
EECS 370 Spring 2001 Homework 3
Survival!!

Amended 20 February  - See Last Page
Due:Monday March 5. The electronic copy is due at 11:59 p.m.

Hardcopy materials are optional, but may be handed in to the TA at the beginning of class.

Overall Assignment

For this assignment you are to apply the genetic algorithm to search for the best selection and
arrangement of railroad cars in a train.

Background I - Theory Behind the Genetic Algorithm

According to the theory of evolution, species evolve through two important mechanisms:

1. Mutation and permutation of existing species into new forms, and
2. Survival of ( only ) the fittest species to produce the next generation of offspring.

The genetic algorithm is a computer technique based upon this theory, used for finding optimal
solutions to problems where the number of possible solutions is unlimited and discontinuous. The
general procedure followed by the genetic algorithm is as follows:

1. Start with ( or create ) a candidate pool of possible solutions to a problem.
2. Increase the size of the candidate pool by permuting the existing candidates to form new ones.

Example permutations include adding or removing components of a solution, rearranging
components of a solution, or crossing two solutions, i.e. combining the front half of one
solution with the back half of another.

3. Decrease the size of the candidate pool by selecting the best candidates and discarding the rest.
This step requires an evaluation of each candidate and possibly a sorting operation.

4. Repeat steps 2 and 3 until either a sufficiently optimal solution has been found, or the candidate
solutions are no longer improving, or a limit on the number of iterations is reached.

5. Report all of the final candidates for further analysis off-line.

Background II – Railroad Car Selection

Railroad managers are often faced with the task of deciding how many cars of what types to combine
in a single train.  The more cars added to a train the bigger the engine has to be to pull them, which
increases costs.  Passenger cars and freight cars can be combined, but passengers generally don’t like
being in cars adjacent to either freight or the engine(s).  Dining cars only generate revenue if the
passengers can get to them.  ( i.e. the dining cars must be adjacent to passenger cars. )

For this assignment you are to write a program that implements the genetic algorithm to select the
optimal composition of a railroad train designed to carry a given amount of freight and passengers.
Further details are provided below.



Problem Specifics

The trains for this problem will be composed of 1 or 2 engines, exactly 1 caboose, and a variable
number of freight cars, passenger cars, and dining cars.  The “value” of a given train will be the
revenue generated by the freight, passengers, and food service minus the expenses of running the
engine.  Specific details of the cars involved and the calculations involved are provided in Table 1 and
in the paragraphs that follow:

Symbol Name Type
Empty Weight

( tons )

Capacity
( tons or
persons )

Cost or Revenue
$ / mile

E1
E2
E3

Big George
Tattanooga 22

Stanley Steamer
Engines

30.5
35.3
40.1

250
380
550

750.00 + 1.00 / ton
1000.00 + 1.10 / ton
1100.00 + 1.30 / ton

C1
C2

Little Red
Yellow Cab

Cabooses 2.0
3.3

5
10

None

F1
F2
F3
F4

Boxcar
Flatbed
Hopper
Tanker

Freight
Cars

13.6
19.5
22.1
26.8

10
18
25
32

$10.00 / ton

P1
P2
P3
P4

Two Across
Six Seater
Standard
Cattle Car

Passenger
Cars

12.4
14.9
19.7
21.2

60
100
120
160

1.00 / passenger
(but see note below)

D1
D2
D3

Bon Appetit
Meals on Wheels

Rollin Repas

Dining
Cars

12.6
18.1
23.5

60
120
175

0.50 / diner

Table 1: Railroad Car Data

Engine Notes

• The capacity of an engine is the heaviest train it can pull, in tons.
• The weight of the engine must be included in the weight of the train.
• The cost of running the engine includes an amortized cost per mile plus a fuel cost that is a

function of the weight being pulled by the engine.  For example, if Big George were pulling
a 200 ton train, the cost would be $950.00 / mile.

• Every train must have either one or two engines.
• Engines always go at the front of the train.

Caboose Notes

• All trains carry exactly one caboose, for employee use only.
• The capacity of the caboose is the number of employees it can carry.



