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Chapter 1

Introduction

1.1 Information Theory

1.1.1 Background

Consider sending information over k independent unreliable channels. We want to partition the
source information into k subsets so that if all k£ subsets are received, the original information can be
completely reconstructed; if any of the channels fail, then the error, defined as the absolute (rather
than Hamming) difference between the original information and the possible reconstruction of it,
is minimized. Figure 1.1 shows the general setting of the problem. A trivial solution would be to
divide the source information into k equal blocks, sending each over a separate channel. However,
if any block fails to arrive, that part of the information is lost completely. The error in this case
strongly depends on which particular channel has failed, generally an undesirable feature in this
setting. Alternatively, we could send k complete copies, so that even if only one of the channels
succeeds, all the information is still available. This scheme, while robust, utilizes resources poorly.
Our goal is to partition the information in a way that allows us to recover as closely as possible the
information originally sent, with the error depending only on the number of channels lost.

The problem described above is that of designing codes for a diversity-based (multichannel)
communication system that guarantee a minimum fidelity at the user end based on the number of
channels succeeding in transmitting information. This problem is known as the Multiple Description
problem and was introduced by Gersho, Witsenhausen, Wolf, Wyner, Ziv, and Ozarow at the 1979
IEEE Information Theory Workshop. It is a generalization of the classical problem of source coding

subject to a fidelity criterion [46].



log

channel 1 11 11

channel 2 19 log no 19
£—{ENCODE . . DECODE— T

logm ij *

channel k ik log ny, i

Figure 1.1: Schematic setting of the multichannel problem.

Initial progress on the Multiple Description problem was made by El-Gamal and Cover [15],
who studied the achievable rate region for a memoryless source with a single-letter fidelity criterion.
Ozarow [41] showed that the achievable region derived in [15] is the rate-distortion region for the
special case of a memoryless Gaussian source with a square-error distortion criterion. Zhang and
Berger [56] and Witsenhausen, Wolf, Wyner, and Ziv [53], [54] explored whether the achievable
rate region is the rate-distortion region for other types of information sources.

The first constructive results for two channels with equal rates were presented by Vaishampayan
[48], [47]. In [48] Vaishampayan designs Multiple Description Scalar Quantizers (MDSQs) with good
asymptotic properties. We show, however, that this solution is not optimal.

An MDSQ is a scalar quantizer (mapping of the source to a finite integer point set) that is
designed to work in a diversity-based communication system. The problem of designing an MDSQ
consists of two main components: constructing an indezx assignment (a mapping of an integer source
to a tuple to be transmitted) and optimizing the structure of the quantizer for that assignment.
This paper focuses on the index assignment part of the problem. A general technique is presented
for designing index assignments for an arbitrary number of channels. It gives upper and lower
bounds on the information distortion for fixed channel rates. In case of two channels transmitting
at equal rates, the bounds coincide, thus giving an optimal algorithm for the index assignment
problem. In the case of three or more equal-rate channels, the bounds are within a multiplicative

constant.



Real applications of the index assignment problem arise in video and speech communication
over packet-switched networks. The information in this setting has to be split into several packets

which can be lost in transmission resulting in poor signal quality ([29], [30], [55], [3]).

1.1.2 Problem Statement

We are given a communication system with k channels. Channel ¢ transmits information reliably
at a rate logn; bits per second. Each channel either succeeds or fails to transmit the information.
If a channel succeeds, the received information is assumed to be correct. If a channel fails, all the
information transmitted over the channel is lost.

We assume the source to generate integers with uniform distribution, the result of a quantization
process. We assume the numbers to be contiguous and refer to them by the indices 0 through m —1
for some m. Thus we consider the transmitted information be an integer x with at most Igm
bits, where 1 < m < nina---ng. An (ng,na,...,ng)-level MDSQ maps this = to a unique k-tuple
(11,12, ..., k), where component ¢; is sent over the jth channel. If all of the channels succeed, then
we should be able to decode x from the k-tuple exactly. If some of the channels fail, we want
the encoding to minimize the distortion between the original information and the reconstructed

transmission. The system can be viewed as one encoder

f:{0,...m—1} - {0,....,n1 — 1} x --- x {0,...,np — 1}

and 2% — 1 decoders, (go, ..., gok_»), each dealing with a unique subset of successful channels, with
at least one succeeding channel. Let gy be the decoder with all channels succeeding and let D; be
the distortion rate of the set of channels represented in binary by ¢, a 1 corresponding to failure.

The problem we are interested in, then, is describing the rate-distortion tuples

(logni,logna,...,logng; 0,D1, ..., Dor_s),

This is a generalization of the notation used for two channels, where the rate distortion tuples are
specified by (R1, Ra; Do, D1, D3). Here R; and Ry are the transmission rates of the two channels;

Dy is the distortion in case both channels succeed; D1 is the distortion in case of the first channel
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Figure 1.2: Correspon- Figure 1.3: Examples of encoding schemes and the correspond-
dence between an encoding ing matrices: left- identical copies of the input number are sent
scheme and arrangement of over the channels; right - the input number is split into blocks
numbers in a matrix. of bits, which are sent over the channels.

failure; Do is the distortion in case of the second channel failure.

Consider the available information at the receiving end. If all of the channels succeed then
we receive all the components of the tuple z = (i1,142,...,%;). If some of the channels fail, then
the remaining successful channels imply upper and lower bounds on x, namely the largest and the
smallest values among those consistent with the successful components of x. For example, when
k = 2, z is mapped to a pair (i1,42). If the first channel fails, we know that z is between the smallest
and the largest numbers with i2 as the second component of the encoding. Similarly, if the second
channel fails, z is between the smallest and the largest numbers with ¢; as the first component.
Thus, the following two problems are equivalent. On is designing a code to minimize distortion in
case of complete failure of any ! channels in a system with a contiguous source dictionary of size m
and k channels, channel ¢ transmitting reliably at rate logn;. This information theoretic problem
translates to a combinatorial problem of putting numbers X = {0, ...,m — 1} into a k-dimensional
matrix, dimension ¢ being of size n;, while minimizing the difference between the smallest and the
largest number in each full /-dimensional submatrix. This correspondence is shown in Figures 1.2

and 1.3. In this paper we will be working with the combinatorial version of the problem.



1.2 Graph Theory

The problem of designing an encoding in a multiple channel system to minimize the error in case
of channel failure can be represented as a graph problem. We associate a graph with each channel.
The vertices of that graph correspond to numbers 0, ..., n; — 1, where log n; is the capacity of channel
i. There exists an edge (u,v) if the numbers u and v are indistinguishable in case of channel failure.
That is, when the channel fails, we cannot say whether u or v was originally sent over the channel.

More formally, given k channels of capacities logn,logns, ...,logng we build k£ graphs Gi, ..., Gg:

Vi= {07 sy Mg — 1}7

E; = {(u,v) : u,v Are possible decodings in case of channel failure}

For example, if in case of channel failure all the information sent over that channel is lost, then the
corresponding graph is a clique, since all the numbers are possible decodings, regardless of what
was originally sent over the channel. Another example is one bit corruption. That is in case of
channel failure we cannot distinguish between numbers one bit apart. The corresponding channel
graph in this case is a hypercube. Notice, that this model assumes that each channel can fail in
only one way, and the type of failure is known a priori.

A cartesian product of graphs G and H, denoted by G x H, is a graph whose vertices are
Ve x Vi, and there exists and edge ((z,v), (z',3")) if one of the coordinates is equal, and there

exists a corresponding edge in the other graph, that is:

V(G x H):=V(G) x V(H),

E(G x H) ={((z,y), (@) : (e =2 A (y,9/) € E(H)) V (y =y A (z,2") € E(G))}-

Cartesian product of graphs is truly a cartesian product: it is commutative and associative up to
graph isomorphism. See Figure 1.4 for an example of cartesian product of two cliques, a Hamming
graph. Note that a hypercube can be viewed as both a cartesian product of cliques or paths of size
2.

A labeling of vertices of a graph G(V,E) is a one-to-one function f from V onto the set



Figure 1.4: Cartesian product of two cliques, a Hamming graph.

{0,...,|V| = 1}. The bandwidth of a labeling f, denoted by Bf(G), is the number

max_|f(u) = f(v)],

(uv)EE

and the bandwidth of G, denoted by B(G), is the number

min max | f(u) — f(v)].

f (uw)€EE

The wirelength (bandwidth sum, linear arrangement, edgesum) of a labeling f, denoted by L¢(G),

is the number

> 1f(w) = f),

(u,v)EE
and the wirelength (bandwidth sum, linear arrangement, edgesum) of G, denoted by L(G), is the

number

min > 1fw) = f)I.

(u,v)eEE
Notice, that divided by the number of the graph edges, L(G) is the average of the label differences
over all the edges.

Going back to the channel problem, designing an encoding scheme for sending numbers up to
log m bits over k channels is equivalent to labeling an induced subgraph of order m of the cartesian
product of channel graphs. Depending on whether we are interested in minimizing the maximum
or the average decoding error, the corresponding graph optimization problem is bandwidth or

wirelength, respectively. For example, designing an encoding for a system where channel failure
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Figure 1.5: Correspondence between the channel communication problem with two channels and
the graph labeling of a product of two graphs.

Cliques: (Kp,)* Paths: (P,,)*
Bandwidth | Harper [26]: exact, (K2)* = (Py)*
Hendrich & Stiebitz [28]: exact, (K,)? Chudtalovd [14]: exact, (P, X Pp)
Berger-Wolf & Reingold [7]: exact, (K,)?, | Fishburn & Wright [17]: exact, (P, x Pp,)
upper bound, (K,)* Moghadam [39]: exact, (P,)*
Bollobas & Leader [10]: exact, (P,)*
Wirelength | Harper [25]: exact, (K2)* = (Py)*
Lindsey [36]: exact, (K,)* Nakano [40]: bounds, (P,)*
Nakano [40]: exact, (K,)* Fishburn, Tetali, Winkler [19]: exact,
(P, x Pp)

Table 1.1: The summary of results on the bandwidth and wirelength of Hamming and grid graphs.

constitutes loss of the entire information sent over the channel, for all channels, and the numbers
that can be sent over the channels are 0,...,[[n; — 1, is equivalent to labeling all the vertices of
a cartesian product of cliques, or Hamming graph. This correspondence is shown in Figure 1.5.
We will concentrate on the bandwidth and wirelength of cartesian products of cliques (Hamming
graph) and paths (grid graph). The up-to-date summary of results in the area is presented in Table
1.1.

Both bandwidth and wirelength problems for graphs originated in 1960’s at the Jet Propulsion
Laboratory at Pasadena. In fact it was motivated exactly by the coding theory problem that we
are studying. L. H. Harper and A. W. Hales were looking for codes that minimized the error in a
hypercube whose vertices were words of the code. In 1964 Harper [25] published his first paper on
the wirelength of hypercubes. Harper proved the fundamental theorem for the wirelength problem.
Let ACV,

O¢(A) := {(u,v) e E:ue Av ¢ A}



O¢G(A) is the number of boundary edges of A,

O¢g(m) = |£1|1i171n O¢(A).

Let Sf(m) be the set of vertices labeled 0, ...,m — 1
S¢(m) := f71{0,...,m — 1},

then

ok
Yo @)= f) = Y 6c(Ss(m)
m=0

(u,v)EE

v

> 0¢(m)
m=0

That is, wirelength of a graph G is at least the sum of the of the number of the boundary edges of
the optimal m-sets.

In 1966 Harper [26] published the corresponding result for the bandwidth problem. Let A C V,
0(A):={ve A:Tué& A, (u,v) € E}
0(A) is the set of the boundary vertices of A, then for any connected graph G

B(G) = H;in(qu?gElf(U)—f(v)l

> max min |§(A)].
m  |Al=m

That is, bandwidth of a graph G is at least the maximum number of the boundary vertices of the
optimal m-sets.

Since the mid-sixties, there has been a continuous interest and a growing body of research in
the graph bandwidth problem. For a survey on the topic of graph bandwidth up to 1982 see [13].

For a survey of the most recent results in bandwidth, wirelength, and other graph vertex ordering



problems see Lai and Williams [34]. In general, the graph bandwidth problem is NP-complete [42].
It remains so even for trees. However, it seems to be tractable for the specific cases of Hamming
and grid graphs that we are interested in. It is remarkable, that most of the results for these
graphs were achieved using Harper’s theorems. Harper’s approach is called isoperimetric problem.
It is a discrete analog of the continuous isoperimetric problem, a classical mathematical problem
known to ancient Greeks. The original isoperimetric problem is to find among all geometric shapes
with a given perimeter (isoperimetric shapes) the one with the largest area. The isoperimetric
theorem states that, not surprisingly, the circle is the one. It can be generalized to solid bodies and
higher dimensions. From the middle of last century the isoperimetric problem has been working
its way into physics. The general form of the problems there is “for all the bodies with the given
volume/surface area, which are the ones with the extremal values of a given function (elasticity,
frequency, etc.)?”. For more information on the subject see Polya and Szego [43].

The edge/vertex isoperimetric problem on graphs is, given a simple connected graph G(V, E),
find induced subgraphs of order m that have minimum /maximum number of boundary edges/vertices.
The subsets of vertices that induce the subgraphs that achieve these extremal values are called

isoperimetric. If the isoperimetric sets A; C V,|A;| = ¢ are such that

A1CA2C---CA|V|,

then the problem is said to have nested solutions structure (NSS). In the language of isoperimetric
problem the above Harper’s theorems are stated as:

If the edge (vertex) isoperimetric problem has the nested solution structure then the labeling corre-
sponding to the isoperimetric sets is optimal for the wirelength (bandwidth) problem.

For a recent survey on edge isoperimetric problems on graphs see Bezrukov [9].

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2 we present the main results of the
research. We restrict the multichannel communication problem in two different ways and model it

as a graph labeling problem. In Section 2.1 we present a solution for no redundancy encoding for the



case of complete information loss in case of channel failure. This corresponds to the graph problem
of bandwidth optimization of Hamming graphs. Our solution is based on a labeling technique we
introduce that we call Herringbone arrangement. While the solution is not optimal, the technique
has good practical properties and is useful in other modifications of the communication problem. In
Section 2.2 we present an optimal solution to the Hamming graph bandwidth problem. In Section
2.4 we explore the combinatorial properties of the Herringbone arrangement and its applications
to other problems. In Section 2.3 we present an optimal solution to yet another restriction of the
communication problem: no redundancy encodings with distance-1 type failure. We model it as a
grid graph wirelength optimization problem. In Chapter 3 we discuss the related open problems
and possible research extensions. We provide an appendix of the terminology we use throughout

the thesis.

