
Longitudinal Human Mobility and Real-time Access to a 
National Density Surface of Retail Outlets 

 

Thomas R. Kirchner1,2,3  Hong Gao3, Andrew Anesetti-Rothermel3,4, Heather Carlos5, Brian House6 
 

1 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA 
2 Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA 
3 The Schroeder Institute at Legacy, Washington, DC, USA 
4 Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, USA 
5 Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA 
6 Brown University, Providence, RI, USA 

ABSTRACT 
New methods are making it possible to investigate the way points of 
interest (POIs) within cities affect the health of citizens traveling through 
their streets. In this paper we present the development of a framework for 
study of human mobility and real-time access to the landscape of point-
of-sale products available across the US, a POI with indisputable 
implications for a range of health related behaviors.  A nationwide 
density surface of convenience and related retail outlet locations 
was generated using static bandwidth kernel density estimation 
(KDE). This resulted in a smooth, continuous density surface 
where every location in the study area has an assigned density 
value.  This surface was then linked to each real-time mobility 
coordinate contributed by participants taking part in a real-time 
geo-location tracking service.  Longitudinal human mobility data 
were collected from a sample of 550 people who continuously recorded 
their geographic location via their cellular phone every 10-minutes over 
an average of 8 months.  Hourly and daily mobility patterns were 
characterized by radius of gyration and associated contact with the retail 
density surface.  Analyses explore the way real-time access to retail 
products varied as a function of both their geographic distribution and the 
mobility patterns of participants. These data suggest that research on 
access to retail products must account for the mobility and preferences of 
individuals as they engage with POI over time. Results demonstrate 
the kind of insight that can be gained by embracing the dynamic 
interplay between city-level POIs and human mobility patterns.   
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1. INTRODUCTION 
Interest in urban points of interest (POI) and the health of citizens 
is growing rapidly [1, 8].  Previous work has been founded on the 
notion that health-related POI can be used to approximate 
individual-level exposures, because POI are assumed to have a 
commensurate, stable association with the health of those in near-
by residential addresses. This assumption is flawed to the extent 
that individual POI exposures are determined by non-home 
mobility. Beyond city-level POI, it is increasingly clear that 
individual differences in mobility patterns produce a dynamic 
interaction between citizens and their real-time surroundings [2-4]. 

Individual mobility patterns and the preferences of citizens actively 
engaging with their real-time context make exposure and thus the impact 
of urban POIs on health highly dynamic.  The growing empirical 
literature on human mobility[2, 3] supports the notion that mobility 
patterns determine POI exposure levels, more than can be 
approximated by static factors like residential location. Yet 
methods for real-time quantification of accumulating levels of 
exposure to urban POI are only now being developed.   

In this paper we present the development of a framework for the study of 
human mobility and real-time access to the landscape of point-of-sale 
products available across the US, a factor with indisputable implications 
for a range of health related behaviors [5-7].  This begins with a national 
probability density surface representing the continuous landscape of 
convenience, grocery and gas outlets in the US.  We then overlay 
longitudinal human mobility data collected from a sample of 550 people 
who have voluntarily recorded their real-time geographic location via 
their cellular phone every 10-minutes (while in motion) over an average 
of 8 months, resulting in an average of 3,711 observations per user.  
Analyses examine the extent to which the dynamic nature of 
participants’ mobility patterns interacted with their real-time 
surroundings and thus determined their day-to-day access to products 
sold in retail convenience stores.  Variations across urban areas and over 
time provide insight and identify targets of intervention for both urban 
planners and public health practitioners. 

1.1 Related work 
Urban computing involves the study of urban dynamics using data 
from sensors, devices, persons, vehicles, buildings, and GIS 
repositories in urban areas for the benefit of citizens [8]. A rapidly 
advancing application of urban computing leverages data on the 
geo-location of citizens within cities to understand socio-
behavioral processes and health [2, 4, 9].  

The burgeoning literature on human mobility suggests that 
mobility patterns can reveal important information about the way 
citizens interact with POI in cities [10-13].  Zheng et al. [8] and Qi 
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et al. [14] demonstrate that taxi mobility data can be used to 
identify urban social functions and city planning errors. 
Complementing this work, Yuan, Zheng et al. [2] were the first to 
identify functional urban regions by overlaying static POIs of a 
region with human mobility patterns. Social media platforms 
provide another example of data on the geographic distribution of 
citizens within cities [14-16].  Unfortunately, the applied 
implications of such data for health remains unrealized [17, 18].  