• Employees always ride in the caboose;  Passengers never ride in the caboose.
• Cabooses generate no revenue.  ( Employees do not eat in the dining cars. )
• Employee weight is calculated the same as passenger weight ( see below. )
• ( The employees listed here are non-working employees.  Weight for the working

employees such as the engineer, conductors, and chefs are already included in the weights
for the engines, dining cars, etc. )

Freight Car Notes

• The capacity of a freight car is the amount of freight it can carry, in tons.
• Freight value is $10.00 / mile per ton carried.  This is most easily calculated as total freight

revenue for the entire train ( instead of car by car ), subject to the restriction that there must
be enough freight cars present to carry all of the freight.  ( However freight revenue must be
reported on a car-by-car basis for the best solution in the final output. )

Passenger Car Notes

• The capacity of a passenger car is the number of people it can carry.
• Assume that passengers weigh an average of 150 pounds per person.  There are 2000

pounds per ton.  ( The weight of employees in the caboose should be calculated the same
way. )

• Passengers will distribute themselves so that every car is equally full, on a percentage of
capacity basis.  It is acceptable to have a fractional number of passengers on a car, since
this is an average number.

• For example, suppose that 400 passengers are to be carried in two cars of type P4 and one
car of type P3.  The total capacity of these three cars is 440, which yields an occupancy rate
of 90.9% ( 400 / 440 ).  The P4 cars would each hold 160 * 400 / 440 = 145.45 passengers,
and the P3 car would hold 120 * 400 / 440 = 109.09 passengers.

• The base value revenue for a passenger is $1.00 / mile per passenger carried.  This assumes
that the adjacent cars are not engines or freight cars, which reduce the value of adjacent
passenger cars.

• The base revenue is multiplied by 0.8 if exactly one of the adjacent cars is a freight car or
an engine.

• The base revenue is multiplied by 0.6 if both adjacent cars are either freight cars or engines.

Dining Car Notes

• Dining cars serve meals to passengers who walk from their seats in the passenger cars, eat
their meal, and then return to their original seats.

• The capacity of a dining car is the number of diners it can serve.
• The revenue of a dining car is $0.50 / mile per diner served.  ( See below. )
• The capacity of a dining car should not be included in the passenger carrying capacity for

the train.
• The weight of the passengers in the dining car should not be included in the overall train

weight.
• It is assumed that the number of diners visiting a given dining car is one-half of the

passengers from immediately adjacent cars, up to the maximum capacity of the dining car.



• For example, consider the following train, and assume the passenger cars are 80% full:

E1 - D3 – F2 - D2 - P2 – D1 – P4 – C1

∗ Dining car D3 is inaccessible to passengers, and generates no revenue.
∗ Dining car D2 draws half the passengers from passenger car P2, = 0.5 * ( 0.8 * 100 ),

= 40 diners, for a revenue of $20 / mile.
∗ Dining car D1 could draw half the passengers from both cars P2 and P4,

= 0.5 * 0.8 * ( 100 + 160 ), = 104 diners.  BUT, D1 has a maximum capacity of only 60
diners, so its revenue is only $30 / mile.

Other Notes

• The overall “value” of a train is the sum of the revenue from freight, passenger, and dining
cars, minus the expense of the engine(s).  This is the quantity you must use in your search
for the “best” train to carry a given load.

• Program input will include the amount of freight, number of passengers, and number of
employees that must be carried.  Any train incapable of carrying the specified load is
unacceptable as a final solution, but may be kept in intermediary steps for use in generating
new solutions.

• Trains that are unacceptable should be assigned a negative value, proportional to how badly
they miss the mark of their carrying capacity.  I.e. a train that can almost but not quite carry
the load would have a small negative value, and a train that is nowhere close to carrying the
load would have a large negative value.  Exact details are left to the programmer.

• Unacceptable trains should not be reported in the final output.

Implementation Details

Classes

The following classes will need to be developed. You may also need to create additional classes not
listed here.  Pay close attention in the following sections to the distinction between singular objects
( e.g. Car ) and collections of objects ( Cars ).

Car: A Car object contains information about a single railroad car.  The name of the Car
object, ( e.g. “Tattanooga 22” ) is to be stored as a dynamically allocated array of characters,
NOT as a String object.

