection
property:

R← R ∩ r(Ti), F ← F ∩ f(Ti)

Note, that the vertices of Ti of degree greater than mini−1 do not contribute fans to the intersection and
hence the set F is limited by the smallest di so far. We then update the MAST matrix using Bryant’s

7

algorithm. To maintain the structure needed to compute the MAST, we need to maintain the sets A, B,
and C for every pair of vertices. Let us examine what can happen to those sets as a new tree Ti arrives. As
we are computing the new R, some triples may be eliminated from the set. This would possibly eliminate
elements from the sets A and B. If this happens and those elements were the elements x∗ and y∗ (lines 3,
4) that maximize the corresponding MASTs, new maxima need to be found. However, recalculating the sets
A and B and choosing new maxima takes O(n). Thus, redoing the procedure for each for each vertex pair
would take O(n3) time and, hence, would not increase the (asymptotic) running time over k input trees.

When the minimum maximum degree in first i trees is mini > 2, the most computationally expensive
step of the offline algorithm is line 7. The lines 5 and 6 still take O(n) time for each pair, O(n3) total for
a new tree. However, any time a fan is deleted from the set F , both a vertex and an edge can potentially
be removed from the graph G for every vertex pair. Moreover, the vertex weights need to be recomputed.
Thus, we need to recompute the maximum weight clique S, possibly from scratch, for every pair, for every
new tree. The maximum degree of the graph G is no greater than the maximum size of a fan in the set F ,
that is at most mini at the time MASTi is calculated. Thus, the line 7 adds O(nmini−2) running time to
the algorithm per vertex pair, O(nmini) total for each new tree Ti.

Thus, the total time to compute MASTi online using Bryant’s algorithm is O(n3 + nmini) adding up to

the total of O(kn3 +
∑k

i=1
nmini) for k trees.

The arrival of a binary tree Tt sets F = ∅, therefore all the calculations related to the set C from then
on are eliminated and only the lines 1,2,3,4, and 8 are executed. Thus, the computational time from that
point on for each new tree is O(n3). Therefore, the total computational time for k trees in this case is
O(kn3 +

∑t

i=1
nmini). When t = 1 this, of course, becomes O(kn3).

6 Conclusions

Phylogeny reconstruction heuristics on biological data cannot recognize when an optimal or a “true” tree is
produced. Thus, they need to use some criteria for termination. Initial experiments show [28] that the lack
of difference between the consensus of the trees with the top score and the trees with the second best score
may be a good criterion. To use these criteria, we need to have algorithms that maintain consensus of a
sequence of trees on-line, as the new trees are generated by a heuristic. Another or additional option is to
rely on expert knowledge to determine when the reconstruction process has been run sufficiently long. For
this, scientists need to monitor the progress of the reconstruction presented in a meaningful and compact
way. Consensus and agreement trees are common such representations. We have proposed and analyzed
algorithms for the on-line computation of strict and majority consensus trees and maximum agreement
subtree. We have shown that the on-line strict and majority consensus algorithms are time and space-
optimal. Thus these easy to implement algorithms can be used to maintain stopping criteria or monitor
the reconstruction progress without substantially increasing the overall running time of the heuristic search.
Finally, we have also proposed an online maximum agreement subtree algorithm which does not increase the
overall computational time with respect to the best known offline algorithms.

Clearly, we need experimental results to verify that the algorithms are efficient in practice. The ultimate
goal is to develop a suite of tools that allow compact and efficient online representation of the various aspects
of the collections of trees arising in the phylogenetic reconstruction process.

7 Acknowledgments

This work is supported by the National Science Foundation Postdoctoral Fellowship grant EIA 02-03584.
The author is deeply grateful to Tandy Warnow for suggesting the problem and for many insights.

References

1. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees - metrics and efficient
algorithms. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 758–769,
1994.

8

2. J. P. Barthélemy and F. R. McMorris. The median procedure for n-trees. Journal of Classification, 3:329–334,
1986.

3. M. L. Berbee. The phylogeny of plant and animal pathogens in the Ascomycota. Physiological and Molecular

Plant Pathology, 2001.
4. D. Bryant. Building trees, hunting for trees, and comparing trees: Theory and methods in phylogenetic analysis.

PhD thesis, University of Canterbury, 1997.
5. P. Buneman. The recovery of trees from measures of dissimilarity. In F.R.Hodson, D.G.Kendall, and P.Tautu,

editors, Mathematics in the Archeological and Historical Sciences, pages 387–395. Edinburgh University Press,
Edinburgh, 1971.