10



Chapter 2

Results

2.1 Maximum Error of Complete Channel Failure - Bandwidth

of a Hamming Graph

In this section we consider the problem of designing no redundancy encodings for the case of
complete information lost in case of channel failure and we are concerned with minimizing the
maximum error. More formally, we are given k channels with channel ¢ having capacity log n;. The
numbers that can be sent over the k channels are 0 to [[ n;—1. In case of channel failure we loose the
entire piece of information sent over that channel. The problem is to design an encoding-decoding
pair that minimizes the maximum absolute difference between the information originally sent and
the information decoded at the receiving end in case of the failure of any number of channels.
When only one channel can fail, the problem is equivalent to minimizing graph bandwidth of a
k-fold cartesian product of cliques (Hamming graph) K,, x Kp, X -+ x K. As we have mentioned
in the introduction, we represent the problem as that of the arrangement of numbers 0 to [[n; —1
in an nq X ng X - - - X Ny, k-dimensional matrix to minimize the spread - maximum difference between
any two numbers in any line. The correspondence between the three problems is shown in Figure
2.1.

We restrict our attention to the case of equal channel capacities, so that the corresponding
k-dimensional matrix is a cube. First, the lower bound and the algorithm are derived for the case
of failure of only one channel. (In Section 2.1.2 we show the results for the failure of an arbitrary
number of channels.) Thus the k-channel problem is reduced to finding an arrangement of the [[ n;

numbers in an n X - -- X n k-dimensional matrix that minimizes the maximum spread in a line.
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Figure 2.1: Correspondence between the channel communication with two channels, the bandwidth
minimization of a product of two cliques, and the number arrangement of a two-dimensional matrix
problems.
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The idea of the lower bound proof is as follows:

1. For any possible arrangement A of X = {0,...m — 1} in the matrix, consider the set of smalls
of all the lines. Let small(A) be that set sorted in ascending order. If a number is smallest
in more than one line, then it appears in this list more than once. For example, zero always
appears k times, and any small(A) list starts with k zeros. The goal is to find a bounding
sequence that is at least as large elementwise as any such smalls list. Then the jth smallest
number in a line in any arrangement, small(A);, is at most the jth term of the bounding
sequence. Let (a) = (a1, a2, ...) be that bounding sequence; then the following must hold for
all j:

a; = mj,x{small(A)j}.

We will show in Lemma 1 that there exists an arrangement whose smalls list realizes the

bounding sequence.

2. Just as with the smalls, the goal is to find a bounding sequence for bigs that elementwise is
less than any bigs list, big(A), produced by any arrangement. Let (b) = (b, ba,...) be that

bounding bigs sequence; then the following must hold for all j:
bj = min{big(A);}.

Lemma 1 shows that there exists an arrangement whose bigs list realizes the bounding se-

quence.

3. Maximum pairwise difference of the bigs and smalls lists of an arrangement is a lower bound

12
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Figure 2.2: The process of derivation of the lower bound on spread.

on the maximum spread of that arrangement, spread(A). That is, for all A
max{big(A); — small(A);} < spread(A).
j

This statement is known as the Ski Instructor problem and the proof can be found in [35].

Since for the bounding sequences (b) and (a) we have
b; < big(A); and a; > small(A); for all A and j,

pairing smaller b; with smaller a; gives a lower bound on the spread for all possible arrange-

ments. That is, for all A:
max(b; — a;) < max{big(A); — small(A);} < spread(A).
j j

The process is shown schematically in Figure 2.2.

Thus, the main focus of our proof is to find good bounding sequences. We shall build them
inductively. Consider the smalls sequence. Suppose we have the initial segment of the bounding

smalls sequence, (a1, a2, ..., a;), and are now concerned with the next element in that sequence. We

13



Z1 Z2

Figure 2.3: Let z; and z2 be the elements less than x that already have been placed. All cells
marked * are intersections of two lines, one of which already has a number smaller than z. However
putting x in the cell below 1 or z2 will produce one cell that is an intersection of two lines, both
of which have a smaller number. Thus we favor those over the cell to the right of xo, since placing
x there results only in cells with at most one smaller number in their intersection.

place the elements of X in increasing order into the cells of the matrix. Notice that every cell is
an intersection of k-lines. The key observation to maximizing the smalls sequence is that if x is
a value in some cell, then z is the smallest number in every line that does not already have an
element smaller than z. For example, if we put z into a cell that is an intersection of lines that
do not currently have any elements in them, then x is the smallest number in all k£ lines, and thus
appears in the smalls sequence k times. On the other hand, if all £ lines already have numbers
less than z, then it does not appear in the smalls sequence at all, and the next candidate for the
sequence element is at least x + 1. In general, if s out of k lines have elements less than z, then x
appears in the smalls sequence exactly k — s times. Therefore, to maximize the next element of the
smalls sequence, we put x into a cell with the largest number of lines in its intersection that already
have elements less than xz. Given a choice, we would also like to put = in a cell that reduces the
number of lines without smaller values for the subsequent elements. An example of such placement
is shown in Figure 2.3.

We now demonstrate the lower bound proof and give an arrangement for some special cases.

2.1.1 One Channel Failure

Assume that the matrix is a cube, that is n; = n for all 4, and the number of elements to be
placed in the matrix is m = n*. The matrix being a cube corresponds to all channel capaci-
ties being equal. The number of elements being equal to n* corresponds to having no redun-

dancy in the system. That is, the size of the numbers to be transmitted equals to the total

combined channel capacity. From the rate-distortion point of view, this corresponds to tuples of
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type (logn,logn,...,logn;0, D1, ..., Dok_1).

Herringbone Arrangement

We now define the arrangement that produces a bounding smalls sequence for the cubic matrix. In
fact, this arrangement produces a bounding smalls sequence for a more general class of completely-

filled rectangular matrices, the cube being a special case.

Definition 1

A herringbone arrangement of a k-dimensional ny X ng X - - - X ng completely filled matrix is defined
recursively as follows. Assign an arbitrary order to the coordinates of the system (i1, 2, ..., i).

A herringbone arrangement of 0 X --- X 0 k-dimensional matrix is empty. A herringbone ar-
rangement of 1 X - -- X 1 k-dimensional matrix is the number 0 placed in the single cell.

A herringbone arrangement of a 0-dimensional matrix is also the number 0 placed in the single
cell.

Given a herringbone arrangement of ¢1 X tg X - - - X t k-dimensional matrix (that is the cells of
the matrix are filled up to the coordinate ¢; — 1 in dimension ¢), a larger herringbone arrangement
is produced by recursively filling the largest (k — 1)-dimensional slice adjacent to the arrangement.

More precisely, the following algorithm creates a larger arrangement.

e Project the existing arrangement onto the (k — 1)-dimensional slices adjacent to it
e Calculate the (k — 1)-dimensional volume of each projection

e Recursively fill the largest volume projection (using coordinate order to break ties) with the
herringbone arrangement for £ — 1 dimensions

Examples of 2- and 3-dimensional arrangements are shown in Figure 2.4. The name “herring-

bone arrangement”

was inspired by the herringbone-like pattern seen clearly in two dimensions.
We denote the element in the cell (i1, ...,4;) of the k-dimensional herringbone arrangement with
HBy(i1,...,1). Let 4, = maxj<j<pi;. If there is more than one coordinate with the maximum

value, we take the largest coordinate. Then

HBy (i1, ...yi) = (ip + 1) i) L HBy (61, ooy ipm1, 1y -oes ).

15
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Figure 2.4: An example of herringbone arrangements in 2 and 3-dimensional matrices.

The last equality follows from the recursive definition of the herringbone arrangement. A herring-
bone arrangement fills the matrix in layers; the maximum coordinate value indicates the layer of
the arrangement for the cell. Thus, if 4, is the maximum coordinate value, the value in a cell is
in the 7,’th layer. That is, the first ¢, — 1 layers are completely filled and the element is within a
(k — 1)-dimensional submatrix, recursively filled with the herringbone arrangement.

We can also write explicitly the inverse of the k-dimensional herringbone arrangement:
HB;':N = I*
Let t = [{/m]. For (t — 1)*9+17=1 < m < (t — 1)* ¢/ for some 1 < j < k
HB (M) = (i1, ey B, ey k),

where i; =t and (i1, ..., 3j—1,%j41, -, ix) = HB; ' (m — (t — 1)F).

That is,
( 1
(t, HB; ',(m — (t — 1)¥), if (t—1)F <m < (t—1)k1¢
0,¢,0,...,0), if (t— 1)1t <m < (t —1)F2¢2
By = ¢ ) (t-1) (t=1)
| (O,..,0,0,1), if (t— 1)tk <m<th

where the coordinates indicated by boxes form HB, ' (m — (t — 1)*).
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For example, when k = 2, the two-dimensional herringbone arrangement is defined as
HB;': N = IxI

([vml,m = ([vm] = 1)?), if m < ([vm] —1)[vm]
(m — ([v/m] — 1)[v/m], [/m]), otherwise

Herringbone arrangements are unique up to the initial order of the coordinates.

HB; (m) =

The Lower Bound

Now we show that the herringbone arrangement realizes the bounding sequence for the smalls list.

Lemma 1 A herringbone arrangement of values in a k-dimensional matriz mazimizes the smalls

sequence (the ascending list of lines’ smallest numbers) for that matriz.

Proof. The proof is a generalization of Harper’s proof of the main theorem in [25]. We use
induction on k£ and the dimension size n.

The base cases of k =0 and n = 1 are trivial.

Suppose we have a matrix with the dimension size n. By the induction hypothesis, a herringbone
arrangement maximizes the smalls sequence in the k-dimensional matrix up to the coordinate value
n — 2 in every dimension; that is, it maximizes the initial segment of the smalls sequence for the
entire matrix.

Consider the smallest element x which has not yet been used in the arrangement. As we have
noted before, the goal is to put = into a cell that is an intersection of as many as possible lines
with elements smaller than z. Since we have a complete herringbone arrangement of a smaller cube
matrix, by induction hypothesis it has all the elements less than . Thus any cell in the matrix has
at most one line in its intersection with elements less than z. The cells that have one such line are
precisely the cells that lie in the lines intersecting a face of the existing herringbone arrangement.
Consider now all the lines that intersect a face. After placing the first element in any of these lines,
there always exists a cell that is an intersection of at least two protected lines. Thus, once started,
one must stay with the same face to ensure larger elements in the smalls list. Notice that the

cells that are being filled are exactly the (k — 1)-dimensional projection of a face of a herringbone
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arrangement, which is a (k — 1)-dimensional matrix. Thus by induction hypothesis, it is filled with
a herringbone arrangement.

Once a face is completed, we move on to another face. By a similar argument, it will be filled
with a (k—1)-dimensional herringbone arrangement. However, there are several available faces that
could be filled next. We now show that we must choose the face with largest volume projection.
Notice, that one of the properties of the herringbone arrangement is that at any point the sizes
of the available faces differ by at most 1 in any dimension, and they can differ in at most one
dimension. Suppose we have one face Fj of size t; X --- X t; X --- X t;, and another face Fy of size
ty X +-- Xt;+1x--- xtg. It is easy to see that the smalls sequence produced by filling the face
Fy agrees with the initial segment of the smalls sequence of Fy, assuming that they are filled with
the same numbers. The first difference is in the number that comes after filling the face 7. In
the first case, this number goes onto a new face and thus appears in the smalls sequence k — 1
times. However, since the face F5 is bigger, the same element will still be within the F5 face, albeit
in a new (k — 2)-dimensional submatrix, and hence will appear in the sequence only k — 2 times.
Therefore, to maximize the smalls sequence we must first fill the face with the largest volume of
the projection where available.

The above arguments produce, by Definition 1, a herringbone arrangement. 0O

Consider now the complementary arrangement that starts with the largest value in the cell with
the largest coordinate and then fills the cube with the herringbone arrangement using the numbers

in the descending order. The following fact is a simple consequence of Lemma 1.

Corollary 1 A complementary herringbone arrangement maximizes the bigs sequence for a k-

dimensional cube.

We are now ready to give a lower bound on the spread in a completely-filled cube.

Theorem 1 The spread in a completely-filled cube is at least

k1 knF—1 42 = B knk—1 =
2k 2k
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Proof. By Lemma 1, a herringbone arrangement of a completely filled cube maximizes the
smalls sequence. As we have noted, the complimentary arrangement minimizes the bigs sequences.

Since for any arrangement of the elements in the matrix we know the bounding sequences a;
and b;, the spread for any arrangement is at least max;{b; —a;}. Consider the case of j = ktk=1 for
some t. In this case, a; is the minimum in the first line after filling a subcube with sides of size ¢,
that is a; = t* = (j//’ﬁ:)ﬁ Thus L(j/k)ﬁj is a crude overestimate of any a; (rounding up to the
closest t*) that coincides with a; in infinitely many values. The sequence b; is complementary of a;.
There are kn*~! lines in a k-dimensional cube, hence there are kn*~! elements in each of the smalls
and the bigs sequences. Therefore the index complimentary to j in the sequence is kn*~1 — j + 1
and

b =nF =1 = G 1_jyy > 0F — 1= |((kn* "+ 1)/R)F T,

Since the sequences b; and a; are complimentary and regular, max;{b; — a;} is achieved in the

middle of the sequence, that is, when j = knk—1 /2.

In]ax{bj —a;} > bknk—1/2 = Qppk—1/2

N N kb=t — b 41 7 _ fnk—1) T
a k 2k

B nk_l_ knk_1+2 % B knk—l k—1
B 2k 2k

Note, that this lower bound is weak. It is not sufficient to merely find the maximum difference
between the ordered minima and maxima sequences. There are other constraints imposed by the
embedding of the sequence in the cube that may give a higher lower bound. For example, the proof
does not rely on the fact that the matrix is a cube. More generally, the proof does not take into
consideration the relations between the dimension sizes. This means that the same technique gives
a lower bound for any n; X ng X ... X ng matrix. However for the case of two equal dimensions the

lower bound of max; b; — a; is tight and we can compute it exactly.
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Corollary 2 The spread in a completely filled 2-dimensional cube is at least

n(n+ 1)
2

-1

Proof. By definition of the 2-dimensional herringbone arrangement, the smalls sequence for a

square is

17/2]2 if j is odd,

(/2 -1)*+j/2 if j is even.
j—1)?

The bigs sequence is complimentary to the smalls sequence and is

m—j+1-1\2
bj:n2—1—a2n—j+1=n2—1—{<%)J.

Thus the difference b; — a; is

|0

By doing the calculations for even and odd cases of j, we find that the integer value of j = n

maximizes the expression b; — a; and

n(n+ 1)

-1
2

max{b; — a;} =
J

The algorithm

The idea of the algorithm is to put the two complimentary herringbone arrangements together,
without increasing the spread. Consider all the ways of merging the two arrangements in a cube.
Assuming that the smalls arrangement starts at the (0,0, ...,0) corner, and the complimentary bigs

arrangement starts at the (n — 1,...,n — 1) corner, the possibilities are defined by the order of
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the coordinates for each arrangement. Thus there are k! possibilities. First, assume for now that
we can literally merge the two herringbone arrangements by putting two numbers in every cell of
the matrix. In every line, to calculate the spread, the smallest number is taken from the smalls
herringbone arrangement and the largest — from the bigs arrangement. Consider any line in the cube
and the corresponding smallest and largest numbers defined by the merging permutation. Similar
to an earlier argument, the maximum difference between the smallest and the largest numbers in a
line occurs in the middle lines, that is the lines of the type ([(n —1)/2],...; %, ..., [(n — 1)/2]). We
shall call this line Pr, with p being the free coordinate. Let HB;s(Pr,) and H By(Prp) denote the
smallest and the largest elements, respectively, in the line Pr,. Then to find the best permutation
we calculate the following:

i - = 1 k f— —
Louin - max {HBy(Pry) — HBs(Prp)} Louin - max {n” — 1 — (HBs(Prx(p) + HBs(Prp))}

— E_ 1 _ ;
= n"—-1 L max 1I§npl£k{HBs(PT7r(p)) + HB(Prp)}

= n* —1— (HB,s(Pr1) + HBy(Pry))

To see why the last equation is true, we look at the smallest number in line Pr;, of the herring-
bone arrangement as a function of p. The calculations for odd n are shown below (the algebra for

even n is similar, and the result is the same).