Recent advances notwithstanding, the empirical literature on the impact 
of POIs on health behavior is currently in its infancy.  Recent work 
shows that the geographic density of retail tobacco [19-23] and 
alcohol [24-28] outlets is associated with aggregated patterns of 
use and treatment. Geospatial analysis methods have also been 
applied to the study of physical activity, retail food environments, 
diet and weight [29-32].  Kirchner et al., [4, 9] was the first to link 
real-time geographic exposure health-related POIs to addiction-
related behavioral outcomes.  The present paper advances this 
literature in a number of ways.  Focusing on a reliable, national 
source of health-related POI data allowed us to identify variation in 
urban dynamics and behavior across different regions of the US.  
The use of continuous real-time geo-location tracking provides 
excellent temporal and spatial resolution, which improved 
sensitivity to detect dynamic patterns in the data.  These 
methodologic advantages, combined with well-established sources 
of health-related data, enhance the contribution of this report. 

2. METHOD 
2.1 Retail Density Surface 
A nationwide density surface of convenience and related retail 
outlet locations was generated using kernel density estimation 
(KDE).  The empirical basis for this probability density surface 
was a national dataset of retail outlets, identified by North 
American Industry Classification Systems (NAICS) codes.  
Developed by the Office of Management and Budget, NAICS is 
the standard used by Federal statistical agencies to classify 
businesses based on their primary activity [33]. In 2012, geocoded 
data was obtained from OneSource’s (now Avention) Global 
Business Browser.. The following retail categories and 
corresponding NAIDS codes were included: beer, wine, and liquor 
stores (NAICS: 445310); supermarkets and other grocery stores 
(NAICS: 44511); convenience stores (NAICS: 44512); pharmacies 
and drug stores (NAICS: 446110); gasoline stations with 
convenience stores (NAICS: 44711); other gasoline stations 
(NAICS: 44719); department stores (NAICS: 452111); discount 
department stores (NAICS: 452112); and tobacco stores (NAICS: 
453991).  The final dataset included N = 269,781 retail outlets 
(Figure 1).  

To quantify individuals’ real-time access to retail outlets, we used 
a static bandwidth KDE approach.  This non-parametric method 
extrapolates point data over a study area by calculating the density 
of the points using a specified bandwidth (e.g., a circle of a given 
radius centered at the focal location) [34]. This results in a smooth, 
continuous density surface where every location (i.e., every 250m 
pixel) in the study area has an assigned density value. The static 
bandwidth in the KDE analyses was optimized by constructing 
numerous density surfaces across an array of distance-based 
bandwidths [1].  Bandwidth selection was based on which density 
surface optimized the kurtosis of the density surface (e.g., not too 
peaked or too smoothed), given the underlying point distribution. 
This bandwidth optimization approach was carried out with the 
spatial analyst density toolset in ArcGIS v.10.1 software. To 
produce a final density surface in ArcGIS, a Gaussian kernel with 
an “optimized” fixed 5-mile bandwidth was used.  The resulting 

density surface had a cell size of 250 meters.  We then calculated 
zonal statistics of the final density surface for zip code tabulation 
areas (ZCTAs) in the United States.  ZCTAs are generalized areal 
representations of the zip code service areas used by the United 
States Postal Services [35].  The average retail outlet density per 
ZCTA was then linked to each real-time mobility coordinate 
contributed by the participants in our geo-location tracking sample. 

Figure 1.  National Density Surface: US Convenience Retail 

 
 

2.2 Longitudinal Mobility Data 
Geolocation tracking made it possible to physically link each person’s 
real-time location to the probabilistically continuous landscape of 
convenience stores across the US. Mobility data comes from the 
OpenPaths (https://openpaths.cc) platform, launched by the New 
York Times Company Research and Development Lab in May of 
2011 [36]. OpenPaths collects GPS location information from 
volunteers via iOS and Android location tracking applications. 
These applications utilized multiple approaches to geographic location 
capture, including both direct satellite GPS coordinates (when available) 
and wireless network-based “assisted” geo-location estimation via 
trilateration among cellular towers and wireless data access points.  