6. R. M. Bush, W. M. Fitch, C. A. Bender, and N. J. Co. Positive selection on the H3 hemagglutinin gene of human
influenza virus A. Molecular Biology and Evolution, 16:1457–1465, 1999.

7. M. W. Chase, D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G.
Hills, Y. L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels,
W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren, B. S. Gaut, R. K. Jansen, K. J. Kim, C. F. Wimpee, J. F.
Smith, G. R. Furnier, S. H. Strauss, Q. Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams,
P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, Jr., S. W. Graham, S. C. H. Barrett,
S. Dayanandan, and V. A. Albert. Phylogenetics of seed plants: an analysis of nucleotide sequences from the
plastid gene rbcL. Annals of the Missouri Botanical Garden, 80:528–580, 1993.

8. R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup. An O(n log n) algorithm for the
maximum agreement subtree problem for binary trees. SIAM Journal of Computing, 30(5):1385–1404, 2000.

9. W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves. Journal of Classification, 2:7–28,
1985.

10. G. F. Estabrook, Jr. C. S. Johnson, and F. R. McMorris. An algebraic analysis of cladistic characters. Discrete

Mathematics, 16:141–147, 1976.
11. G. F. Estabrook and F. R. McMorris. When is one estimate of evolutionary history a refinement of another?

Mathematical Biology, 10:367–373, 1980.
12. M. Farach, T. Przytycka, and M. Thorup. On the agreement of many trees. Information Processing Letters,

55:297–301, 1995.
13. C. R Finden and A. D. Gordon. Obtaining common pruned trees. Journal of Classification, 2:255–276, 1985.
14. W Goddard, E. Kubicka, G. Kubicki, and F. R. McMorris. The agreement metric for labelled binary trees.

Mathematical Biosciences, 123:215–226, 1994.
15. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:12–28, 1991.
16. M. Källersjö, J. S. Farris, M. W. Chase, B. Bremer, M. F. Fay, C. J. Humphries, G. Pedersen, O. Seberg, and

K. Bremer. Simultaneous parsimony jackknife analysis of 2538 rbcl DNA sequences reveals support for major
clades of green plants, land plants, seed plants and flowering plants. Plant Systematics and Evolution, 213:259–
287, 1998.

17. E. Kubicka, G. Kubicki, and F. R. McMorris. On agreement subtrees of two binary trees. Congressus Numeran-

tium, 88:217–224, 1992.
18. T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of Mathematical Biology, 43(2):239–244, 1981.
19. F. R. McMorris. On the compatibility of binary qualitive taxonomic characters. Bulletin of Mathematical Biology,

39:133–138, 1977.
20. F. R. McMorris, D. B. Meronik, and D. A. Neumann. A view of some consensus methods for trees. In J. Felsenstein,

editor, Numerical Taxonomy, pages 122–125. Springer-Verlag, 1983.
21. Katherine St. John Nina Amenta, Frederick Clarke. A linear-time majority tree algorithm. In Gary Benson

and Roderic D. M. Page, editors, Algorithms in Bioinformatics, Third International Workshop, WABI 2003,

Budapest, Hungary, September 15-20, 2003, Proceedings, volume 2812 of Lecture Notes in Computer Science,
pages 216–227. Springer, 2003.

22. V. Savolainen, M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. De Bruijn,
S. Sullivan, and Y. L. Qiu. Phylogenetics of flowering plants based on combined analysis of plastid atpB and
rbcL gene sequences. Systematic Biology, 49:306–362, 2000.

23. P. S. Soltis, D. E. Soltis, and M. W. Chase. Angiosperm phylogeny inferred from multiple genes as a tool for
comparative biology. Nature, 402:402–404, 1999.

24. M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement subtree. Information

Processing Letters, 48(2):77–82, 1993.
25. D. L. Swofford. When are phylogeny estimates from molecular and morphological data incongruent? In M. M.

Miyamoto and J. Cracraft, editors, Phylogenetic Analysis of DNA Sequences, pages 295–333. Oxford University
Press, 1996.

9

26. Y. Van de Peer and R. De Wachter. Evolutionary relationships among the eukaryotic crown taxa taking into
account site-to-site rate variation in 18S rRNA. Journal of molecular evolution, 45:619–630, 1997.

27. T. J. Warnow. Three compatibility and inferring evolutionary history. Journal of Algorithms, 16:388–407, 1991.
28. T. L. Williams, T. Y. Berger-Wolf, B. M. E. Moret, U. Roshan, and T. J. Warnow. The relationship between

maximum parsimony scores and phylogenetic tree topologies. Technical Report TR-CS-2004-04, University of
New Mexico, 2004.

10