HBs(Prp) = HB ( where 0 is in coordinate p

2

_ n+1\*1/n-1 4 n+1\*2/n-1 — n+1\? /n-1

o 2 2 2 2 2 2
n 2 /n—1\? n+1\?2 /n—1 2+ N n—1\2

2 2 2 2

N\ /n-1 '




Minimum in line p

7800 +
7550 +
7300 +
7050 +
6800 T
6550 T
6300 I I : : +—D

Figure 2.5: The minimum in line p of the Herringbone arrangement as a function of p, shown here
for n = 11 and k = 5. We relax the integer requirement on p for the sake of representation.

This function is exponential in p, with a negative coefficient, thus it is minimal at p = k
(see Figure 2.5). The minimum is so small relative to the rest of the function, that HB(Pry) +

HB(Pr;) < HB(Prp) + HB(Pry) for p,q # k and any 4. In fact, this is true for the extreme case

ofp=qgq=k—1andi=1:

k—1 k—2
(HB(Pry) + HB(Pry)) — (HB(Pry_1) + HB(Pry_y)) = — <”;r 1) +2 ("TH> -1<0.

Thus for any permutation ,

HBS P’r +HBS Prﬂ- 3
min {HB,(Pryy)) + HBs(Prp)} = min (Pre) (Pra(k)) 7

1<p<k HBS(P’I"k) + HBs(Prﬂ'—l(k))

and the maximum over all permutations 7 is
HBs(Pr1) + HBs(Pry,).

This means that one of the best permutations is the reverse permutation. The spread achieved by
merging the minima and the maxima sequences using the reverse ordering of the coordinates when

n is odd is

n* —1— (HBy(Pr1) + HBs(Pry,)) =n* —1—n <(”T+1)H - 1) ,

When n is even, the middle lines are of the type (i1, ...,*,...,7;) where all the coordinates equal
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|(n—1)/2] or [(n—1)/2]. Since the arrangement for the maxima sequence uses the reverse order

of the coordinates,
HBy(i1, .oy %y eyig) =nF — 1 — HBy(n — i — 1, ..., %, ..om — i — 1).

Thus the maximum difference occurs in lines with the first half of the coordinates (ignoring the *)
being [(n — 1)/2], and the last half of the coordinates being |(n — 1)/2|. (If k is even, when * is
in the first half of the coordinate values, there are more floors than ceilings, and when * is in the

last half, then there are more ceilings than floors). Thus the lower bound on the spread is

HBy([%1 e [P |22 o |22 m = 1) = BB [0, | 252 | 252],0) =

[(k—1)/2] L(k—1)/2] [(k—1)/2 L(k—1)/2)
nF == (HBy(0, [%51] oo [0, | %52 oo [ 752
L(k—1)/2] [(k—1)/2]
+HB:([%F ], [25 ], [ 25 ] |25 ], 0)
[(kh—1)/2] L(k—1)/2]

23



Remembering that n is even, the above is equal to

n n n-—2 n—2

nf-1 - (HBs(O,&,\ R ,”HBS(é‘El 5 ’JTJO))
[(k—1)/2] [(k—1)/2] [(k—1)/2] (k—1)/2]
e (T (@ (52 3 (55 )
O @ () S () )
- (O™ () T () )
() R (5 )
) )G (-)

When k is odd, this simplifies to

nFtn—2— (g)k;l <(n+1) (nTJrz)k;—2>

and when k is even, this simplifies to

tenma- ()7 (2552) (n(252) T -0).

We have shown that the merging of the two herringbone arrangements, the smalls and the bigs,
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gives the spread of:
h—1-n () -1), if 7 is odd,

nf+n—2— (%)T <(n+ 1) ("T"'Q)T —2), if n is even, and k is odd,

[s

k=2

nf4+n—2-— (%) 2 ("72) (n ("TQ)TZ - 1) , if both n and k are even.

However, we cannot exactly merge the two herringbone arrangements. We now present an
algorithm that combines the two arrangements and preserves the spread calculated for the merging.
For the case of 2-dimensional matrices, the lower bound and the merging bound coincide; thus, the

bounds are tight and the algorithm is optimal.
Algorithm HERRINGBONE:

1. Fill the initial diagonal half of the matrix (i1, ..., ig), Z§:1 i < [k%] up to and including the
bisecting hyperplane perpendicular to the main diagonal with the herringbone arrangement

for the minima sequence.

2. Fill the rest of the matrix with the herringbone arrangement for the maxima sequence, skip-

ping the cells already filled.

Theorem 2 HERRINGBONE produces an arrangement of a k-dimensional cube with dimensions

of size n with the spread of
nf—1—-n (("Tl)kfl - 1) , if n is odd,

k-1

nkf4+n—-2-— (%) > ((n—i— 1) ("72)T —2), if n is even, and k is odd,

k-2
nk4+n—2— (%)T (”T"'Q) (n ("TH) 2 — 1) , if bothn and k are even.
Proof. We shall assume for simplicity that n is odd (for an n even the argument works in
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Figure 2.6: The pattern created by the algorithm in (a) two and (b) three dimensions. The shaded
part is filled with the herringbone arrangement for the smalls sequence, the other half is filled with
the arrangement for bigs sequence.

Figure 2.7: Dividing 3-dimensional matrix into 8 orthants. Thick lines show the parts where the
border values come from the Herringbone arrangement for the minima sequence.
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a similar way.) We use k axes-parallel hyperplanes to divide the matrix into 2* orthants. Each
hyperplane cuts one coordinate into half. We include the dividing hyperplane in both orthants
it separates. (For k = 3 see Figure 2.7.) The first orthant containing the coordinate (0,0, ...,0)
lies entirely within the smalls arrangement, and the last orthant containing the largest coordinate
(n—1,n—1,...,n—1) lies entirely within the bigs arrangement. Any line in the arrangement lies in
two of the 2% orthants. All central lines lie within the first and the last orthants. The spread in these
lines is exactly the maximum difference between the smalls and the bigs herringbone arrangements,
as calculated above. We show that the spread in any other line does not exceed the spread in the
central lines.

Besides the central lines, there are three other types of lines:

(a) lines that do not cross the bisecting hyperplane separating the smalls and the bigs arrange-

ments,

(b) lines that cross the bisecting hyperplane and the endpoints are neither in the first nor the

last orthant of the cube,

(c) lines that cross the bisecting hyperplane and one of the endpoints is either in the first or the

last quadrant of the cube.

If a line does not cross the bisecting hyperplane, then either its smallest number lies in the first
orthant or its largest number lies in the last orthant, since these are the only orthants that do not
have the bisecting plane cutting through them. Without loss of generality, consider the case where
the line lies completely in the smalls arrangement half and its smallest number lies in the first
orthant. Then the smallest number in the lines is at most |n/2|* away from the smallest number
in the parallel central line, while its largest number is at least |(n/2)¥| — |n/2|* away from the
largest number in the central line. That is, the difference between the large‘st numbers is greater
than the difference between the smallest numbers in the two lines. Thus, the spread in a line of
type (a) is not greater than the spread in a central line.

The smallest number in a line of type (b) does not lie in the first orthant; therefore, one of the
coordinates of the smallest number is greater than [n/2]. One of the properties of the herring-

bone arrangement is that the values in any line increase in the direction of increasing coordinates.
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Therefore the smallest number in the line is greater than the smallest number in the parallel central
line. Similarly, the largest number in the line is less than the largest number in the parallel central
line. Thus the spread in the line, is less than that in the parallel central line.

We now consider a line of type (c). Without loss of generality, we assume that the smallest
number in the line lies in the first orthant. Thus the largest number is not in the last orthant, since
all the fixed coordinates of the points on the line are less than [n/2]. Recall that the values in a
line of the herringbone arrangement increase in the direction of increasing coordinates. Therefore,
both the smallest and the largest numbers in the line are less than those in the parallel central line.
We show that the difference between the central smallest number and the smallest number in the
line is at least the difference between the largest numbers; thus, the spread in the line is no greater
than the spread in the central line. Moreover, we show that this is true for any two lines of type (c)
that differ in a single coordinate; that is, the spread in the line closer to the central is at least the
spread in the other line. Let a; and a;41 be the minima in these lines, and b;, b;+1 be the maxima,

t < |n/2|. Let Corner(k,t) be the number of cells cut off the corner of size ¢t of a k-dimensional

cube. Then

apy1 —ap < (t + 1)k — tk
and
bir1 — by

z(n—t)k—Corner(k (M (t+1))k> ((n—(t+1))'c comer<k,(H ))k))
= (=" = (n—t—1)" = (Corner (k, (|5 ]| —t=1) k) = Corner (k, (|5 | - ) ¥)).

Notice that

ig—2
Cornerkt)—zz Z'Lk 1—(t+k_1>

11=1 g Tk_1

therefore,
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bt b > (n—t)k—(n—t—l)k—<<(L%J_t)k_k+k_1 _ (L%J—t)k+k—1)>

Thus,

(be+1 —be) — (at+1 — ar)

>m—t)f—(n—t—1)F— <<([%J _,:)k_l) - (([%J _t,-:l)k_l) — ((t+ 1)k — k)
(=) — (=t — 1)F) — ((t+ 1) — tF) — (((L%J _kt)k_l) _ ((L%J —t;—l)k—l))

t< [gJ , therefore ((n — t)* — (n—t — 1)¥) — ((¢ + 1) — t5) > 0

<(L%J - )k—1> < (([%J —t;rl)k—1>’ therefore — <([%J —t;rl)k—l) >0
Thus,

(be+1 —be) — (az+1 — ar) > 0.

That is, the largest numbers increase faster than the smallest numbers in lines of type (c) as they
get closer to the center. Therefore, the spread in a line of type (c) is not greater than the spread
in a central line.

We have shown that the maximum spread is achieved in the center lines and is as calculated

above. 0O

Corollary 3 HERRINGBONE produces an arrangement of an n by n square with the spread of

n(n+1)
2

— 1.
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This upper bound on the spread of an n by n square matches the lower bound given in Corollary
2. Therefore, for a square, the bounds are tight and the algorithm HERRINGBONE is optimal.
In general, for a completely-filled k-dimensional cube the spread is between the lower bound

LB and the upper bound UB, where

e e

ok

and

b - 1-n (4 -1), if n is odd,
UB={nttn-2-(2)7 <(n+ 1) (n42)"F —2> . ifnis even, and k is odd,

k=2

nf+n—2— (%) 2 ("TQ) (n ("72)% — 1) , if both n and k are even.

\ 7

This means that in a multiple description system with all channels of equal capacity the distor-
tion in case of failure of a single channel is between LB and UB. We address the case of failure of

multiple channels in the next section.

2.1.2 Arbitrary Number of Channel Failures

In the previous section we have obtained the distortion in a multiple description system with equal
capacity channels for the case of failure of a single channel. We now consider the possibility of
failure of more than one channel. That is, for £ channels, we are concerned with the distortions
Dy, 1 through Dyx_4 in the rate-distortion tuples (logn, ...,logn;0, D1, ..., Dg, Dgy1, ..., Dok _5). In
the number arrangement domain, we are concerned with designing an arrangement that minimizes
the spread in any slice of any dimension.

Notice, however, that the herringbone arrangement maximizes and minimizes the smalls and

bigs sequences, respectively, for any slice. Thus we can use the same construction for the algorithm.
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The maximum error guaranteed by the algorithm in case of [ channel failures is

i i A [ I O ) - R i R

(k-2 [(k—1)/2] ! (k-)/2] [(k-1)/2] !

which if n is odd, equals

n+1\*" (n+ 1) + (n—1)!
nk—1—<< 5 ) —1) 9 )

and if n is even, equals

kg <(g)f’°"1 (;;2)’ ((n;z>[’“z‘1 _1) . (%)’ ((g)L’HJ _1)+
G ) () (@)

This means that in a multiple description system with all channels of equal capacity the distor-

tion Dy is at most as calculated above with [ being the number of 1s in the binary representation

of t.

2.2 Optimal Hamming Graph Bandwidth

In the previous section we considered the setting of no redundancy communication with complete
information loss channel failure. We derived upper and lower bounds on the information distortion
for that problem for the case of equal channel capacities. We have noted that when restricted to only
one channel failure, the problem is equivalent to the bandwidth optimization problem of Hamming
graphs. In this section we present a technique that provides a lower bound for the bandwidth of
the Hamming graph with arbitrary clique sizes (arbitrary channel capacities in the communication
problem). The technique also suggests an algorithm which provides an almost matching upper

bound and is thus nearly optimal. The minimal bandwidth is

ni [[ni
B(Kp, x Ky %+ x Kn,) = O(BEE) x [[ 5) ~ 5222,
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where B(K%) = f;ol (Lt;2 J) is the bandwidth of the product of k 2-cliques. Both the lower and
upper bounds are stronger than the ones derived in the previous section.

The formal statement of the channel problem is the following. Given k channels of capacities
log ny,logns, ...,logng, we need to create and encoding-decoding pair for sending numbers up to
Zle log n; bits long in a way that minimizes the maximum absolute difference between the sent
and the received numbers in case of one channel failure. All the information sent over a channel
that has failed is assumed to be lost. In the setting of graph bandwidth, we need to find an optimal
labeling that minimizes the bandwidth of K,, x Ky, X --- X Ky,. Again, we will represent both
problems as the number arrangements of {0---[[n: — 1} into an ny X ng X - -+ X ng matrix in a
way that minimizes the maximum difference between the largest and the smallest number in any
line — a full one-dimensional submatrix. We first show a lower bound for the problem and then
present an algorithm that achieves that lower bound with a small additive factor. We conjecture,
however, that the algorithm is optimal and the lower bound can be tightened slightly. After giving
the fundamental lemmata we demonstrate the approach for the two-dimensional case, where we
achieve a tight lower bound and give an optimal algorithm, and then generalize it to arbitrary
dimensions.

Recall, that the spread of a matrix is the maximum of the differences between any two numbers
in any line. First, we note that the lower bound on the spread for any line is the lower bound on
the spread in the entire matrix, therefore the maximum of the line bounds is also a lower bound for
the matrix spread. Thus we can deal with one line at a time. We then restrict our attention to a
special kind of arrangement showing that this restriction does not eliminate optimal arrangements.

Then for these arrangements it is easier to find a lower bound on the spread in any line.