 
Figure 2.  Human Mobility Cohort 

 



Trilateration-based approaches are particularly useful for capture of 
location coordinates while the user is inside a building or vehicle, where 
direct satellite coordinates are usually unavailable. The OpenPaths 
applications wirelessly report the user’s location every 10-minutes, 
unless the user remains stationary (to save battery).  Records are updated 
when a significant location change (more than 5m) is detected, 
based on cell-tower and Wi-Fi-node trilateration [36]. The 
longitudinal mobility dataset contained 3,440,821 observations 
collected from 859 individuals worldwide from 03/01/2012 to 
12/31/2013.  Each observation includes a unique user ID, date, 
time, latitude, and longitude. The raw mobility data was clipped to 
United States using state outline polygons published by United 
States Census Bureau, yielding a US cohort of 550 individuals 
with 2,013,042 observations recording during the present 
observation period. The total number of locations contributed by 
each individual ranges from 1 to 79,602 with a mean of 3711 
(Median=2706) and standard deviation of 2706. The number of 
days falls between 1 and 993 with a mean of 243.09 days 
(Median=211.5; SD=183.59).  
2.2.1 States of residence 
Noteworthy, 19.33% of the data (N= 389,058) falls in California, 
and 14.45% (N= 290,854) in New York. All other states have 
66.22% (N= 1,333,130). Given the nice contrast in terms of geo-
locations, climate, built-in environment, etc., between New York 
and California, the two states were entered as covariates in all 
models.  

2.3 Radius of Gyration 
Radius of gyration (rg) measures the distance a person travels 
within a certain time period [3]. It defines by the standard deviation 
between locations and their center of mass:  
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where N is the total number of locations an individual has been to, 
and 𝑟!!"#  is the individual center of mass, or the mean longitude 
and latitude of all N locations.  (𝑟! − 𝑟!"#$) is the great circle 
distance in kilometers between a specific location and the center of 
mass calculated using Vincenty's formulae [37]. Hourly rg was 
obtained for each individual, resulting in 747,347 observations.  
Table 1.  Raw rg Mean (SD) by State, Weekend, TOD, Season 

State
Week'
End Early Day Evening Late

NY No 0.70 1.28 1.20 1.16
(2.22) (3.14) (3.38) (3.07)

Yes 0.77 1.41 1.43 1.38
(2.20) (3.75) (3.73) (3.76)

CA No 1.58 1.69 1.73 1.99
(3.76) (3.36) (4.05) (4.10)

Yes 1.90 1.54 2.31 2.43
(4.49) (3.63) (4.68) (5.25)

State
Week'
End Spring Summer Fall Winter

NY No 1.25 1.19 0.96 1.22
(3.15) (3.25) (2.73) (3.29)

Yes 1.46 1.37 1.07 1.22
(3.77) (3.65) (3.11) (3.42)

CA No 1.85 1.82 1.74 1.58
(3.99) (4.00) (3.92) (3.54)

Yes 2.31 2.27 1.99 2.01
(5.04) (4.87) (4.42) (4.41)

Time'of'Day

Season

  

Because location collectors are motion sensitive, rg for hours with 
only one location observation were assumed to be 0.  Because this 
work focuses on day-to-day mobility routines,  long-range travel 
was excluded by dropping observations with rg larger than 120 
kilometers (N=106), the maximum distance a car can travel in one 
hour (always shorter than that of a plane), yielding 550 individuals 
and 747,241 observations (99.9% of the original data). 

Validity of the data is initially supported by observation of 
expected patterns of mobility, such as that related to weekdays and 
weekends.  Figure 3 illustrates the daily drop in mobility across 
the early morning hours, followed by a steep rise across the middle 
of the day, and then divergence on Friday, Saturday and Sunday, 
with late Sunday revealed as the window of greatest mobility, as 
travelers who departed on either Friday or Saturday return home.   

Figure 3.  rg over 24-hr clock as function of day of week. 

 

Overall, mean rg was 1.93 kilometers per hour with a 4.41 
kilometers standard deviation. Minimum and maximum were 0 and 
119.51 kilometers. Within each day, rg was the lowest early and 
higher across the remainder of the day.  We see a spike in rg mid-
day on weekdays – and generally more variation on weekdays.  
Radius of gyration was higher in CA and on weekends than 
weekdays (Table 1).  Figure 4 depicts the markedly different 
mobility patterns in NY (mid-late peak), and CA (V-shaped). 

Figure 4.  rg over 24-hrs as f() of State, Weekend, Season 

 
 



2.4 Real-time Retail Access 
Real-time access to the retail density surface was defined as the 
product of each participant’s rg within each hour under observation 
and their average retail outlet density value for each mobility 
coordinate recorded within the same hour. Conceptually, this 
“Access” variable accumulated the number of retail options 
participants had as they moved, and as expected from a count 
variable of this kind, the observed distribution was heavily skewed 
right, and thus not a reasonable fit for the assumptions of the 
general linear model (see Section 3.1).  Access was therefore 
stratified into deciles (plus an additional level for values of zero), 
effectively transforming it into a categorical variable with 11 levels 
from 0 to 10 corresponding to growing access to retail products.  
Non-parametric categorical data analysis methods were then 
employed as describe in Section 3.1. 

