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ABSTRACT
Bicycle sharing schemes are gaining traction as an alterna-
tive or complementary mode of urban transport. In this pa-
per, we explore the utility of an interactive web-based visual
analytics application for comparing usage patterns between
di↵erent bike sharing programs. We demonstrate the poten-
tial for adjustable filters on user demographics and trip char-
acteristics to reveal di↵erences in ridership between cities.
We also perform clique-detection and Louvain modularity-
based community detection to reveal areas of high connect-
edness under di↵erent contexts. Our work utilizes the ST-
DBSCAN algorithm in a novel context to cluster trips as a
means of categorizing flow patterns. Finally, using publicly
available data from bike share organizations, we conduct
some experiments combining the data filters, algorithms and
visualization. This preliminary work showcases the value of
interactive visual analytics for highlighting notable di↵er-
ences between established bike share systems that may help
frame questions for future research or policymaking.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
bike share, community detection, visualization, visual ana-
lytics

1. INTRODUCTION
Bike share schemes are an increasingly prevalent mode of

intra-city transportation. In April 2013 there were 26 bike-
share programs in the US [11], a number expected to double
in the subsequent 2 years as many cities are investigating this
option for a number of reasons. Bike sharing can provide an
alternative to traditional modes of transport or, more likely,
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a complementary service for solving the “last mile problem”
of getting from a public transportation stop to the final des-
tination. Furthermore, bike share systems may help miti-
gate automobile congestion and reduce pollution, although
relatively little research has been done to asses their actual
impact in these areas. Benefits to users include potentially
reduced commute times by perhaps as much as 10% [9]; and
a healthier lifestyle–one recent study investigating the e↵ect
of the London cycle hire scheme on the health of over half a
million of its users reported a measurable reduction in dis-
ability adjusted life years, particularly for male and older
participants [17]. These potential benefits have contributed
to the recent rise in bike share feasibility studies and policies
to promote cycling in the USA.

To ensure the success of such ventures, it is useful to
study the operation of existing public bicycle programs to
identify features that improve the e↵ectiveness of bike share
scheme implementations. For instance, a comparison of bike
share schemes in China revealed that government-led invest-
ment, enforced bicycle lanes and technologically sophisti-
cated equipment greatly boosted the performance of bike
share schemes [18]. Making public bicycles available to non-
registered users can increase the number of trips taken and
introduce new flow patterns between docking stations [12]
compared to a system reserved for use by subscribers only.
Studies also suggest numerous station-specific variables (neigh-
boring land use, population density, proximity to transit,
distance from the CBD, bike lanes and bicycle infrastruc-
ture [6, 7, 15], among others) and city-wide variables (station
density, weather, demographics, attitudes towards cycling)
that a↵ect bikeshare ridership.

Although bike share usage patterns and trends necessar-
ily vary between cities, there are relatively few comparative
studies in the literature. However, jointly analyzing di↵er-
ent bikeshare programs may bring to light valuable insights
that can be used to improve or expand existing services or
to shape planning decisions for a new scheme [19]. Further-
more, the analysis in bikeshare network studies is not acces-
sible to non-technical persons. This paper aims to address
these needs through a web-based interactive visual analyt-
ics application for simultaneously exploring bikeshare data
from multiple US cities. Specifically, we focus on detecting
sub-communities in networks from usage patterns subject
to filters like date, time, trip duration, and user data. We
use maximum clique detection to identify the most intercon-
nected parts of the bikeshare network, as well as modularity-
based community detection to find sub-communities. Addi-
tionally, our use of ST-DBSCAN to cluster similar trips is a



novel application of this algorithm. Urban planners may be
able to leverage such a tool to improve cycling infrastructure
or identify target regions or demographics for expanding a
bikeshare system.