Definition 2 An arrangement is monotonic if the values in any line ascend with the increase of the

changing coordinate. That is, an arrangement A is monotonic if for all0 < iy, j; < my—1,1<s<k

(t#£s— i =7t) Nis < Js) = ATy ey lsyeny i) < A(J1y eey Ty -oes Jk)-

Lemma 2 Given any arrangement of any set of ning - - - ng numbers, sorting it to become mono-

tonic one coordinate at a time, one line at a time, does not increase the spread. That is, for any
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Figure 2.8: Sorting the values within the rows causes the spread in columns to increase to d; — cs,
occurring now in column j. Before sorting, d; was in column ¢ and ¢s; was in column s. Shaded are
the ¢’s less than ¢; but not equal to ¢; and d’s that are less than d; and not equal to d;. Note that
necessarily s < t, but j can be any column relative to s and ¢.

arrangement A,

spread(sorted(A)) < spread(A).

Proof. We first show that given any arrangement, sorting the numbers to become monotonic
in one coordinate does not increase the overall spread. It is obvious that rearranging the numbers
in any way within the same line does not change the spread in that line, thus sorting within a
coordinate does not change the spread in that coordinate. Suppose the spread has increased in
another coordinate. The situation is illustrated in Figure 2.8. Let the maximum spread in that
coordinate after sorting be d;—c, appearing in line j (where d; was in line ¢ before the rearrangement,

and ¢, was in line s). Then

|di — ¢t < di — ¢, thus ¢s < ¢, and

|ds — cs| < dy — ¢s, thus dg < dy.

Then there are j — 2 (since d; and ¢s are now in line j) d’s less than d; and not equal to ds. There
are 7 — 1 ¢’s less than ¢; and not equal to ¢;. Therefore, by the pigeonhole principle, there exists
¢p < ¢, that was paired up with d,, > d; before the rearrangement. But then d, —c¢, > d; —c,, which
contradicts the assumption that the spread increased after sorting. Thus sorting in one coordinate
does not increase the spread in any coordinate.

Gale and Karp [20] show that if the arrangement was monotonic in any coordinate then it will

remain so after the numbers are sorted in any other coordinate. Thus the matrix can be sorted to
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have a monotonic arrangement one coordinate at a time, one line at a time, without increasing the
spread. O

This allows us to restrict attention to monotonic arrangements. From these arrangements we
can more easily find a general structure of the lower bound on the spread.

Consider some number z in a cell of a monotonic arrangement. The k axis-parallel hyperplanes
that pass through that cell divide the matrix into 2* orthants. For any monotonic arrangement of
any set of ning - - - ng numbers, all the numbers in the orthant containing the coordinate (0,0, ..., 0)
are necessarily less than z, and all the numbers in the orthant containing the last coordinate are
necessarily greater than z. Besides the first and the last orthants, the other 2¥ — 2 orthants may
contain both numbers less than and greater than x. Any line passing through x necessarily has
both numbers less and greater than x by the nature of monotonicity of the arrangement. However

any other line can be filled entirely with only smaller or larger numbers.

Lemma 3 For the optimal arrangement A of numbers 0, ..., Hle n;—1 i anng X ng X ... X ng
matriz, there exists a line (i1,42,...,%j—1,%,%j41,...,%) (all the coordinates but the jth are fized) in
that arrangement and there exists a cell in that line (41,12, ...,%;, ..., %) such that the spread in that
line is at least the volume of any minimal set of orthants (as defined by the cell) that separates
between the orthant containing the cell (0,..,0) (the first orthant) and the orthant containing the

cell (n1 — 1,...,ni — 1) (the last orthant).

Proof. First, we will note several facts:

e Removing any minimal separating set of orthants leaves only two connected sets of orthants:
the set containing the first orthant (we shall call this set “small” orthants) and the set

containing the last orthant (“large” orthants).

e Since the set is a minimal separating set, any cell within any of the separating orthants is
contained in lines that intersect the “large” orthants and in lines that intersect the “small”

orthants.

e No line passes through both the “small” and “large” orthants, since otherwise they would

not be separated.
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Now we are ready to prove the lemma. Let Va1 (cell) be the volume (number of cells) of the
“small” orthants, Visge(cell) be the volume of the “large” orthants, and Viep(cell) be the volume
of the separating orthants. Note that Vimau + Vsep + Viarge = Hle n; = V. For the optimal
arrangement A let | = (iq,42, ..., %, ..., ;) be the line with the largest spread (that is, the spread of

the arrangement is the spread in this line). Here are the two possible cases:

e there exists a cell (41,42, ...,j,...,i) such that the smallest number in the line, min;, is at
most Vymau(cell) (for any separating set defined by the cell), and the largest number in the

line, max;, is at least V' — Vjgrge(cell). Then

spread(4) > max; — min

Y

V- ‘/large(cell) - Vs‘mall (Cell)

= Viep(cell)

and the statement of the lemma holds.

o for all cells in the line, for some separating set for each cell, either max; < V — Vjgpge or

min; > Vipan.

Let i; be such that Vi, as defined by (i1, ..., %j, ..., i) is the smallest. Without loss of generality
we assume that min; > Vipau(it, ..., 45, ..., %), while max; can be either less or greater or equal
to V — Viarge (415 ey b5, vy )

Since min; > Vypmau(it, .., 4, ..., i) there must be at least one element less than min; in the
separating orthants defined by the cell (i1,...,%;,...,9%). Suppose there are s elements that
are less than min; total in the separating orthants. Then there are at most s — 1 elements
greater than min; in the small orthants. Each of the s elements in the separating orthants
must be in a line that intersects large orthants (as defined by the cell (i1, ..., %;, ..., 4)). Since
max; — min; is the largest spread, all elements in those lines must be less than max;. Let
there be [ of those elements. One possible way this can happen is shown in Figure 2.9. We

use a switching idea similar to Fishburn, Tetali, and Winkler [19]. Suppose there are t > [

elements total less than max; in the large orthants. Then max; <V — Vjg,g +t. Replace
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{n.n.o0)

Figure 2.9: Areas (1) and (6) are the small orthants, areas (4) and (3) are the large orthants, and
the uncolored area, with (2) and (5), are the separating orthants. The indicated min and max are
the minimum and maximum in the line . (1) are the numbers less than min; in the small orthants.
(2) are the s numbers less than min; in the separating orthants. (3) are the / numbers less than
max; in the large orthants. Those are the intersection of the lines that have a light red minimum
with the large orthants. (4) are the numbers greater than max; in the large orthants. (5) are the p
numbers greater than max; in the separating orthants. (6) are the matching numbers greater than
min; in the small orthants.

the largest of those t elements [; with max;, then replace the next largest element lo with [y
and so on, trickling down until we get to the smallest of those ¢ elements. Put that element
instead of max;. We have not violated the monotonicity. We have increased each of the ¢
elements by at least 1 and decreased max; by t. Therefore the new max; <V — Vg and all
the elements in the large orthants are greater than max;. Similarly, we can replace the largest
of the s small elements, s1, with min;, then replace the next largest element so with s1, and
so on until we either reach the tth largest or the smallest of the s elements. We replace min,
with that element. We have increased each of the s elements by at most 1, so the relative

spread has not increased. The minimum min; has decreased by at most ¢, so the spread in
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line [ has not increased.

If s > t then we have stopped after replacing ¢ of the s elements and there are still some
elements less than the new min; in the separating orthants in the lines with elements greater
than the new max;. We have not increased the spread in line [ or anywhere else, but the
spread in those lines is greater than the new max; — min; which equals the old spread since
both the minimum and the maximum decreased by the same amount. This is a contradiction

to the fact the [ was the line with the maximum spread.

If s < t then there are no elements less than min; in the separating orthants and the new
ming < Vsmau. If there are no elements greater than mazx; in the separating orthants, then
max; — min; > Viep, which means the initial spread was also at least Vi.p, which is a contra-
diction. Suppose there are p elements greater than the new max; in the separating orthants.
Those elements must be in lines that intersect small orthants and the elements in the small or-
thants in those lines must be greater than the new min;. Suppose there are q of those elements.
We can perform the same replacement procedure and if p > g we will get the same contradic-
tion as in case of s > t. Otherwise, p < g. Since there are no elements less than the new min;
in the separating orthants and there are g elements in the small orthants that are greater
than min;, then the new min; = V1 — q and therefore the original min; = Ve — q + s.
Similarly, since there are p elements greater than the new max; in the separating orthants
and no elements less than it in the large orthants, the new max; = V — Vjgrge — p and thus
the original max; =V — Vigrge — p + t. So the original spread is the difference between the

original max; and min; which is

(V_‘/large_p+t)_(Vsmall_q+3):Vsep+q_p+s_t-

Since p < q and s < ¢, the original spread was at least Vi, which is, again, a contradiction.

Therefore, the spread in an optimal arrangement is at least Ve, for any minimal set of the

separating orthants as defined by some cell in the maximum spread line.

O

We have proved that the spread in an optimal arrangement is at least the volume of any minimal
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Figure 2.10: Correspondence between the orthants and a hypercube in 3 dimensions. The small(z)
and large(z) numbers meet only if a line passes through two adjacent orthants.

set of orthants separating between the “small” and “large” orthants, for some cell in the largest
spread line. Therefore, there is a cell such that the spread is at least the volume of the largest
minimal separating set of orthants, the one that has the largest number of orthants. In fact,
if we associate a super vertex with each orthant and have an edge between any two vertices if
the corresponding orthants are adjacent, then we get a k-dimensional hypercube representing the
orthants. Figure 2.10 shows this in 3 dimensions. By definition of bandwidth, the largest minimum
separating set of orthants is exactly the bandwidth of the k-dimensional hypercube. So for an
optimal arrangement, for any line in the arrangement, the spread is at least the minimum over all
cells of the volume of the bandwidth-separating set of orthants. Thus the spread in the optimal

arrangement is at least

max { min { min {volume of the separating set of orthants}}}.
all lines cells in a line = separating set
of B(xk) orthants

Using this lemma we can calculate the lower bound on the spread in the optimal arrangement.
We will first demonstrate our approach in two dimensions and then generalize is to arbitrary number

of dimensions.
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Figure 2.12: Spread in a row as the volume
of the unfilled separating orthants (as de-
Figure 2.11: The location of numbers less pare & .. (
3 ter th ) 1 value i fined by the cell (i1,42)). To minimize the
an gtrea' er than a gl\;en cell value m a spread, the larger of the top and bottom
monotonic arrangement. parts of the column is filled.

2.2.1 Two Dimensions

Theorem 3 Without loss of generality assume n1 < na. The spread in any arrangement of an nq

by no matriz is at least

1
w — 1 if nq is odd,
1
% —1 if nq is even.

Proof. In two dimensions, there is only one set of orthants separating between the first and the
last orthants, which is the other two of the four orthants. This is also consistent with B(K2) = 2.

Thus the spread in a two dimensional arrangement is at least

max { min  {area of the two separating orthants}} =
all lines cells in a line

max { min  {area of the two separating orthants}},

max all rows cells in a row

max { min {area of the two separating orthants}}
all columns cells in a column

Let 0 <141 <n3; —1,0< i3 <ng— 1. The lower bound on the spread in an n; by ns matrix is
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(see Figure 2.12 for illustration of the calculations)

max

max {min{(il + 1)(nge —i2) + (n1 —41)(d2+ 1) — 2 — max {iy, ng — i1 — 1}}},

TOW %1

12

max {mln{(zl + 1)(’)12 — '1,2) + (n1 — il)(iz + 1) — 2 —max {iz, ng — 19 — 1}}}

col ig

The spread in a line is a symmetric unimodal function in the free coordinate, with the maximum

occurring in the middle, thus we separate at the half point and evaluate at endpoints:

= max\

ning n2
ni even = T—lgnl[T]—l =

11 < [%] -1 ig—_:>0 (’il =+ 1)n2 =+ (’I’Ll — il) — (n1 — ’il) -1
max — )
row > [%] —1 iy=ny—1 (’il + 1) + (n1 — i1)712 —11—2

19 < [n—;] -1 il__:>0 (ng —i2) +ni1(ia+ 1) — (ng —da) — 1
max _
col i 19 > ["—22] —1 i1=n1-1 nl(ng — ig) + (iz + 1) — 39— 2

’i2>[ —|—1=>’I’Ll

ilg[%]—1 = (i1 +ng — 1
ST : ;

ng odd = mlmtl) 4

ng even = M2 —1

ni odd = W_lznl[n?_z}_l = (n1—21)n2_1

ir<[B]-1= ni(ia+1)—1
53 (ng —i2) —

1)

Thus in case of n; odd the spread in the matrix is at least (n; + 1)na/2 — 1 and if ng is even

and ng is odd then the spread is at least nj(na + 1)/2 — 1. We will present arrangements that

achieve these bounds thus the lower bound is sharp. We now show, however, that the lower bound

of ning/2 — 1 for the case of both n; and ng even is not sharp.

The minimum spread for the column ny/2 — 1 is achieved when i; = 0, while the minimum

spread for the column ny/2 is achieved when i; = n; — 1. All the arrangements consistent with
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ni—1

Figure 2.13: Minimum spread for the col-
umn ng/2 — 1 occurs when ¢; = 0. The
elements in the the light gray area are less
than the minimum in the column, and the
elements in the dark gray area are greater
than the maximum.

0 3 ng —1
0 °
n -1 * —

Figure 2.14: Minimum spread for the col-
umn ngy/2 occurs when 43 = n; — 1. The
elements in the the light gray area are less
than the minimum in the column, and the
elements in the dark gray area are greater
than the maximum.

both spreads have the form shown in Figure 2.15. However, it is not difficult to see that for any
arrangement of this type the spread in any row ¢; passing through the areas 2 and 5 the spread is

at least
n2 (n1 4+ 1)ng
2 a 2

N .
(ng — 11)72 + (i1 +1) —1.

The spread in rows passing through areas 1 and 3 or 4 and 6 is at most the spread in any column,

which is at least
ning 1< (n1 + 1)n2 B

2 2

1.

Similarly, for any first coordinate i1, Figure 2.16 shows all the arrangements consistent with
the spread achieved in the column ny/2 — 1 with the first coordinate being ¢; and the column ny /2
with the first coordinate being n; — ¢;. Again, for any row passing through the areas 2 and 5 is at

least W — 1. The spread in columns is at least

(nl—Z1)72+Zl(?2+1)—1 = +i1—1

The best spread is achieved when there is no areas 2 and 5, that is, i3 = n1/2. The row spread
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Figure 2.16: Arrangements that maintain
the spreads achieved for first coordinate
i1 in column ny/2 — 1 and first coordinate
n1 — 41 in column ny/2. Since the spread
in a line is a symmetric unimodal function
with the maximum for the middle coordi-
nate, those spreads are equal.

Figure 2.15: Arrangements that maintain
the minimum spreads in the the two cen-
tral columns. The areas are filled mono-
tonically in the order shown in the figure.

now is at most the column spread for any row and the column spread is at least

nny  m_ g mnetl)
2 2 2

(n1+1)n2 1

—_— 2 .

Thus, for any monotonic arrangement with both n; and na even the spread must be at least

ni (’ng + 1)
2

— 1.

We now present an arrangement that achieves this lower bound and is thus optimal. The

algorithm is slightly different for odd and even n; therefore we will state them separately.