Cars: The Cars class is a container class for a collection of Car objects.  You will need at least
one instance of the Cars class to hold the information about all possible railroad cars.
( However you are probably better off to load the initial data into three such containers: one for
the engines, one for the cabooses, and one for the rest of the cars. )

Train:  A Train object contains either one or two Car objects of type engine, exactly one Car of
type caboose, and zero or more additional Cars.  It is recommended to store the Car information
using one to three Cars objects within the Train object. The Train object also maintains
information regarding the properties of the train as a whole, such as its value.

Trains:  A container class for a collection of Train objects.  Your pool of candidate solutions
will be kept in a Trains object.



Specific Class Methods

In order to complete this assignment, your program will need to implement at least the following
methods.  Multiple ( overloaded ) methods are allowed where appropriate.

Constructors: Each of the classes listed above will require at least one constructor method.
Constructing an instance of the Trains class will create the initial pool of candidate solutions, as
listed in step 1 of the genetic algorithm above.  The Cars class must have a constructor method
which takes a file name as an argument and reads data from that file.  ( See discussion of data
input below.  )

Copy Constructors:  The Car and Train classes will require copy constructors.

Destructors:  All classes listed above will require destructor methods.

Print:  All classes listed above require print methods. Printing a Trains object should call the
print method of each individual Train in the collection, which should in turn call on the print
methods of the composite Car members.

Permute:  This is a required method of the Trains class.  Invoking this method corresponds to
step 2 of the algorithm outlined above.  Permuting should be carried out by first copying one of
the existing Train objects and then calling one of the following methods for the new object:

Insert, Remove:  These methods are required members of the Train class.  They insert
and remove respectively a Car into / from the Train.  ( See caution below. )

Replace:  This required method of the Train class replaces one of the Cars.  ( See
caution below. )

Rearrange:  This required method of the Train class rearranges the order of the Cars.
( See caution below. )

Cross:  This required method of the Train class creates a new Train by merging the
beginning of one Train with the end of another.

Cautionary Note:  When permuting Trains, ensure that the resulting Train has one or
two engines and exactly one caboose.  For examples, the insert and remove methods
should not work on cabooses, the replace method should not replace a freight car with a
caboose, and the rearrange methods should leave the engines at the front and the
caboose at the end.  It is acceptable to change the number of engines, so long as the
resulting number is one or two and they remain at the front of the train.

Purge:  This required method is a member of the Trains class.  Invoking this method
corresponds to step 3 of the genetic algorithm as outlined above.

Other:  The final results are to be printed in sorted order, from the best candidate to the 10th

best.  The purge step also requires selecting the top candidates.  How and when you choose to
perform sorting is a decision left up to the programmer.

Stopping Criterion

In a real application, there would likely be three stopping criterion: maximum number of iterations,
convergence to a desired value, or when the pool of candidates stops changing.  For this assignment,
we will only implement the first of these, using a maximum number of iterations read from stdin.



Input Data

File Data

The data shown above in Table 1 is stored in the file “cars.dat”, available from the class web page.  It
is required that you create a constructor method for the Cars class which can read this file.  ( Note that
this is made-up data, and should not be used for solving real problems. )

The format of the file is space-separated fields.  The first field on each line is the car label.  You can
use the first letter of this field ( E, C, F, P, or D ) to determine the type of car.  The following two fields
are the weight and capacity, regardless of the car type, ( although the capacity may be either an int or a
float depending on the type of car. )  For engines only this is followed by two numbers for the cost.
All lines end with the name of the car, which may contain spaces.  For example:

E1     30.5     250      750.00     1.00     Big George
E2     35.3     380     1000.00     1.10     Tattanooga 22
E3     40.1     550     1100.00     1.30     Stanley Steamer
C1      2.0       5     Little Red
C2      3.3      10     Yellow Cab
F1     13.6      10     Boxcar

Command Line Data

This program should read the following information from the command line:  Number of tons of
freight to be carried, number of passengers to be carried, number of employees to be carried, [
Maximum number of iterations, data file name for Car data ].  The last two items should be optional
input, with suitable default values.