So that we could model socio-temporal patterns of Access, time 
related variables based on social convention were created for each 
observation.  These were Time of Day, Weekend, and Season. 
Time of day (TOD) was defined by four 6-hr windows: 3:00-9:00 
as “early,” 9:00-15:00 as “day,” 15:00-21:00 as “evening,” and 
21:00-3:00 as “late,” treating observations recorded between 
midnight and 3AM as part of the preceding day [38]. Weekend is 
binary, indicating whether each observation fell on a weekend, 
defined as falling after 17:00 Friday through 17:00 Sunday.  
Season was also defined as categorical, with Jan.-Mar. as winter, 
Apr.-Jun. as spring, Jul.-Sep. as summer, and Oct.-Dec. as fall. 
“State” captures the US State in which each participant resided on 
each day of the project, based on his or her mobility pattern 
(residential addresses were not otherwise available).  Because most 
inter-state travel was excluded during rg post-processing, 94.95% 
of observations from each day occurred within the same state.   
 
Table 2.  Raw real-time retail access counts 

State
Week'
End Time 0 1 2 3 4 5 6 7 8 9 10
No Early 1,643 121 48 51 41 59 44 74 105 257 445

Day 3,251 220 152 105 122 140 117 281 364 607 1,991
Eve 3,401 155 218 192 159 160 175 401 524 674 1,179
Late 3,721 156 104 136 119 117 145 393 556 754 1,895

Yes Early 879 93 29 43 18 32 24 71 107 175 327
Day 816 137 59 61 55 53 39 69 95 138 287
Eve 1,653 144 133 102 101 98 95 252 366 421 691
Late 1,212 111 51 73 41 43 69 121 212 241 510

No Early 2,700 200 277 361 344 301 426 510 441 557 376
Day 1,700 109 184 276 255 257 313 426 390 428 337
Eve 3,660 313 408 580 527 636 695 678 660 627 347
Late 3,133 270 409 555 578 587 730 843 895 825 484

Yes Early 1,326 103 169 154 129 131 232 241 233 281 205
Day 452 54 75 86 73 47 56 66 70 88 68
Eve 1,461 120 260 298 276 272 333 379 413 380 298
Late 1,295 105 181 259 227 220 296 332 298 336 256

Retail'Access

NY

CA

 
Table 2 presents the raw Access counts within New York and 
California, stratified by Weekend and TOD.  Overall, 37.69% of 
observations were recorded when Access was 0.  By TOD, Access 
was much higher when it was late (21:00- 3:00), and much lower 
when it was early (3:00- 9:00).  Importantly, variation between 
states was immediately apparent; for example, Access in NY was 
characterized by spikes on weekdays due to hyper-urban density 
levels, while Access in CA was more distributed on weekdays.  
Because these temporal dynamics vary between states in complex 
ways, formal modeling was used to characterize the joint and 
conditional associations among the factors at play. 

3. STATISTICAL ANALYSES 
3.1 Log-Linear CDA 
Retail Access, TOD, Weekend, Season, and State constitute our 
five variables of interest, and their interactive association can be 
quantified within a set of multivariate contingency tables that 
include a total of 704 cells.  Given a highly non-linear, count-based 
polytomous outcome variable (Access), generalized categorical 
data analysis techniques were utilized [39].  Specifically, we 
employed exponential, log-linear modeling techniques, developed 
to analyze multidimensional contingency tables.  Log-linear 
models convert the multiplicative relations among joint and 
marginal counts in a contingency table to additive, linear 
associations by transforming the counts to logarithms [39].  Model 
coefficients and inference are similar to standard Poisson 
regression for counts.  Hierarchically nested model comparison 
techniques were used to iteratively identify the most parsimonious 
combination of factors required to explain the observed data 
(Section 3.2)  The saturated model represents the log frequencies 
for the cell index (h,i,j,k,l) of all (non-ordinal) combinations of State 
(i.e., NY as reference), Weekend, TOD, Season, and Access: 
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3.2 Best-in-class Model Selection 
Table 3.  Step-down contrasts of "best-in-class" models 
Model (Model'Terms) Deviance df p ΔLL*82 Δ'df χ2'(Δdf;'0.001)