Theorem 4 The following algorithm produces an arrangement of spread

ni (722 + 1)
2

-1

if n1 < ng and nq is even and is thus optimal:

Fill consecutively, left to right, the upper half-columns of the matriz, then fill the lower half-
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columns of the matriz in the same manner:

1. Fill consecutively, column by column, the upper half of each column is.

That 1s, fill the cells

. . ni .
(0,22), (1,12), ceey (? — 1,22)
with numbers
A5 T ()] . ni
—., 10— +1,... 1)— — 1.
g iag + 1 (2 +1)5

2. Fill consecutively, column by column, the lower half of each column is.

That is, fill the cells

ny . ni . .
(Eazz)a (7+1a7’2)7 R (n1_177’2)
with numbers
nina . N1 nin2 . m nina . ni
— —, — —+1,...,—= 1)— — 1.
5 +1227 2 +Z22+ ) D +(7’2+)2

The arrangement is shown schematically in Figure 2.17.

The proof is simply an algebraic verification of the spread in all the rows and columns.
Proof. The difference between the largest and the smallest number in any column iy is the

difference between the elements in the last row and the first row of the column:

nin . n .n nin n ni(ng +1
(12+(22+1)—1—1) L_mm m o metD

The difference between the largest and the smallest number in any row ¢; is the difference

between the elements in the last column and the first column of the row:

ny . n1 .\ _ mnina—1) ni(na+1)
(("’2 3 “1) - <07 Hl) == 5 <4 ~t

Thus the overall spread of the arrangement is n1(ng +1)/2 — 1, which is the lower bound for

the case of ny even, and the arrangement is optimal. 0
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Figure 2.17: The arrangement in case of Figure 2.18: The arrangement in case of

71 even. n1 odd.
Theorem 5 The following algorithm produces an arrangement of spread

(n1 + 1)n2

-1
2

if n1 < nag and ny is odd and is thus optimal:

1. Fill consecutively, column by column, the upper |n1/2] cells of columns O through [ng/2] — 1.

That is, fill the cells

0,i2), (1,42), ..., (L%J ~1,4p)

with numbers

i [%Jm L%J+1,...,(i2+1) [%J 1.

2. Fill consecutively the left [na/2] cells of the (|n1/2])th row.
That s, fill the cells

with numbers

FIELEIE ] ) -2

3. Fill consecutively, column by column, the upper |n1/2]| cells of columns [na/2]| through na—1.
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That 1s, fill the cells

with numbers

g R P i R P R bk

. Fill consecutively, column by column, the lower |n1/2| cells of columns 0 through [na/2] — 1.

That is, fill the cells

with numbers

R L b R e ol e e b e P e

. Fill consecutively the right |na2/2] cells of the (|n1/2])th row.
That is, fill the cells

with numbers

(oo 1) 2 21 G [2T) 2 2] s o [2T) 2 .

. Fill consecutively, column by column, the lower |n1/2| cells of columns [ng/2] through na—1.

That is, fill the cells
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with numbers

(ng + i2) [EIJ +ng2, (ng + i2) lglj +n2+1,...,(no+i2+1) [?IJ — 1+ no.

The arrangement is shown schematically in Figure 2.18.

The proof is algebraic and is similar to the case of n; even.
Proof. The difference between the largest and the smallest number in columns 0 through

[na/2] — 1 is the difference between the elements in the last and first rows of that column ¢s:

(@G- (Gl [3]) -215] = [Glmr 5]+ [5]
< (l%JT[%M%—l

1
2 ’

since n1 < no.
The difference between the largest and the smallest number in columns [ng/2] through ng — 1

is, again, the difference between the elements in the last and first rows of that column és:

(oneie ] 1) - s )+ [2]) = 3] = 3]+ ]

which is the same as in the other columns, and thus less than (n; + 1)ng/2 — 1.
The difference between the largest and the smallest number in rows 0 through |n;/2 — 1| is the

difference between the elements in the last and first columns in that row %1:

(a0 2] 2] ) = 02 ) = 2 ram 4 2] < 252

The difference between the largest and the smallest number in rows |n1/2| + 1 through n; — 1

is, again, the difference between the elements in the last and first columns in that row 4;:

((2n2 -1 L%J + ng +i1)—(0 L%J + [%J ng + [%1 +’i1) = [%J (n2—1)+[%J < 7(7“ —Zl)ng_
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The difference between the largest and the smallest number in the |n;/2]|th row is

(e TN 5= ) =T[5 =ma ([ +0) 1= 52

Thus the overall spread of the arrangement is (n; + 1)na/2 — 1, which is the lower bound for
the case of ny odd, and so the arrangement is optimal. 0
We have shown that the proposed algorithm produces an arrangement with the spread that

matches the lower bound of

1
w — 1if ny is odd,
1
% — 1if nq is even,

and thus is optimal.

2.2.2 Generalization to Arbitrary Dimensions

Given a n1 X ng X - -+ X ng matrix, where n; < ng < --- < ng, the goal is to arrange the numbers
{0,...,][ni — 1} in a way that minimizes the maximum difference between the largest and the
smallest number in any line of the matrix.

Using techniques very similar to the two-dimensional case, it is possible to show a lower bound

of roughly
n;
B(Kéc) X H 57

where B (Ké“) is the bandwidth of the product of k& 2-cliques, and give an optimal arrangement that

achieves it.

Theorem 6 The spread in any arrangement of an ni X - - - X ng matriz, where ny < ng < --- < ng,

18 at least
k
B(K” [”—J
(K3) Xil;[l B

Proof. By Lemma 3 the spread in the optimal arrangement is at least

max { min { min {volume of the separating set of orthants}}}.
all lines cells in a line =~ separating set
of B(xk) orthants
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Just like in two dimensions, the smallest volume of the separating orthants for any line (1, ..., *, ..., %)
occurs either for the cell 4; = 0 or 7; = n; — 1, depending on which of the coordinates i;,¢ # j
are at most |n;/2| and which ones are greater. Thus the maximum over all lines of the mini-
mum volume of the separating orthants is achieved for one of the extreme cells of the central lines

(In1/2], [n2/2], ..., *, ..., [nx/2]). This in itself immediately gives a lower bound of

B(KY) x ﬁ [%J
=1

The optimal arrangement in k& dimensions is constructed similarly to the 2-dimensional one.

Theorem 7 The following algorithm produces an arrangement A of spread at most

in case n; = min; {n;} is even and is thus nearly optimal:

1. Divide the matriz into 28 orthants by dividing each coordinate n; into two halves of size |ni/2]

and [n;/2]
2. Fill the first orthant (containing the coordinate (0, ...,0)) in the following way:

(a) A(0) = (0,...,0)
(b) The 1st coordinate of A(m) is the 1st coordinate of A(m — 1) plus 1 modulo |n1/2].

If the ith coordinate becomes 0 then the (i + 1)st coordinate increases by 1 modulo

[nit1/2].

3. Fill the orthants one after another in a way similar to the first orthant. The orthants are filled
in the order corresponding to the optimal numbering of K% [26]: each step number a neighbor
of the smallest already numbered vertex, taking care that the mazimum bandwidth difference
occurs between the vertices in K¥ adjacent along the ny coordinate. To ensure that, after
numbering the vertex corresponding to the first orthant with number 0, number the orthant

adjacent to it along the (k — i+ 1)th coordinate with number i.
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Figure 2.19: Schematic representation of 3-dimensional arrangement in case of nj even.
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The algorithm is shown schematically for 3 dimensions in Figure 2.19.

Proof. Any line in the arrangement is contained within two orthants, therefore the spread in
any line is the difference between the labels of the corresponding orthants times the volume of the
larger-volume orthant plus the difference between the smallest and the largest number of the line
within the smaller-volume orthant. Notice that for any two orthants with the label difference less
than the bandwidth of the & dimensional hypercube the spread in the line passing through them
is at most the bandwidth times the volume of the larger-volume orthant. Therefore the maximum
spread occurs in a line passing through two orthants with the label difference equal to the bandwidth
of the k dimensional hypercube. By construction all such orthants align in the direction of the first

dimension, that is along the 7 coordinate. Thus the spread in that line is

Theorem 8 The following algorithm produces an arrangement A of spread at most

B(Kp, x -+ x Kn,) + B(KE ) [%J 1:[ [%-‘

in case ng = min; {n;} is odd and is thus nearly optimal:

1. Divide the matriz into 28 orthants by dividing each coordinate n; # ny into two halves of size
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|ni/2] and [n;/2]. For ni use the coordinates i1 < [n1/2] —1 and i1 > [n1/2] — 1 to define

the rest of the orthants. The submatriz ([n1/2] — 1, %, *,...,*) is left out.

2. Fill the first orthant (containing the coordinate (0, ...,0)) in the following way:

(a) A(0) = (0,...,0)
(b) The 1st coordinate of A(m) is the 1st coordinate of A(m — 1) plus 1 modulo |n1/2].

If the ith coordinate becomes O then the (i + 1)st coordinate increases by 1 modulo

[nit1/2].

3. Fill the orthants one after another in a way similar to the first orthant. The orthants are
filled in the same way and the same order as in the case of n1 even up to and including the

small(z) orthant corresponding to the first edge in the hypercube that gives the mazimum

bandwidth.

4. Recursively fill the small(x) half of the k — 1-dimensional submatriz ([n1/2] — 1, %, *,...,%)

with the optimal arrangement.

5. Fill the orthants up to the large(x) orthant that corresponds to the other vertex on the first

edge in the hypercube with the mazimum bandwidth.
6. Filling the rest of the orthants in the same manner as in case of n1 even.

Proof. Similar to the case of ny even, each line passes through either two orthants above the
submatrix ([n1/2] — 1,%,*,...,%), below that submatrix, through an orthant above, an orthant
below, and the submatrix, or lies entirely within the submatrix. It is easy to see that the maximum

spread occurs in a line of the last type and is therefore,

B(Kp, x -+ x Kn,) + B(KE ) [%J [%-‘

=2

Thus we have shown that the bandwidth of a Hamming graph K,, X --- x K, is between the
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lower bound LB and the upper bound UB, where LB and UB are as follows:

k
LB = B(K§) x[] L%J
=1
UB - B(KH) x [ [%]% -1 if n1 is even

B(Kp, X -+ % Kn, ) + B(KF) | % | [1;— [%] if n1 is odd

Notice, if all n;s are even, then the difference between the LB and UB is n1/2 — 1, which is very
small compared to the order of magnitude of the LB of O((n1/2)*). The difference between LB

and UB is largest when all n;s are odd. Let all n; be equal n. Noting that

while the lower bound is approximately

n

LBr ——.
2vk—1

Thus, the difference between LB and UB in case n is odd is the order of O(n*~1). Therefore,
overall, the upper and lower bounds nearly coincide in infinitely many points. We believe that the
upper bound is the correct bandwidth of the Hamming graph and the lower bound needs to be

tightened.

2.3 Average Error of Distance-1 Failure - Wirelength of a Grid
Graph

In this section we focus on yet another special case of the channel communication problem. We

assume that if a channel fails then not all the information is lost, and the possible decodings are

51



within absolute distance of 1 from what was originally sent over the channel. We are interested
in minimizing the average error. As was mentioned in the introduction, we can associate a graph
with each channel. The vertices of the graph for channel i are {0,...,n; — 1}, and there is an edge
(u,v) if [u —v| = 1. That is the graph associated with each channel is a path P,;, and the graph
corresponding to all k channels is a grid — a cartesian product of paths. Since we are interested in
average error, the graph optimization problem is the wirelength problem, also known as bandwidth
sum, edgesum, or linear arrangement. Thus the channel coding problem with the dictionary of size
m and a single channel failure is equivalent to determining which induced subgraphs of order m
of a Py, X Py, X ... X Py, have the smallest wirelength. Again, both problems can be represented
as number arrangements of the elements of X in a k-dimensional n1 X ng X ... X ng matrix that
minimizes the sum of differences of adjacent cells. The coordinates of that matrix in each dimension
1 can have values from 0 to n; — 1, where n; is the size of dimension 4. This is the setting that we
will consider from now on. In this section we present a solution for all n; = n and m = n*.

Recently Fishburn, Tetali, and Winkler [19] gave an optimal labeling for a two—dimensional grid
P, x P,,. In this section we suggest how their labeling can be extended to arbitrary dimensions
using the Herringbone arrangement introduced in Section 2.1.

Fishburn, Tetali, and Winkler prove that the minimum wirelength of a n by m grid, m > n > 2,

is
2(t*)% — 6nt* + 3n? + 3n — 2

mn®+n—1)—n—t* 3 ,

where t* € {1,2,...,|n/2|} that maximizes t(2t> — 6nt + 3n? + 3n — 2). The labeling that achieves
this optimum is shown schematically in Figure 2.20.

Notice, that the corner pieces of the labeling look very much like a Herringbone arrangement,
which is not a coincidence. In general, we suggest that the optimal labeling in k£ dimensions looks
as following:

Given ny X ng x - - - X n, grid, n; > n;i,1, divide the matrix into 3* pieces by dividing each dimension
into 3 parts. Fill the corner pieces using the Herringbone arrangement, recursively filling each tile
of the arrangement with the optimal labeling for the (kK — 1)-dimensional grid. Then fill in the
entire central part of the first dimension using (k — 1)—-dimensional slats that are recursively filled

with the optimal arrangement for the lower dimension. Then fill the central part of the second
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Figure 2.20: Schematic representation of an optimal labeling.

dimension, omitting the part already filled — the intersection with the first dimension, and so on.
The example for 3 dimensions is shown schematically in Figure 2.21.

We now outline the proof, following closely the proof of Fishburn, Tetali, and Winkler.

2.3.1 Monotonic Arrangements

Fishburn, Tetali, and Winkler introduce the idea of doubly-monotonic assignments — those which
increase as both coordinates increase. In Section 2.2 we gave a definition of monotonic arrangements
which is a generalization of doubly monotonic assignments to arbitrary dimensions. With this

definition, Lemma 1 from [19] holds for monotonic assignments with the same proof.

Lemma 4 Wirelength of a grid graph is minimized by a monotonic arrangement.

Thus we need to consider only monotonic arrangements from now on. It follows then that the
wirelength is fully determined by the border values of the assignment, since the sum is telescopic
in each coordinate. Only the values in cells of the form (...,0,...) or (...,n; — 1,...) appear in the
wirelength expression. The coefficient with which any value appears in the expression is [# of
n; — I’s minus # of Os in its coordinate]. Figure 2.22 shows the coefficients for each cell in a
6 X 6 X 6 arrangement.

Thus as in [19], subject to monotonicity, we are looking for arrangements with relatively small

values in cells of the k& “bigs” sides and relatively large values in cells of the other k “smalls” sides.
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Figure 2.21: Schematic representation of the suggested generalization in 3 dimensions

iy = i5=1,2,3,4 is =5

3 2 2 2 2 1] [2 1 1 -1 -1 0][-10000 1
2 1 -1 -1 -1 0] |-1 0 0 0 0 1 01 1 1 1 2
2 1 -1 -1 -1 0] |-1 0 0 0 0 1 011 11 2
2 1 -1 -1 -1 0] -1 0 0 0 0 1 011 11 2
2 1 -1 -1 -1 0] -1 0 0 0 0 1 01111 2
1 0 0 0 0 1 0 1 1 1 1 2 1 2 2 2 2 3

Figure 2.22: Coeflicients in the wirelength expression of each cell in a 6 x 6 X 6 arrangement.
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Notice that the Herringbone arrangement and its complement do exactly that.