2. RELATED WORK
Cycling is seen as a cost-e↵ective, eco-friendly and healthy

mode of urban transport, and as such numerous research ef-
forts have sought to determine factors that may promote
its adoption by urban populations. Much of this work was
conducted through surveys, e.g. Dill and Carr used census
data across 50 US cities to statistically analyze correlations
between number of bicycle commuters and city density or
average population age [4]. With the advent of modern bi-
cycle sharing systems, however, automated data collection at
docking stations has made possible the application of quanti-
tative assessments of bicycle-based transport. Earlier stud-
ies on bike share systems were largely concerned with char-
acterizing system behavior by extracting spatiotemporal ac-
tivity patterns from station occupancy data. Many of these
studies began by clustering docking stations into groups
based on their temporal occupancy profiles. Froehlich, Neu-
mann and Oliver were some of the first to analyze bike share
usage and sought to use their results to infer the underly-
ing human mobility patterns of the city [8]. Recognizing
the potential of such research to improve the performance
of existing bike share programs, Kaltenbrunner et al. con-
ducted a similar study to use the mined activity cycles of
stations to produce short-term predictions of station occu-
pancy [10]. Vogel et al. also clustered stations by pickup and
return activity profiles and attempted to account for the be-
havior of the resulting clusters by examining the stations’
surroundings [14]. Indeed, a number of research e↵orts have
attempted to determine factors that a↵ect docking station
activity ([15, 7]), revealing complex dependencies on station
density, population density, proximity to public transport,
altitude, neighboring businesses and job density.

In contrast to these studies, which focus on a single bicycle
sharing system, O’Brien et al. analyzed 38 systems from
around the world to develop a classification of bike share
systems based on temporal usage patterns [13]. This work
also included a hierarchical clustering of global bike shares
based on system properties (e.g. number of stations, system
compactness ratio, number of weekday and weekend usage
peaks, etc.). This study highlighted the value of drawing
comparisons between bike sharing systems to gain insights
into the e↵ects of city- and system-specific parameters.

The literature discussed so far has mostly conducted anal-
yses using station occupancy data. However, this precludes
the examination of links between specific pairs of stations,
which could a↵ord more precise measurements of bicycle
flows. Borgnat et al. were able to acquire trip-level data and
conducted a broad exploratory study of Lyon’s bike share
system features [5]. On a system-wide scale, they modeled
the e↵ects of the program’s popularity, weather, holidays
and day of the week on the overall number of rentals. In ad-
dition, the availability of trip data enabled them to perform
a hierarchical modularity-based community detection and
K-means clustering to group edges based on their weights
at certain high-activity times. The availability of trip data,
therefore, invites the use of graph theoretic algorithms to
explore network properties and to broaden the notion of
”groups” of stations. In our work, we have implemented

clique-detection and community detection for this purpose,
as well as a novel application of ST-DBSCAN [3] to cluster
similar trips.

In recent years, a number of bike sharing organizations
have made station and trip data publicly available as part
of data visualization challenges. This demonstrates a grow-
ing demand from bike sharing providers for lucid presenta-
tions of data analysis results, a problem which has received
relatively little attention thus far from the information visu-
alization and visual analytics communities. Even simply vi-
sualizing trips between stations can be challenging, since the
large number of possible links between nodes and the non-
uniform geographical distribution of stations can cause vi-
sual clutter and misleading impressions due to visual salience
e↵ects. Wood et al. have developed an interactive visual-
ization of trips taken in the London bicycle sharing system
[16] that attempts to minimize the consequences of visual
clutter caused by displaying trips as curved lines drawn in
order of increasing frequency, so that links obscured by over-
lap are the least common. The authors have recently used
the visualization to examine specific questions about the us-
age of the London bikeshare system, such as journeys made
by commuters [2] or by male versus female subscribers [1].
Hence it is clear that interactivity and flexible querying can
facilitate the exploration of a variety of usage-related ques-
tions.

Our work contributes to this body of literature by bringing
together numerous aspects of these studies to create a visual
analytics tool targeted at bikeshare scheme managers and re-
searchers alike. It is our belief that an interactive application
o↵ering a variety of data filters will allow users of the inter-
face to quickly ask questions of interest. We also augment
the visual presentation of the filterd data with the option
to perform community-detection, clique-detection and trip
clustering. Lastly, the application has a side-by-side layout
to facilitate comparisons between multiple cities.

3. DATA ACQUISITION
A number of bicycle sharing organizations have made some

of their recorded system data publicly available as part of
data visualization competitions. We obtained station and
trip data from three such organizations: Hubway based in
Boston, Capital Bikeshare in Washington DC, and Divvy
from Chicago. The data comprised station information and
trip logs. The former contained station ID’s, names, coordi-
nates and capacities while the logs recorded trip origin and
destination stations, bike checkout and return timestamps,
trip duration and user information. In Chicago, registered
users accounted for 53% of trips in Chicago, 64% of recorded
trips in Boston and 80% in Washington DC. The data were
cleaned and entered into SQLite databases.

4. ALGORITHMS
With filters in place for date, time of day, trip duration,

user type, age and gender, it is possible to select a subset of
the trip data and build a directed graph or network, where
the nodes are the docking stations, edges are trips between
stations, and edge weights correspond to the number of trips
that took place between pairs of stations. Subsequently, we
are able to apply various graph theoretic algorithms to this
network to investigate its connectivity properties.