1 (N,'W,'T,'S,'A) 1.2E+08 5 0.00 851340765 170 149.5
2 (NWTA) 1.5E+07 175 0.00 87565142 264 149.5
3 (NTSA,(NWTA) 166237 439 1.00 134674.3 45 86.66
4 (NTSA,'NWTA,'SWA,'SWN,'SWT,'SW) 96888.2 484 1.00 811087.5 87 137.2
5 (NWTA,'WTSA,'NTSA) 74713.2 571 1.00 813475.4 12 59.7
6 (NWTA,'NWST,'NTSA,'WTSA) 47762.4 604 1.00 88394.2 30 27.88
7 (NWTA,'NWST,'NTSA,'WTSA,'NWSA) 30973.9 613 1.00 815261.5 90 137.2
8 (NWTSA) 451.032 703 1.00 8 8 8

N:'NY'versus'CA
W:'weekend
T:'time'of'day
S:'season
A:'access'to'retail

Table 3 presents an overview of the best-in-class model selection 
process that sought to identify the most parsimonious model form, 
defined as the minimal set of parameters required to provide and 
adequate fit to the observed data.  The initial basis for comparison 
is Model 8, which is the saturated model that corresponds perfectly 
to the raw data, having zero degrees of freedom, as the number of 
parameters is equivalent to the total number of cells generated by 
all interactive combinations of the 5 factors under study here: retail 
Access (the conceptual DV), State (i.e., NY as reference), 
Weekend, TOD, Season.  Stepping-down from the saturated 
model, we evaluated patterns of conditional independence with a 
model containing every 4-way interaction (Model 7), as well as 
sets of models with all 4-term 4-way interactions (e.g., Model 6), 
all 3-term 4-way interactions (e.g., Model 5), all 2-term 4-way 
interactions (e.g., Model 3), all 1-term 4-way interactions (e.g., 
Model 2), and the full mutually-exclusive independence model 
(Model 1). Neither Model 1 nor the Model 2 set (i.e., the five 
models including a single 4-way interaction term) provided an 
adequate fit to the observed data.  Interestingly, one of the 10 
models in the Model 3 set fit the observed data well (see Table 4).  
Model 10 in Table 4 fit while only modeling 440 of the total 704 
cells under study. This is thus the most parsimonious model, 
effectively isolating an informative pattern in the data that then 
becomes the basis for inference and conclusions. 



Table 4.  Best-in-class determination among all (non-ordinal) 
double combinations of 4-way interactions 
Model D df p Term+1 Term+2

1 6928912.0 383 0.00 (Access,/Weekend,/TOD,/Season) (State,/TOD,/Weekend,/Season)
2 6335185.0 439 0.00 (Access,/Weekend,/TOD,/Season) (Access,/State,/Weekend,/Season)
3 2475403.0 223 0.00 (Access,/State,/Season,/Weekend) (State,/TOD,/Weekend,/Season)
4 2195044.0 439 0.00 (Access,/State,/TOD,/Season) (Access,/State,/Weekend,/Season)
5 742095.8 223 0.00 (Access,/State,/TOD,/Weekend) (State,/TOD,/Weekend,/Season)
6 484712.6 439 0.00 (Access,/Weekend,/TOD,/Season) (Access,/State,/TOD,/Weekend)
7 589039.8 307 0.00 (Access,/State,/TOD,/Weekend) (Access,/State,/Season,/Weekend)
8 574624.0 383 0.00 (Access,/State,/TOD,/Season) (State,/Season,/TOD,/Weekend)
9 383940.0 527 0.00 (Access,/State,/TOD,/Season) (Access,/Season,/TOD,/Weekend)
*10 188143.5 439 1.00 (Access,/State,/TOD,/Season) (Access,/State,/TOD,/Weekend)

 
Model 10 is interesting because it is considerably less complex 
than the ten other models that include three 4-way interaction 
terms, as well as the five models that include four 4-way 
interaction terms, and because it is the only model with only two 4-
way interaction terms that provides an adequate fit to the observed 
data.  For these reasons it is important to consider what these two 
4-way interaction terms reveal about the pattern of data under 
observation here.  The first of these interactions (Model 10, Term 
1, Table 4) indicates that Access varied as a function of State, 
TOD and Season, while the second (Model 10, Term 2, Table 4), 
indicates that Access varied as a function of State, TOD and 
Weekend.  Put another way, the way Access varied within TOD 
was different across States, and this association varied 
independently between Weekends versus Seasons. 