2.3.2 Creating the Assignment

The authors of [19] use induction and case-by-case analysis to show the optimality of their assign-
ment. Generalizing the statement to arbitrary dimensions follows the same argument.

Notice that since the coefficient with which a number contributes to the wirelength depends
solely on the number of Os and n; — 1s in its coordinates, the arrangement has recursive structure.
The wirelength for a k-dimensional arrangement is made up of n (k — 1)-dimensional arrangements
and the wirelength in the fixed coordinate. For example, in 3 dimensions, for a 6 X 6 arrangement
shown in Figure 2.22; the wirelength for the entire arrangement is the sum of the 2-dimensional
arrangement wirelengths for each value of i3 = 0,1, 2, 3,4,5 plus the sum of the differences of the
values in cells (i1, 42,5) and (41, 42,0). Thus we can use induction on the number of dimensions and
assume that all (k — 1)-dimensional submatrices (x, ..., *,4;, *, ..., *) are optimal (k — 1)-dimensional
arrangements of the appropriate numbers in those submatrices.

Given such strong structure from k — 1 dimensions we get the complementarity of the arrange-

ment as a consequence. A is a complimentary arrangement if
k
A(il, ,’Lk) + A(n1 —1—41,ne—1—1%9,...,np —1— lk) = an -1
i=1

More generally, for any set of ascending numbers zg, ..., LI ni—10 the indices obey the equality

k
The index of A(i1, ..., 4) + the index of A(ny — 1 —d1,ng — L —dg,...np — L — i) = [[ i — 1
=1

This is a center-point symmetry: the arrangement is symmetric with respect to the point with the

center coordinates.

Square Grids

Let n; = n for all . We show by induction on k, the number of dimensions, the structure of the
optimal arrangement. The base case for k = 2 has been shown in [19]. For any k and n = 2 Harper

[25] gave an optimal arrangement with the wirelength of 28—1(2% — 1).
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Define P;(s) as a (t + s) x t*~! matrix whose first t* section is a Herringbone arrangement and
then s initial #*~! corners of (k — 1)-dimensional submatrices.

Let Ri(n) be Py(n — 2t) with a Herringbone arrangement of the next numbers (n — t)t*~1
through nt*=! — 1 in order, starting in the corner of the matrix and maintaining monotonicity.
A corner of the matrix is a cell with all the coordinates being either 0 or n; — 1. Let the corner
have the coordinates ¢; = {0,n; — 1}*, then the smallest number in the Herringbone addition of

Ry(n), (n —t)t*~1, is in the cell with each coordinate i; = max {0, c; — t}, and the largest number,

ntf~1 — 1, is in the cell with all the coordinates i; = max {t — 1, ¢;}.

Lemma 5 Suppose n > r > 1 and assume without loss of generality that if the arrangement
has a t* Herringbone arrangement in its coordinate-wise smallest corner, with 1 < t < r, then
A(t,0,0, ...,0) = t* (due to monotonicity, t* must be in one of the cells of the form (0, ...,0,t,0, ...,0)).

Then every optimal arrangement includes a Py(r — 2t) for some t = 2,3, ..., |r/2].

Proof. We prove the lemma by induction on r. The first valid value of r is r = 3, since
1<t < |r/2]. In this case t = 1 and P(r — 2t) is the two cells (0, ...,0) and (1,0,...,0) with 0 and
1 in them, correspondingly. Similarly, for r = 4.

Assume that the conclusion of Lemma 5 holds for arbitrary » > 4. As we consider cases for
r + 1, we repeatedly use the switching technique of [19]: “If the cell that should hold ¢ is currently
occupied by p and p > ¢, increase each of the entries ¢,c+1,...,p—1 by 1 and enter c¢ in the position
previously occupied by p. This preserves the monotonicity of the arrangement and produces an
arrangement with smaller wirelength.” We abbreviate this statement by “replace p by ¢” and show
that it holds when it is not obvious. The induction hypothesis assumes that an optimal arrangement
for n > r includes P;(r —2t) for some 1 <t < |r/2|. Suppose that n > r+ 1, and we will show that
the arrangement also includes P;(r + 1 — 2¢t) for some < ¢ < |(r+1)/2]. Similar to [19] we consider

three different cases of the relative values of r and ¢ and prove that in each case the arrangement
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includes P;(r + 1 — 2t):

r—2t=0 = the arrangement includes P;(1)
r—2t=1 = the arrangement includes P;11(0) or P;(2)

r—2t >2 = the arrangement includes P;(r + 1 — 2t)

e r — 2t = 0. If we have a t* Herringbone arrangement then by monotonicity, t* must be adja-
cent to it in one of the cells (0, ...,0,,0, ...,0), without loss of generality, A(t,0, ...,0) = t*. By
the induction hypothesis on the lower dimension k£ the arrangement that minimizes the wire-
length for the (k — 1)-dimensional slat (t, %, *, ..., *) includes a t*~! Herringbone arrangement
in its coordinate-wise smallest corner. Therefore the slat adjacent to the initial t* Herringbone
arrangement is a t*~! Herringbone arrangement of the next t*~1 numbers t*, ..., tk 4 ¢¥=1 — 1,

This is by definition P;(1).

e r — 2t = 1. We have a t* Herringbone arrangement with one *~! Herringbone arrangement

slat adjacent to it. By monotonicity, the element tF + k=1

must be adjacent to the whole
construction either in a cell (¢ + 1,0, ...,0) or a cell of the type (0, ...,0,¢,0,...,0) (with 0 in

the first coordinate).

If t* 4+ t*~1 is in a cell of the type (0, ...,0,t,0, ...,0) then since we just want to maximize the
values of the slat that appear in cells with at least one 0 among the coordinates, we must
use the (kK — 1)-dimensional Herringbone arrangement. Therefore the slat is a (¢ + 1) x t¥—2
Herringbone arrangement. We can continue the argument in this way and we either finish
the (t 4+ 1)st layer of the the (¢ + 1)* Herringbone arrangement, which will give us Py, 1(0),
or a first element in some slat will be adjacent to the slat just finished. If this happens for
the first slat, then we have the case of t* + t*~1 in the (¢ + 1,0, ...,0) cell, and then by the
surface values maximizing argument the whole slat must be a t*~! Herringbone arrangement,
which produces P;(2) by definition. The question is, can we have part of the t**! Herringbone
arrangement and then instead of continuing to the next coordinate recursively, just have the

next element adjacent to the slat we just finished. Suppose yes, and we have (t 4+ 1)it*F—?
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for some 4 > 2 and the element (¢t + 1)#*~% is in a cell (0, ...,0,¢ + 1,0,...0) where ¢ + 1

is the ith coordinate and the entire submatrix (<t¢,..,<t,t+1,<t—-1,..,<t—1)is a
—_—

i1
(k —1)-dimensional Herringbone arrangement (which it has to be by the induction hypothesis

on k. We can replace the submatrix (<t,...,<t,¢t,< t—1,...,< t — 1), that is the next
*/
(2
slat in the k-dimensional Herringbone arrangement, with this slat and the next (¢+1

yi-2¢h—i
consecutive elements sufficient to complete the proper Herringbone slat. We have not violated
the monotonicity. We have decreased the wirelength since among the initial (¢ + 1)1tk
elements, if they where on the surface before the replacement, they will stay on the surface,
and among the next (t + 1)*~2t*~¢ elements, fewer of them will be on the surface after the

switch (by the property of the Herringbone arrangement). Thus we must have either P;y1(0)
or P, t(2)

e r — 2t > 2. By monotonicity, the element t*~!r is adjacent to the arrangement so far. There
are two cases: either it is in the cell (r,0, ...,0) or it is in a cell of the type (0,...,0,t,0,...,0).
If A(r,0,...,0) = t*~1r then the whole slat (r,<t—1,..,<t—1) is a (k — 1)-dimensional

Herringbone arrangement and by definition this is Py(r — 2t + 1).

If A(0,...,0,t,0,...,0) = t*"1r then the whole slat (< r—1,<t—1,...,<t—1,t,<t—1,..,. <
t—1) is the initial segment of an optimal n*~! (k — 1)-dimensional arrangement with numbers

th=1pr ..., t*=1r + n*=1 — 1. Notice that this partial arrangement has the same dimensions

and the same entries as a partial Herringbone arrangement of (¢ + 1)?t*~¢ and the element
(t 4+ 1)2t*=% in cell (0, + 1,...0), which has better contribution to wirelength. However, we
have shown in the previous case that even this partial arrangement is suboptimal. Therefore,

if the optimal arrangement includes P;(r — 2t) with r > 2t 4 2, it includes P;(r — 2t + 1).

The inductive hypothesis on the lower dimension k& — 1, the monotonicity constraints, and the
complimentary symmetry overall and within each k—1 dimensional submatrix fix the k-dimensional

structure of the arrangement given the initial P;(n — t) segment:

e The first nt*~! numbers in an R;(n) segment in coordinates (< n, < t, ..., < t).
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e The next n(n — 2t)t*~2 numbers in (k — 1)-dimensional recursively built slats in coordinates

(<n,tton—t—1,<t,..,<t).

e The next ntF—1

numbers in coordinates (< n,mn —lton —1,< ¢t,...,< t) in a Ry(n) like
structure: each of the corners is a Herringbone arrangement of t¥ numbers with consecutive

slats in between.

e We continue inductively. Once we have the first n’t*~% numbers, for 0 < i < k, in coor-

dinates (< n,...,<n,< t,...,< t), we add n — 2t consecutive recursive (k — 1)-dimensional
N
1
nitk—i=1 glats in coordinates (<ny.,<n,tton—t—1,< t,...,< t). Then complete the
——

i
submatrix (< n,..,<n,n —tton —1,< t, ..., < t) with an Ri(n) like structure of two Her-
—_———

i
ringbone arrangements in the corners with consecutive slats between them. This completes

the arrangement of the first n**1¢t*~~! numbers in coordinates (< n,...,<n,<t,..., < t).
———

i+1
The schematic representation of a 3-dimensional arrangement produced this way is shown in Figure
2.21.
It is obvious, by the inductive hypothesis on the dimension and the recursive structure of the
arrangement, that the optimal ¢ for k£ dimensions is the same as the optimal ¢ for 2 dimensions,

which is the value that maximizes
2t3 — 6nt® + (3n + 3n — 2)t

Figure 2.23 shows an example of the optimal arrangement for a 6 x 6 x 6 grid (¢ = 2) with the

wirelength of 6930.

2.4 Properties of the Herringbone Arrangement

In this section we focus on the Herringbone arrangement. We have used this construction for the
bandwidth of Hamming graphs in Section 2.1 and wirelength of grid graphs in Section 2.3. However,
Herringbone arrangement is an interesting combinatorial object in its own right. In this section we

investigate its properties and look at the applications.
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i3 =0 i3 =3
0] 1] 8 12[16]17 108 109 112 114 116 117
2 3| 9 13[18 19 110 111 113 115 118 119
24 25 28 30 32 33 120 121 122 123 124 125
36 37 40 42 44 45 126 127 128 129 130 131
48 4956 60 [ 64 65 132 133 136 138 140 141
50 [ 51| 57 61 [ 66 | 67 134 135 137 139 142 143
i3=1 i3 = 4
4 5 10 14 20 21 144 145 152 156 160 161
6 7 11 15 22 23 146 147 153 157 162 163
26 27 29 31 34 35 168 169 172 174 176 177
38 39 41 43 46 47 180 181 184 186 188 189
52 53 58 62 68 69 192 193 200 204 208 209
54 55 59 63 70 71 194 195 201 205 210 211
i3 =2 i3=5
72 73 76 78 80 81| [148 149 154 158 164 165
74 75 7T 79 82 83| [150 151 155 159 166 167
84 8 86 87 8 89| |170 171 173 175 178 179
90 91 92 93 94 95| 182 183 185 187 190 191
96 97 100 102 104 105 | | 196 197 202 206 212 213
98 99 101 103 106 107 | | 198 199 203 207 214 215

Figure 2.23: Optimal 6 X 6 X 6 arrangement.
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Recall that a square Herringbone arrangement is defined as follows.
HB: N — I*
Let t = [{/m]. For (t — 1)*=9+1¢5=1 < m < (¢t — 1)k=J¢J for some 1 < j <k
HBy(m) = (41, -y iy ..y 1),

where ’ij =t and (’il, ...,’ij_l,’ij+1, ,'l,k) = HBk_l(m — (t — 1)k)

That is,

(t, HBgp_1(m — (t — 1)), if(t—1F<m< (- 1)1t

(D7t7 D’ et D)

, if (t—1)F 1t <m < (t—1)F22
HBy(m) =

| (O,..,0,0,1), if (t—1)tF 1 <m <tk

where the coordinates indicated by boxes form HBy_q(m — (t — 1)¥).

For example, when k = 2, the two-dimensional Herringbone Arrangement is defined as
HBy: N - 1Ix1I

HBs(m) = ([vml,m = ([vm] = 1)), if m < ([vm] — 1)[vm]
(m — ([v/m] = )[v/m], [vm]), stherwise

Figure 2.24 shows two and three-dimensional Herringbone arrangements.

Definition 3 Given some diagonal step path from (0,0) to (i1 — 1,42 — 1), a Skew-Herringbone

arrangement SHB of the i1 by is rectangle is defined as following:

1. Divide the rectangle into two halves along the path, including the path either into the upper

or the lower half.

2. Divide the upper half into vertical slats — a piece of a line.
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Figure 2.24: An example of herringbone arrangements in 2 and 3-dimensional matrices.

0|2 9 (16|25|30|42

4
(11315 110117|26|31/43
6 7 8]11]18|27|32|44
12 13 14 15§19|28|33|45
20 21 22 23 24J29|34|46
35 36 37 38 39 40 41§47

Figure 2.25: An example of a Skew-Herringbone arrangement.

3. Divide the lower half into horizontal slats.
4. SHB(0,0) = 0.

5. Given a partial Skew-Herringbone arrangement, consider the two unfilled slats (vertical and
horizontal) adjacent to it. Fill the slat that does not extend beyond the existing arrangement

with the next consecutive ascending set of available numbers.

Figure 2.25 shows the process of creating a 6 by 8 Skew-Herringbone arrangement.

Given this definition of a combinatorial object we can explore its properties.

2.4.1 Properties of the Herringbone Arrangement

e Spiral. Consider a two-dimensional spiral on an infinite discrete grid. It is made up of one-
dimensional slats, each the size of the maximum of the two sides of the space filled so far.

Figure 2.26 shows this spiral.

Now consider the same spiral limited to half-space. It is made up of the same one-dimensional

slats. Rather than continuing around the space filled so far, the spiral now wraps around half
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Figure 2.26: Full two-
dimensional discrete
spiral.

Figure 2.27: Two-
dimensional discrete
spiral limited to half-
space

Figure 2.28: Two-
dimensional dis-
crete  spiral limited
to quarter-space

of it each time, alternating between the upper and lower halves. Figure 2.27 shows this

construction.