4.1 Maximal Clique Detection



Maximal clique detection was chosen to determine the
largest interconnected part of the network given some subset
of the trip data. The weighted directed graph structure is
converted into a weighted undirected graph and edges whose
weight falls below a minimum tra�c threshold are disre-
garded in order to focus on high-frequency connections. We
then find the maximum maximal clique for the high tra�c
graph. This computation may be useful for identifying a
core group of stations serving a tight-knit subcommunity or
a self-contained region within the city.

4.2 Louvain Modularity Optimization
A greedy modularity optimization method (the Louvain

algorithm [4]) was used to perform community detection,
in order to find groups of stations that do not necessarily
form perfect cliques but are still highly connected. First,
the Louvain method looks for “small” communities by op-
timizing modularity locally. Then it aggregates nodes be-
longing to the same community and builds a new network
whose nodes are the communities. These steps are repeated
iteratively until a maximum of modularity is attained and
a hierarchy of communities is produced. This approach was
selected in order to find groups of stations that are more
connected than average, possibly signifying the presence of
hidden subcommunities.

4.3 ST-DBSCAN
We chose ST-DBSCAN [3] to cluster similar trips due to

its ability to incorporate temporal and other non-spatial fea-
tures of data into Density-Based Spatial Clustering. The
core of the DBSCAN algorithm is to define density using
neighbors. In our implementation, ST-DBSCAN utilizes
both spatial (geo-location of trips) and temporal (start and
end time of trips) information to find “similar” trips before
performing clustering. The purpose of this approach is to
extract coherent flow patterns by grouping trips between
one set of neighboring stations and another, occurring at
roughly the same time of day.

5. VISUALIZATION
We created a visual tool for comparing patterns in bike

usage across di↵erent cities. To achieve this, we designed our
application to display two maps side-by-side with a variety
of filters allowing the user to adjust which aspects of the
programs they wish to compare. Stations are designated by
circles whose size is proportional to the number of journeys
that start or end at that station, relative to the total num-
ber of trips shown. The color of the circle encodes the ratio
of incoming to outgoing trips, with “sink” type stations col-
ored more red and “source” type stations colored more blue.
Clicking on a station reveals data and edges starting and
ending there. We have separate panels for our three algo-
rithms and a station activity viewer panel.

Figure 1: Visualization tool. Left column contains tabs for
switching between visualization components and filters.

The maps and station markers are implemented in Leaflet,
an open-source Javascript library for map creation. Indi-
vidual map tiles are provided by Stamen Design (free for
non-commercial users). D3’s scaling features are used to de-
termine color and width of individual paths. The filtering
widgets and logic are achieved through a mixture of JQuery
and JQuery UI. Specifically, JQuery UI provides a calen-
dar widget and range scaler that aids the user in selecting
date and time intervals. Once the filtering parameters have
been selected through the widgets, they are sent via JQuery
AJAX calls to the server where they are passed to the rel-
evant Python scripts. The results are sent back in JSON
format to the client for visualization.

6. EXPERIMENTS AND DISCUSSION
When designing our visual tool, we decided to focus on

providing visually simplistic representations of our algorithms
with minimal interpretation of the results. Our intention is
to allow people with deeper understanding of the cities we
consider to employ our methods as a tool while attempting
to limit potential for misinterpretation. To this end, our vi-
sualizations are based in primary shapes, colors, and sizes,
with text limited to station details available on mouse click.
The four components of our tool has a separate visualization:
one for each algorithm and one for exploratory analysis, in
keeping with the focus of the individual component. Each
visualization is cleared before applying a visualization corre-
sponding to a di↵erent component. We tested our visualiza-
tions on data provided by bike sharing systems in Boston,
Washington DC, and Chicago.

6.1 Exploratory Analysis: late night riders in
Boston

We developed an exploratory analysis component to our
tool to give users the ability to find or consider patterns in
the data using our filtering and visualization capabilities. In
this component, a circle represents each station on the map.
Its radius corresponds to the number of trips at this station.
We use logarithmic scaling over the total number of trips to
determine the exact radius size. The color indicates the ratio
of incoming vs outgoing trips per station as a gradient. A
station with all incoming trips will be red, whereas a station
with all outgoing trips will be blue. Black is assigned to all
trips without stations.

Here we examine trips made late at night using Boston’s
bike sharing program to demonstrate how the ability to ap-
ply filters to the data can help identify system usage trends
among subpopulations. This particular case may be of real
significance to program directors looking to promote the sys-



Figure 2: Trips taken by male (left) and female (right) cy-
clists in Boston between the hours of 10pm and 4am.