Inspection of the terms included in Model 10 in Table 4 reveals 
that this model provides a specific test of conditional independence 
between Weekend and Seasonal effects. That this model fits 
indicates that after accounting for State and TOD, patterns of 
Access across Weekends and quarterly Season are independent of 
one another.  Nonetheless, returning to Table 3, it is apparent that 
while it is not necessary to include any interaction between 
Weekend and Season (Model 3), the addition of 2- and 3-way 
interaction parameters does incrementally improve model fit 
(Model 4), which, in turn, is improved following inclusion of each 
subsequent “best-in-class” set of parameters (Models 5, 6, 7). 

Figure 5 is a model-generated mosaic plot that captures the pattern 
of results.  Mosaic plots present “tiles” weighted by model-
predicted log cell frequencies.  Access increases down the z-axis.  
Access in New York versus California is the first column factor, 
and each is further subdivided into TOD, the second column factor.  
Colored rows indicate Access on weekdays, while grey rows 
represent weekends.  Rows within each set of weekday and 
weekend represent effects of Season.  Greater Access by State and 
TOD equates to wider bars, while greater access by Weekend and 
Season equate to taller bars.  Returning to Model 10, immediately 
striking is the pattern of Access due to State and Weekend.  As 
previously observed, levels of Access are greater in California 
across the low to moderate range, while Access is greater in New 
York only near the top of the scale. Access on weekdays is also 
clearly higher than on weekends, likely due to commuting patterns. 
Consistent with the model selection process, tile size appears 
relatively balanced among Seasons within Weekdays across levels 
of Access. 

Figure 6 highlights the pattern observed for NY, consistent with 
the Figure 5 mosaic, making it clear that elevated Access in NY 
spikes in the middle of the day and again when it is late on 
weekdays.  Access only elevates during the evening on weekends.   
 

Figure 5.  Mosaic plot of retail access by state, time-of-day, 
weekdays (colored), and season (rows within levels of Access) 

 

Figure 6. NY Access as f() of TOD and Weekend 



 

Seasonal effects offer another case where Access was not simply a 
linear product of rg and density.  Overall, rg in New York varied 
significantly by Season (Figure 4). However, in New York, rg 
peaked during mid-day in all seasons.  Also noteworthy, mobility 
in the morning dropped in the summer in both New York and 
California.  One possibility is that Seasons affect commuting and 
work patterns and thus Access.  In New York this could explain 
especially high mid-day Access in Summer and Spring, which are 
times that residents are least likely to be on vacation and thus away 
from the density of New York’s urban areas (Figure 7).  Another 
possibility is that these patterns correspond to climate-based 
differences between the Northeast and the Southwest US.  In 
California, summer and winter bring the relative extremes of 
temperature and therefore may drive down mobility and thus 
Access levels (Figure 8).  Current exploratory work is looking into 
other, more dynamic conceptions of “Season,” as we suspect 
simple partitioning of seasons based on cultural convention may be 
insufficiently precise when trying to capture the interaction 
between weather conditions and spatio-temporal mobility. 

4. CONCLUSIONS 
Results of this work shed additional light on the nature of real-time 
retail Access, especially as it compares to the more common use of 
static POIs, such as aggregated outlet density information. 
Variations across urban areas and over time provide insight and identify 
targets of intervention for both urban planners and public health 
practitioners.  The contrast between New York and California is 
particularly useful on this point.  First of all, outlet density peaks 
much higher in New York than in California, while California and 
its urban sprawl is characterized by more widely distributed yet 
moderate to low levels of density.  Second, rg is consistently higher 
in California than in New York, and exhibits an entirely different 
cyclic pattern.   Thus from hour-to-hour and day-to-day, Access in 
California is generally higher than in New York. Yet, when 
individuals move into New York’s urban centers they experience a 
“hyper-density” of outlets and thus accumulate very high Access 
levels during certain times, usually on weekdays and peaking 
around mid-day.  This pattern of results demonstrates the kind of 
insight that can be gained by considering both POIs and dynamic 
mobility patterns.  Moving forward it will be useful to ask not just 
“how much?” but also “where, and when?”  

Future work should leverage data of this kind to inform policy, and 
more generally, to advance our understanding of individual 
decision-making and behavior change dynamics as a function of 
POIs. Natural extensions of this work would incorporate other 
policy- and health-relevant POI like particulate matter, infectious 
disease spread, and features associated with food and alcohol 
products.  In all cases it will be interesting to examine the extent to 
which real-time POI exposure can be linked socio-behavioral 
processes, and ultimately to clinical outcomes. 
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