We can limit the spiral even farther to quarter space. Now the same one-dimensional slats
wrap around quarter of the space filled so far, that is one side of it, alternating between the

two limiting lines. Figure 2.28 shows this limited spiral.

Notice, that the discrete spiral limited to quarter-space is nothing more than the two-
dimensional Herringbone arrangement. However, there are several generalizations possible
to this idea of a limited discrete spiral since there are several parameters involved. The
quarter-space two-dimensional spiral is made by wrapping one-dimensional slats in two di-
mensions. In k dimensions we consider a “spiral” limited to 1/ 2kth orthant of the space.
If the slats making up the k-dimensional spiral are (k — 1)-dimensional then the resulting
object is precisely k-dimensional Herringbone arrangement. However, one can consider the
generalization of the two-dimensional spiral made by wrapping one-dimensional slats in k-
dimensions. The object created by this process is a discrete ball in & dimensions limited to a
k-dimensional hypercube. That is, all points of distance d from the first within the limiting
orthant. In general, for any 1 <[ < k — 1 we can consider wrapping [-dimensional slats in
k dimensions. The resulting objects are cartesian products of /-dimensional hypercubes of

Herringbone arrangements and (k — [)—dimensional hyperballs.

e Monotonic. As defined earlier, an arrangement is momnotonic if the values in any line do
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not descend with the increase of the changing coordinate. That is, an arrangement A is

monotonic if for all 0 <4, 5: <ny— 1, 1 < s <k

((t 75 S — ’it = ]t) A\ ’1:3 < ]s) — A(’il, ---,7;3, ,’Lk) < A(jl, ...,js, 7]k)

By construction, Herringbone arrangements are monotonic.

e Nested. We will say that an arrangement is nested if for I < m the k-dimensional arrange-
ment of [ numbers is the k-dimensional arrangement of m numbers, limited to the first [.
Obviously, Herringbone arrangements are nested since they are constructed in an iterative

way.

e Compact. For any arrangement of m numbers limited to a k-dimensional orthant we can
define the surface area as the number of cells that have neighbors not in the arrangement

(that is, the arrangement does not assign any value to those cells).

Herringbone arrangement of m numbers in an k-dimensional orthant is the smallest surface
area arrangement, since at any point it fills the next cell with the maximum number of
neighbors in the arrangement, or, to put it the other way, the minimum number of neighbors

outside the arrangement.

e Recursive. By definition, a Herringbone arrangement is recursive. But there is an even
stronger recursive property, which is that for | < k any l-dimensional slice (a complete I-
dimensional submatrix) of a Herringbone arrangement is an [-dimensional Herringbone ar-

rangement of the numbers that are in the slice.

These various properties of the Herringbone arrangement make it a useful combinatorial struc-

ture for different problems.

2.4.2 Applications of the Herringbone Arrangement

Multichannel communication. While the optimal solution for the Hamming Graph bandwidth,

which is a graph theoretical model we use for one of the settings of the multichannel communication

64



problem, does not use the Herringbone arrangement, some of the properties of the arrangement are
still useful.

As we have shown in Section 2.2, monotonic arrangements do not increase the maximum spread
of an arrangement. Fishburn, Tetali, and Winkler [19] have shown that monotonic arrangements
do not increase the average spread of an arrangement. This holds true also for an arrangement of
any set of numbers, not necessarily distinct, which is an extension of the graph labeling problem.

Consider an infinite matrix and an arrangement of an infinite set of numbers in it. What
do the arrangements that minimize partial maximum and average spread look like? In the limit,
going from discrete to continuous equivalent of the problem. Maximum spread becomes maximum
diameter and the average spread is equivalent to the surface area to volume ratio. The continuous
object that minimizes both the maximum diameter and the surface area to volume ratio in two
dimension was known to the ancient Greeks. It is, of course, the circle. In higher dimensions a ball
is the natural and correct generalization'. So what is the correct discrete analogue of the ball for
this problem? We would like to have a spiral object that minimizes the surface area.

From the above, Herringbone arrangements seem to be good candidates if we want to minimize
some combination of the maximum and average spread simultaneously. This is often the case in
multichannel communication, where we want to bound both the maximum and average error.

Another property of the Herringbone arrangement that is particularly useful in communication
setting is its recursive structure. Both maximum and average spread of an arrangement are defined
over the spreads in a line, which is equivalent to one channel failing. However, we need to design an
encoding that minimizes the error also in case of two or more channels failing. Vaishampayan [50]
has stated that there is no encoding that is optimal both for one and two channels failing. That is,
if an encoding minimizes the error for one channel failing then it cannot minimize the error for two
channels failing and vice versa. Thus, if we want to have an encoding that gives a relatively small
error for any number of channels failing, we must agree to non-optimality. The recursive property
of Herringbone arrangements ensures that there is graceful degradation as the number of the failed
channels goes up.

Thus, overall, the monotonic, compact, spiral, and recursive properties of Herringbone arrange-

!Problems of this sort are known as isoperimetric problems. For more on the subject see [43]
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Figure 2.29: Coeflicients in the wirelength expression of each cell in a 4 x 4 x 4 arrangement.

ments make it a good encoding scheme for channel communication problem.

Grid graph wirelength. As we said, Fishburn, Tetali, and Winkler [19] have shown that mono-
tonic labelings do not increase the wirelength of a two-dimensional grid graph. The statement
easily extends to arbitrary dimensions. Wirelength of a graph is the sum over all the edges of
the difference of the labels on the edge ends. For a grid graph in two dimensions this becomes a
telescoping sum with just the surface values left. In general, in & dimensions, only the values in
cells of the form (...,0,...) or (...,n; — 1,...) appear in the wirelength expression. The coefficient
with which any value appears in the expression is (# of n; — 1’s minus # of 0s in its coordinate).
Figure 2.29 shows the coefficients for each cell in a 4 X 4 X 4 arrangement. Thus to minimize the
wirelength, we want to maximize the minimum surface values and minimize the maximum surface
values. A Herringbone arrangement is monotonic and minimizes the surface area, which means it
maximizes the values on the surface. Thus a combination of a Herringbone and a reverse Herring-
bone arrangements is a good candidate for minimizing grid graph wirelength and is, indeed, used in
two dimensions. Figure 2.30 shows the two-dimensional arrangement and the proposed extension

of it to higher dimensions.

Edge isoperimetric set. For a simple connected graph an edge isoperimetric set is a set of vertices
that has either the minimum or the maximum number of either interior edges (both endpoints are
set vertices) or boundary edges (one endpoint is a set vertex). A survey of the current state of edge
isoperimetric problems on graphs has been done by Bezrukov [9]. Generally, explicit construction of
edge isoperimetric sets for a given graph is possible if the problem has the nested solutions property.

That is, there is a sequence of isoperimetric sets A; C V with |4; = ¢ for 1 < ¢ < |V| such that

A1CA2C---CA|V|.
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Figure 2.30: A two-dimensional labeling for grid graph wirelength by Fishburn, Tetali, and Winkler
and a proposed generalization to higher dimensions.

For regular graphs, obviously, a set that minimizes or maximizes the number of internal edges also
maximizes or minimizes the number of boundary edges.
Harary and Harboth [23] showed that for an infinite two-dimensional gird graph the maximum

number of internal vertices for any set of m vertices is

[2(m — v/m)]

and the sets themselves grow spirally as m grows. The spiral limited to one orthant of the grid
is still an edge isoperimetric set and is exactly the a two-dimensional Herringbone arrangement.
Since Herringbone arrangements minimize surface area, that is the number of boundary edges, and
an infinite grid is a regular graph, Herringbone arrangements maximize the number of the interior

edges and thus are edge isoperimetric sets for infinite grids in any dimension. The maximum number
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of interior edges, I, for any set of m vertices in an infinite grid in k dimensions is, therefore,

degree sum over the vertices — boundary edges

2
2km — boundary edges

2
([ k[ym] - (k—1) if ([¥/m] = 1)F < m < ([¥/m] - 1)E=1[ ¥m]
RIYm] — (k—2) i ([¥/m] — D[ ¥m] < m < ([¥m] - )F2[ /m]?

= km— ..
k[4/m] -1 if ([/m] — D2[Ym]5=2 < m < ([&/m] - 1)[{m]!

| K[ &/m] if ([ ym] — D[ Ym]F? <m < [Ym]* |
= Lk(m — ¥/m)]

In this section we have defined the Herringbone arrangement and have looked at its various
properties and applications. We believe that it merits further research and is a good construction

to consider in various graph labeling and isoperimetric problems.

68



Chapter 3

Conclusions, Extensions, and Open
Problems

The channel coding problem of designing an encoding scheme to minimize the error of sending a
number in a system of multiple unreliable channels is closely related the the problem of minimizing
bandwidth and wirelength of cartesian products of graphs. In fact, the formulation of the graph
problems by Harper [25], [26] in 1960’s was originally motivated by the channel coding problem.
Harper also provided a fundamental proof technique called isoperimetric problem. Most of the
progress in bandwidth and wirelength of cartesian product of Hamming and grid graphs in the last
35 years has been based on this technique. However, this technique turned out to be not strong
enough to obtain results for bandwidth of cartesian product of any number of cliques of arbitrary
size, or optimal results for wirelength of general grid graphs.

For the Hamming graph, we propose two different approaches. One is based on creating label-
ings that bound the smallest and labeling that bound the largest numbers in each cliques. The
difference between those bounds is the lower bound on the bandwidth. If one labeling exists that
bounds both numbers simultaneously, it must be an optimal labeling, which is the case for 2-
dimensional Hamming graphs. This is a generic way to provide lower bounds for the bandwidth
of Hamming graphs and their induced subgraphs. The method is also constructive, thus giving an
immediate upper bound. However, this approach does not give an optimal labeling. We propose
a different technique taking advantage of monotonic arrangements that gives a much better lower
bound and nearly matching and, we believe, optimal upper bound for the problem of Hamming

graph bandwidth. As we have mentioned, this problem is equivalent to the channel communica-
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tion problem of creating encodings that minimize maximum single channel failure error in case of
complete information loss failure, with no redundancy in the system.

The labeling that bounds the minima or the maxima for each clique we call Herringbone arrange-
ment. It appears in several places in the research of graph isoperimetric problems. However, its
pattern has not been recognized, and thus the arrangement has not been generalized to dimensions
higher than 2 (that is, cartesian products of 2 graphs). One of such cases is the wirelength problem
of a grid graph. Fishburn, Tetali, and Winkler [19] solve the problem for the 2-dimensional grid.
Using Herringbone arrangement, we propose a generalization of this result to higher dimensions.
In channel communication setting, this problem is equivalent to creating encodings that minimize
average single channel failure error in case of distance-1 failure, with no redundancy in the system.

Until now, only bandwidth of an entire graph has been considered. In this work we introduce a
new graph isoperimetric problem: given a graph G, find an induced subgraph of order m with the
smallest bandwidth/wirelength. We investigate this problem for the bandwidth of Hamming graph.
A surprising negative result is that a diagonal subgraph does not have the smallest bandwidth. We
presented the best known subgraph structure and its labeling. Considering subgraphs instead of

entire graphs corresponds to allowing redundancy in the channel communication problem.

3.1 Maximum Error of Complete Channel Failure with

Redundancy - Hamming Subgraph Bandwidth

In this section we return to the the problem of designing encodings that minimize the maximum
error in case of the complete information loss failure. As we have mentioned before, when we
assume no redundancy in the system and only single channel failure, the problem is equivalent
to the bandwidth minimization problem of a Hamming graph. In this section we focus on this
problem with redundancy allowed in the encoding. In the graph domain, this problem is equivalent
to finding bandwidth optimal induced subgraphs of a Hamming graph. Both formulations are open.
We present some results and outline the challenges.

First we state the problem formally. Given k£ channels with channel ¢ having capacity log n;

and loosing all the transmitted information in case of failure, the goal is to design encoding to
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Figure 3.1: Correspondence between the channel communication with two channels with redun-
dancy, the bandwidth minimization of induced subgraphs of a product of two cliques, and the
incomplete number arrangements in a two-dimensional matrix problems.

transmit numbers 0 through m — 1 to minimize the maximum error in case of failure. In graph
theory, given a k-dimensional Hamming graph K,, X --- X K,, the problem is to find minimum
bandwidth induced subgraphs of order m for 1 < m <[], n;. The problem can be viewed as two

subproblems:
1. Find the shape or the topology of the minimal bandwidth induced subgraphs; and
2. find the minimal bandwidth labeling of a given subgraph.

Again, we visualize the problem as the one of filling a n1 X na X - - - X n matrix with m numbers
so that the maximum difference between any two numbers in any line — complete one-dimensional
submatrix — is minimized. Figure 3.1 shows the correspondence between the three settings.

For m = [], n; we presented a solution in Section 2.2. For small m the solution is obvious. For
m < min;{n;} the induced subgraph is any maximal independent set and the bandwidth of this
subgraph is 0 since no two vertices share an edge. (In the matrix representation, this is at most
one number in any row or column, or, without loss of generality, a diagonal.) We now focus on
min;{n;} < m < (k — 52—01 (Wt2 J)) IL; [n:/2]. Vaishampayan [48], [47], [49] designed a solution
for this case in the setting of the channel communication problem. The solutions is to arrange the
numbers into a uniform diagonal. Below we examine this solution. However, to avoid the boundary
effects of a finite matrix, we first consider the infinite diagonal. We consider an arrangement of
numbers in a infinite k-dimensional diagonal of thickness [; that is, any line in the diagonal has
exactly [ elements in it. This case is also equivalent to deriving the achievable rate-distortion tuples

for an unbounded discrete information source with k& channels of rate .

We derive the lower bound on the spread in this case using the same technique we employed in
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Section 2.1 for the case of no redundancy complete failure. We use the herringbone arrangement
to maximize the smalls sequence and to minimize the bigs sequence. Since the smalls and the bigs
sequence arrangements can start at any point in the diagonal, we consider the difference between
the sequences relative to the starting points. Recall that the lower bound on the spread is the
maximum over all lines of the difference between smalls and the bigs sequences. However, in this

case this difference turns out to be constant.

Definition 4

A herringbone arrangement of a k-dimensional infinite [-diagonal is defined recursively as follows.
Assign an arbitrary order to the coordinates of the system (i1, i9, ..., ig)-
A herringbone arrangement of k-dimensional 0-diagonal is empty.
A herringbone arrangement of a 0-dimensional diagonal is any arrangement of one number in the
cell.

Given a herringbone arrangement of the k-dimensional diagonal up to coordinate ¢; in dimension

i, we define a larger herringbone arrangement recursively:

e project the existing arrangement onto the (k— 1)-dimensional hyperplanes (, ..., %, t;, , ..., %),

limited to the diagonal,
e calculate the volume of each projection,

e recursively fill the largest volume projection (using coordinate order to break ties) with the

herringbone arrangement for ¥ — 1 dimensions.

We denote the element in the cell (¢1,...,4;) of the k-dimensional herringbone arrangement by

HBy(i1,...,9). Examples of a herringbone arrangement of a diagonal are shown in Figure 3.2.

