City-Scale Traffic Simulation from Digital Footprints

Gavin McArdle
Eoghan Furey
Aonghus Lawlor
Alexei Pozdnoukhov

National Centre for Geocomputation
National University of Ireland Maynooth
Traffic micro-simulation

Activity-based transportation micro-simulation
• a population of agents performing a sequence of activities
• large-scale (millions of vehicles), OSM road geometries
• handles interactions between vehicles, junction crossing, congestion, etc.
• adaptation strategies for route selection and departure time

Traditional data sources

Little/No data
Where do you work?

Home Locations

Work Locations

A sub-sample of 50,000 individuals working in Dublin, Ireland, from the census of population, Central Statistics Office (2006-2011).
Traffic

6 am

10 am – 5 pm

unknown

8 pm
Where else do you go?

National Travel Survey (NTS) includes the following categories:

- school/education
- shopping
- personal business
- sport/leisure
- doctor/medical facility
- visiting family/friends
- social/entertainment

NTS also contains statistics on the variability and relative frequencies of activity chains, 16000 people were asked “what did you do today, and when?”

But where?

- spatial choice models
- geography of social networks
Spatial choice models

We introduced a variation of the radiation model for individual spatial choice

- Theory of intervening opportunities
- Distance decay is replaced with rank-based decay
- Capacities of opportunities matter
- “Individual demand” distribution can be integrated out

\[
P(1|m_i, n_j, s_{ij}) = \int_0^\infty dz P_{m_i}(z) P_{s_{ij}}(<z) P_{n_j}(>z) = \frac{m_i n_j}{(m_i + s_{ij})(m_i + n_j + s_{ij})}
\]

[Simini et al., 2012]
Spatial choice models

m_i – i^{th} individual’s demand threshold to undertake a trip

n_j – capacity of a destination j, abilities to satisfy that demand

s_{ij} – sum of intervening capacities

$$P(1|m_i, n_j, s_{ij}) = \frac{m_i n_j}{(m_i + s_{ij})(m_i + n_j + s_{ij})}$$

Fitting the m parameter in the inverse rank cumulative probability plot, log-log scale.

Impact of m parameter on the trip length histogram. X-axis is in \log_{10} scale, km.

Demand parameter can be tuned for each facility/activity type: schools, shopping, medical facilities...
Leisure and social activities on Twitter

Using combined dataset of Twitter and Foursquare check-ins in Ireland, demand parameter was tuned for the set of leisure/sport/social activities

[Pozdnoukhov & Kaiser 2011]
Geography of social networks

Community structure of social network in Ireland from mobile phone data analysis, >10^6 users

Probability of friendship decays with distance/rank

Communities are spatially structured into enclosed contiguous regions

[Walsh&Pozdnoukhov 2011]
Geography of social networks

A social network for the population of agents was generated that reproduces the geographical alignment of community structure, node degree and social tie length distributions of a real social network of 1M people derived from cell phone data.

A histogram of a social tie length (left) and node degree (right) of the simulated social network.
Traffic volumes validation

Weekday M50 Motorway South-Bound (Count Station 2)

Weekday M50 Motorway North-Bound (Count Station 2)

Weekday M4 Motorway In-Bound (Count Station 1)

Weekday M4 Motorway Out-Bound (Count Station 1)

500 more SCATS counters available in the city...
Conclusions

Realistic large-scale traffic micro-simulation accounting for social and leisure trips and validated on road counts.

Mid-day activities are rarely covered by traditional data sources, and we applied:

• social network model from cell phone logs for geography of friendship and destinations of social visits;
• social media to calibrate a radiation-type destination choice model for leisure/shopping journeys.

Now: currently running experiments with > 500,000 agents, inter-city journeys, more realistic volumes, influence of traffic jams on destination location choice, “what-if” scenarios, etc.

Future: Interplay between social ties and mobility is complex, better models needed for that. What about weekends?
Thanks!

Gavin McArdle
Eoghan Furey
Aonghus Lawlor
Alexei Pozdnoukhov

National Centre for Geocomputation
National University of Ireland Maynooth
http://ncg.nuim.ie/apozdnoukhov