Sample input ( for three different runs ) :

300.0 1000 7 20 cars.dat

200.0 1500 3 100

400.0 500 8

Output Results

Your program should first print your name and section, followed by the problem specifications of the
problem being solved ( i.e. the tons of freight, number of passengers, etc. )  Your program should then
report the ten best candidates found, along with their predicted values. The candidates should be
reported in sorted order, from the best candidate found to the tenth best. This report should list the
Trains using their Cars’ labels separated by hyphens.

Sample Train format: E1 – F3 – P4 – D2 – P2 – C2

For the best candidate only, the full names of each of the Cars should be printed, along with the load
and revenue associated with each Car.



File Division

Your program should be broken up into at least three files, as shown below, and additional files if
appropriate.

Cars.cpp holds Car and Cars classes
Trains.cpp holds Train and Trains classes.
Header files ( *.h ) required for each *.cpp file.

What to Hand In:

1. Your code, including a makefile and a readme file, should be handed in electronically using the
turnin command ( see below ).

2. The makefile should be set up so that the grader can simply type "make" to build your executable
program. The name of the resulting executable should be "survival"

3. Hardcopy is not required for this assignment.  If you have materials that you feel contribute to the
understanding of your work which you cannot hand in electronically, the may be handed in to the
TA  at the beginning of class on the due date.

4. Make sure that your name and your section appear at the beginning of each of your files, and on
your printout.

Other Notes:

• Attempting to store the Car or Train objects in arrays will not work, unless you write an assignment
operator method, which we have not yet covered.  It is therefore strongly recommended that you
use linked lists instead.

• The correct turnin command for the 10:00 section is:

turnin –c eecs370 –p hw3 < files >

• The correct turnin command for the 3:00 section is:

turnin –c eecs370a –p hw3 < files >

Note carefully that every time you submit files to a given project using turnin, it replaces any files
that you had previously submitted for the same project. It is therefore necessary to submit all files for a
given assignment with a single turnin command.  ( One way to do this is to put all the necessary files in
a separate directory, and then turnin the directory.  If you choose to do this, please do not include
extraneous files such as your *.o files. )

References
1. V. Venkatasubramanian, K. Chan, J. M. Caruthers, "Evolutionary Large Scale Molecular Design Using Genetic

Algorithms", J. Chem. Info. and Comp. Sci., 35, 188-195, 1995.

2. V. Venkatasubramanian, K. Chan, J. M. Caruthers, "Computer Aided Molecular Design Using Genetic Algorithms",
Computers and Chemical Engineering, 18 (9), 833-844, 1994.



Amendments – 20 February, 2001
1. The distribution of freight into individual freight cars is not important for determining the overall

value of the train, or for determining the amount of engine necessary to pull the train.  However it
is necessary for the final output in which the revenue of the train is reported on a car-by-car basis.
For this step, the total freight should be distributed into the individual freight cars on a percentage
of capacity basis, just like the passengers are distributed into individual passenger cars.  For
example, if a train were carrying 160 tons of freight and the total freight capacity were 200 tons,
then a particular car capable of carrying 10 tons would hold 10 * ( 160 / 200 ) = 8 tons of freight.

2. A similar calculation is necessary for the engines if there are two engines present.  For example, if
Big George and Stanley Steamer were pulling a train together, their combined pulling capacity is
800 tons.  If the train actually weighs 600 tons, then Big George’s share would be
250 * ( 600 / 800 ) = 187.5 tons, and Stanley would pull the other 412.5 tons.

3. For practical purposes, the Purge method needs to identify and remove duplicates before purging
the pool of solutions down to the best ones.  Otherwise the algorithm quickly fills up the pool with
numerous identical copies of the same “best” train.

4. Regarding the “unacceptability” of a given train, it is obviously unacceptable if it does not have
enough capacity to hold the required amount of freight, passengers, or employees.  It should be
equally obvious that a train is unacceptable if the engine(s) do not have enough pulling capacity to
pull the train.

5. In the section on “Command Line Data”, the word “stdin” has been corrected to read “the
command line.”

6. The assignment is due the Monday before Spring Break.  That is March 5th, not the 6th.