Lemma 6 A herringbone arrangement of values in a k-dimensional diagonal mazximizes the smalls

sequence (the ascending list of the smallest numbers in a line) for that matriz.

The proof is similar to the proof of Lemma 1.
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Figure 3.2: Uniform infinite diagonal herringbone arrangements in two and three dimensions.

Corollary 4 If the smallest number in line (i1, ..., *,...,i;) of a herringbone arrangement is aj,

then the smallest number in line (i1 + 1,...,%, ..., 7, + 1) is

- aj +k(1/2)1, if 1 is even,

aj + 30 L1/2) T1/21+1 =
=0

aj + (1_1)2%, if 1 is odd.

Corollary 5 If the largest number in line (i1, ..., *,...,i) of the herringbone arrangement is b,

then the largest number in line (i1 + 1, ..., %, ..., 9% + 1) is

- bj + k(1/2)* 1, if | is even,

bj+ Y L1/217 /21" =
i=0

by + LD if s odd.

Thus, combining the results of Corollary 4 and Corollary 5, the difference b; — a; remains
constant along any diagonal. That is, the difference between the largest and the smallest numbers
in line (41,42, ..., *, ..., i) equals that of line (i1 + s,42 + s, ..., *, ..., ix, + §) for some integer s. To see
this, notice that while we start the smalls arrangement from 0 at some point, since the diagonal

is infinite, we can continue the arrangement in the opposite direction using negative numbers.
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Similarly with the bigs arrangement, we can continue the arrangement in the direction of the
increasing of coordinates using larger numbers. Thus, the smalls and the bigs arrangements are
the same arrangements, offset by a fixed value. These arrangements are also “facing” in opposite
directions: the herringbone arrangement can be viewed as cones stacked into each other, and in
case of the smalls sequence the “cones” face the direction of the coordinate decrease, while in the
bigs sequence the “cones” face in the direction of the coordinate increase. However, the brims of
these cones from both sequences coincide. Since that is where the smallest and the largest numbers
in each line occur, the difference along any diagonal remains constant.

A consequence of the structure of the herringbone arrangement is the fact that the difference
is maximized over the central diagonal. That is, if (¢,¢,...,t) is a cell in the center of the diagonal,
then the maximum difference is achieved for any line (¢ + s,t + s, ..., %, ..., + s), where s is some

integer, and this difference equals

HB(t+ [1/2],t, . t) — HB(t — [1/2],t,....t) =

k—1
(/21 =1) > /2 /215 4 121
1=0

We now restrict the diagonal to a finite matrix and investigate how the boundary effects change
the spread.

Consider a diagonal arrangement limited to the n* cube. This arrangement is a restriction
of an infinite diagonal, therefore it has the same bound on the spread in the central part of the
diagonal. However, the boundary parts of the arrangement are complete cubes of size |1/2]¥, so the
spread in this case is the spread of completely-filled cube derived in Section 2.1. By comparing the
boundary cubic and the central diagonal spreads, we show that the spread in the diagonal part is
always greater. Thus, the spread is dominated by the diagonal part, as long as a true diagonal part
exists. That is, if [ < n, then there is at least one complete line in each dimension which belongs
entirely to the diagonal, and the spread in this line dominates the overall spread in the matrix.
But this means that we can increase the size of the initial cubic part and decrease the width of the
diagonal part, thus decreasing the overall spread. Moreover, we can decrease the spread even more

by introducing non-overlapping cubic parts along the diagonal. By balancing the entire structure,
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Figure 3.3: Possibly an optimal arrangement for for an incompletely filled cube.

we can make all of the cubic parts smaller, further reducing the overall spread. This construction
is demonstrated in Figure 3.3. The spread in this arrangement is less than the uniform diagonal.
However, currently we do not know whether this arrangement is optimal.

Now, if [ > n, then the initial cubic parts of the diagonal overlap. Remembering from Section 2.1,
the maximum spread of the entirely filled cube is the spread in line ([(n—1)/2], ..., %, ..., [(n—1)/2]),
a line in the intersection of the first-orthant cube and the last-orthant cube. Those are precisely
the cubic parts of the diagonally-filled cube. The spread of a cube optimally filled with m < n*
numbers is at most the spread of the cube filled with n* numbers; thus, for an I-diagonal with
[ > n, the spread is the the same as in a completely-filled cube.

The above arrangement gives the best known upper bound on the distortion in a multiple
description system if redundancy is allowed and gives an upper bound on the bandwidth of induced
subgraphs of order m of a Hamming graph. However, the question of we whether it is optimal

remains open.

3.2 Open Problems

There are many different related open problems, in very different areas of research. We have
mentioned a few of them in previous chapters. Following are some other possible directions of

extending the results.

e Different channel failure types - Product of different graphs.

Currently graph bandwidth is known for products of paths, cycles, paths and cycles, paths
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and cliques, and now cliques. Only bounds are known for products of graphs of other types.
Wirelength is know for products of paths, cycles, and cliques. However, it seems that at least
for some graphs with relatively regular structure, such as complete bipartite graphs, regular
trees, path degrees, the techniques presented in this work may apply. This is especially
important in the context of multichannel communications since different graphs correspond

to different types of failure.

Different type of product of graphs.

The graph product used in this work is Cartesian product. There are two other types of
graph products: tensor and strong. Bandwidth is known for both products of paths or cycles
with cliques, products of paths, products of cycles, and paths with cycles. Bandwidth and
wirelength of tensor product of paths with bicliques is also known. Again, it seems that the
approach presented in this work may be useful in tackling tensor and strong products of other

graphs.

Probability of failure - Weighted graphs.
We have not taken into consideration the probability of channel failure. One possible way
to address it is to assign weights to the graphs corresponding to channels which would give

weights to edges of that graph. We may then consider weighted bandwidth or wirelength.

Probability distribution for input - Labeling with repetition.
Throughout the work we have assumed uniform probability distribution over the input. How-
ever, in practice, this is not always the case. A possible way to take this into account is to

duplicate the more frequent input proportionally to its probability.

Dynamic (on-line) encoding algorithm /heuristic.

In a dynamic setting the number of channels, their capacities, the types of failure, and the
probability of failure can change, thus the encoding has to be done online. There is a tradeoff
between the channel capacity and the error size. A possible heuristic could choose and
encoding for the available channels slightly below their capacity and break up the information
further into smaller pieces or recombine it into larger pieces if the number of channels and

their capacities change. The herringbone approach seems particularly useful in this context
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due to its strong recursive structure.

Error correction codes.

The specific data encoding technique investigated in this thesis encodes information into
several pieces in a way that allows graceful degradation in case of the corruption or loss of
some of the pieces. That is, the error is monotonically decreasing function of the number of
uncorrupted pieces. A classical way to counter the effects of unreliable media is to use error
correcting codes. While they do not provide graceful degradation, error correcting codes
guarantee zero error up to a certain number of corrupted bits. It would be interesting to
explore a way to combine the two techniques that would result in better error correction
overall. One way, for example, is to use error correction up to a fixed number of errors and
use the Multiple Description approach if more errors result. An interesting question is to
find the tradeoff between the higher redundancy of using codes with greater error correcting

radius versus the lower error that would achieve.

Geometric data decomposition.

Another application of our approach is in geometric data decomposition. Currently, any such
decomposition uses hierarchical approach, breaking the data into levels, each subsequent
level being a refinement of the previous one. This is a fast and compact way to transmit the
information if the order of the pieces can be guaranteed. However, since each layer relies on
the previous one, if even one layer is lost or delayed, the information in all the following layers
cannot be reconstructed. The question is, given a mesh, how to break it up into (possibly
overlapping) pieces, so that each piece is a coarse representation of the data, and the more
pieces are combined the better representation results, with all the pieces together giving the
full data. We want this iterative quality improvement to be independent of which specific
pieces are combined, rather just how many of them there are. This problem is trivial for
infinite regular meshes. The obvious solutions is to decompose the original mesh into non-
overlapping pieces by taking the shifted subsets of points and connecting each point to its
nearest neighbors. When two meshes are combined, the edges are recomputed for the new
set of points. The first, although not a difficult, problem is the boundary. However, even if

the boundary problem is solved, this approach may loose important features in some layers
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and exaggerate them in others if the mesh is not regular. One possible approach is to use the

existing mesh coarsening techniques and combine several coarse meshes obtained in this way.

Data storage.

To address the rising demand of high availability data storage systems, an approach similar
to that of bandwidth-constrained communication has been proposed by Kirkpatrick, Wilcke,
Garner, and Huels and Morris [32, 38]. The suggestion is to break the storage medium into
many autonomous pieces, “bricks”, assembled in a cube. The stored information is spread and
replicated in many pieces. This creates a highly reliable storage device based on unreliable
components. This is strongly reminiscent of transmitting data reliably in unreliable pieces.
Here the main goal is to find a mapping of a number to a location in the array that minimizes
a given function over the mapping. In the data storage problem, the mapping has to be
created of the particular combination of the information in each brick so that all the data is
accessible even if some of the bricks fail. The in [32] some of the heuristics of data replication
location under the model of percolation have been studied. The other two aspects, spreading
and combining of data, have not been investigated deeply. It would be interesting to approach
this problem from the combinatorial point of view. First, we need to find the number of copies
that should be created, given the failure rate of the bricks, the data to storage space ratio,
and the overhead on mirroring the data. Currently, this number assumed to be two or three
[32]. Next, it would be interesting to investigate arrangements of numbers in a 3-dimensional
array (or labeling of lattice vertices) where the numbers can be repeated, several numbers
can be mapped to the same location, and numbers can be erased. We believe there are a
lot of questions about these arrangements that can be answered either experimentally or

theoretically.

— How should the data be spread? In how many pieces? What modification of Rabin’s
information dispersal algorithm [44] is appropriate in this case?

— What are the effects of the data connectivity graph on these arrangements? Is it better to
combine related data or not? The preliminary answer to these questions can be obtained
experimentally. If it seems preferable to preserve connectivity of data in storing (for

access speed or integrity), then a distance [37] or volume [16] preserving embedding of a
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graph in a normed space can be used to achieve it. If the preference is not to preserve the
connectivity, then the same approach can be used on a complement graph. Of course, a

random heuristic is always an option if there is no preference.

— Is it better to choose the mirror locations for the data regularly or randomly? Again,
preliminary results could be obtained experimentally. However, the work in [32] points
out that some lattice structures seem to appear even if the failure pattern is random.
It would be interesting to investigate further what substructures appear as a result of

failures and the effect of those on mirror location of data.

¢ Bandwidth/wirelength preserving permutations.
We showed that sorting values within each line does not increase bandwidth of Hamming
graphs or wirelength of grid graphs. It is obvious that switching lines within the same
coordinate does not change either quantity. An interesting question then is, what other
operations preserve or do not increase/decrease bandwidth or wirelength of a graph? This
question also comes up some areas of coding theory, when designing families of codes with a

given code distance.

e Monotonicity of bandwidth.
Recently Fishburn, Tanenbaum, and Trenk [18] addressed the problem of linear discrepancy,
that is labelings of the vertices of a poset that are monotone (consistent with the poset) and
minimize the maximum difference between incomparable pairs. It turns out that the optimal
labelings are the one that minimize the bandwidth of the complimentary graph. Thus for
the bandwidth of the complimentary graph, to find the optimal labeling, it is sufficient to
consider only monotone assignments. There seems to be a possibility of generalization of the

idea of monotone or monotonic assignments that do not increase the bandwidth of a labeling.

These are the directions in which the research in this thesis can lead.

79



Appendix A

Definitions

A.1 Graph Theory

e Graph G(V, E) is defined by a set V' of vertices and a set of E of vertex pairs. For the purpose
of current work, no loops (edges of type (v,v)) or multiple edges are allowed. We also assume

the graphs to be undirected (that is, the edges have no direction) unless otherwise mentioned.

e Subgraph of a graph G(V, E) is a graph H(V', E’) such that V' CV, E' C F'.
Induced Subgraph of a graph G(V, E) is a subgraph of G, H(V', E') such that V' C V and for

any u,v € V' if (u,v) € E then (u,v) € E'.

e Clique K, is a complete graph on n vertices, that is for any u,v € V (u,v) € E.

e Path P, is a graph G({v1,v2,...,vn}, {(vi, vi+1)})-

e Cartesian Product of Graphs G x H is the graph defined as follows:

V(G x H) :=V(G) x V(H)

E(G x H) = {{(z,y),(@" )} : (e =" A (y,9/) € E(H))V (y =9 A (z,2) € E(G))}.
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Hamming Graph is the cartesian product of two or more cliques.

Grid Graph is the cartesian product of two or more paths.

Hypercube is the cartesian product of two or more two cliques.

Vertez labeling of a graph G(V, E) is a one-to-one function

f:V(@G) = H{0,..,|V(G)| - 1}.

e Bandwidth B(G) of a graph G(V, E) is

min  max |f(u) — f(v)].

labeling f (u,v)€E(G)

e Wirelength L(G) of a graph G(V, E) is

i > 1f(w) - F)l.
(u0)€E(G)
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A.1.1 Isoperimetric Problems

e Edge isoperimetric problems are, given a graph G(V, E), find

i bound d f A
Ag‘r/ﬁiﬁ:m (# boundary edges of A),

max interior edges of A).
Ao (# g )

o Vertex isoperimetric problems are, given a graph G(V, E), find

min boundary vertices of A
A (# y )s

max (# interior vertices of A),
ACV,[Al=m

e Isoperimetric set is a subset of vertices that achieves the extremal value in an isoperimetric

problem.

e Nested Solution Structure is a characteristic of an isoperimetric problem whose solutions are

isoperimetric subsets A; C V(G), |4;| =1, s.t.

A1 CAyC---C A|V(G)|-
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A.2 Coding Theory

e Source coding is the part of coding theory that studies information measurement and its con-

version into different forms. [2]

e Channel coding is the part of coding theory that studies the amount of information a channel

can transfer without error. [2]

e Vector Quantizer is a code that, given an input vector X € R!, maps it into a finite set of

channel vectors U € 2.

Scalar Quantizer is a Vector Quantizer with ¢t = 1. [22]

A.3 Number Arrangements

e Arrangement is the inverse of encoding, that is a function from the cells of the matrix to the

numbers to be put in those cells:

A:T—{1,..,m},

where I is a subset of the product of the sets of indices I1 X - -+ X I.

e Slice is a full submatrix. An [-dimensional slice is a subset of all cells with k — [ coordinates
fixed:

(3, ooy Ty by ey 3y Ty g ey ¥, GGy %, oy ).
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Line is a one-dimensional slice:

Spread is the difference between the largest and the smallest number in a slice.

Mazimum spread of an arrangement, spread(A), is the maximum over all the spreads in slices

of the same fixed dimension.

Smalls is a plural form of “the smallest number”, a set of the smallest numbers in a set of slices.

Bigs is similar to smalls, a plural form of “the largest number”.

A.4 Miscellaneous

Floor of an integer z, |z], is the largest integer not greater than z.

Ceiling of an integer z, [z], is the smallest integer not less than x.

Whole part of an integer x, [z], is the integer closest to x.
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