Figure 3: ST-DBSCAN applied to Boston and Washington
DC trips between 7 and 8 am (top) and 5 and 6pm (bottom).

tem as a safe, reliable option for late-night travel. First, the
time filters are used to select trips made between 10pm and
4am. Next, the user filter is applied to select for trips taken
by registered users, for whom demographic information is
available. Finally, we can specify “male” or “female” in the
sex filter to determine whether there are di↵erences in usage
patterns, potentially due to safety concerns late at night.

Figure 2 shows that female cyclists have more unused sta-
tions (black circles) at this time and a more distinctive flow
pattern compared to male cyclists (more red and blue nodes,
fewer mixed nodes). Female riders also take far fewer trips:
151 trips compared to the 626 trips taken by male cyclists.
Identifying why the male and female cycling patterns di↵er
so extensively may be of interest to program directors look-
ing to increase their system’s accessibility to female riders.

6.2 ST-DBSCAN
Figure 3 shows the outcome of ST-DBSCAN’s trip clus-

tering applied to Boston and Washington DC trips in the
morning and the early evening. The resulting color-coded
trip clusters allow the user to identify patterns in trip flows
and to make sense of di↵erent ‘types’ of trips that occur. In
both cities, there is a greater variety of flows in the evening

compared to the morning. Further, flows associated with a
specific time of day are easily distinguishable, such as the
flows between Boston’s North Station and the financial dis-
trict (blue cluster at 7-8am) or between downtown Wash-
ington DC and the residential neighborhoods to the north
(green cluster at 7-8am).

6.3 Louvain

Figure 4: Results of Louvain algorithm on trips in Boston
and Washington DC.

We represent station clusters provided by Louvain with
matching node color indicating common cluster member-
ship. This algorithm allows users to easily see the geograph-
ical spread of stations within a highly-connected community.
Figure 4 illustrates the results of Louvain applied to all trips
taken in Boston and Washington DC. In this example, we
note that the Washington DC clusters are far more spread
out than they are in Boston, suggesting di↵erences in cy-
cling infrastructure or layout between the two cities that is
not otherwise immediately clear from the data alone.

6.4 Max Clique
We distinguish the stations belonging to the maximum

clique by coloring them a bright coral and leaving the other
stations a pale gray color. Max clique helps us distinguish
the areas of maximum tra�c at any given time, with the map
overlay providing us with additional contextual information.
For example, our application of max clique to Boston and
Washington DC for the hours 7-8am and 5-6 pm indicate
di↵ering areas of maximum trip activity for the morning and
evening commutes (Figure 5). We note that there appears
to be a greater number and diversity of stations included in
the evening cliques, which indicates either a growing number
of users and/or common routes for the evening rush hour.

7. CONCLUSIONS
We aimed to provide an accessible interface for examining

bike share programs across cities through the use of var-
ious algorithms for clustering data, namely ST-DBSCAN,
Louvain modularity optimization and max clique detection.
By coupling these back-end algorithms with visualizations
on a city map overlay, their results become accessible to
potential users seeking to identify system usage patterns.
Furthermore, by including a variety of filtering capabilities
for exploratory visual analysis, users of this tool can narrow
the data they examine to answer more specific questions or
discover behaviors unique to certain time periods or subpop-
ulations.

We believe that this marks a first step towards develop-
ing a tool that provides visual data analytics for bike share



Figure 5: Max cliques among Boston and Washington DC
stations for 7-8 am (top) and 5-6pm (bottom).

programs. A user study is the next necessary step to im-
prove our designs and test the extent to which the current
functionality enables users to explore specific questions of in-
terest. We also hope to develop our understanding of what
information is most pertinent for bike share program owners
by increasing discussions with these potential users. Beyond
design, we believe that continuing to test and compare the
potential benefit of other algorithms for this dataset will aid
our understanding of what kinds of analyses best facilitate
our understanding of the data.
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and A. Goodman. Health e↵ects of the London bicycle
sharing system: health impact modelling study. BMJ:

British Medical Journal, 348, 2014.
[18] L. Zhang, J. Zhang, Z.-y. Duan, and D. Bryde.

Sustainable bike-sharing systems: characteristics and
commonalities across cases in urban China. Journal of
Cleaner Production, 2014.

[19] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
computing: concepts, methodologies, and applications.
ACM Transaction on Intelligent Systems and

Technology (ACM TIST), 2014.


